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Motivation

Investments in power generation

Capital intensive

Very long-term returns

Many technologies

Many random factors :

Demand
Outages
Fuel prices
Inflows

Natural modelling : Stochastic control

High-dimensional

Infinite horizon
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Motivation

More precisely : Optimal multiple switching

Outline

1 Numerical scheme

Convergence rate
Complexity analysis

2 Application

Detailed modelling
Numerical solution
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Problem

v (t, x , i) = sup
α∈At,i

E




� ∞

t
f
�
s,X t,x

s , Iαs
�
ds −

�

τn≥t

k (τn, ζn)





X t,x Markovian diffusion in Rd , Xt = x

Iα piecewise constant in a finite set Iq = {i1, i2, . . . , iq}
(⇒ optimal switching)

α = (τn, ιn)n∈N impulse control strategy, τn increasing
stopping times, ιn random variables in Iq, ζn = ιn − ιn−1

I
α
s = ι01 {0 ≤ s < τ0}+

�

n∈N
ιn1 {τn ≤ s < τn+1}

At,i set of admissible strategies s.t. Iαt = i
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Assumptions

Diffusion coefficients

Lipschitz continuity & Linear growth

Reward function f

Lipschitz continuity & Linear growth
Exponential discount e−ρt

Cost function k

Lipschitz continuity & Linear growth
Exponential discount e−ρt

Minimum fixed cost
Triangular condition : k(t; i , j) + k (t; j , k) > k (t; i , k)
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Properties

vi = v (., ., i) solutions of a system of
Hamilton-Jacobi-Bellman Quasi-Variational Inequalities

v (t,Xt , i) solution of a Reflected Backward Stochastic
Differential Equation

Dynamic Programming Principle : ∀τ ≥ t stopping time,

v(t,x ,i) = sup
α∈At,i

E




� τ

t
f
�
s,X t,x

s ,Iαs
�
ds −

�

t≤τn≤τ

k(τn,ζn) + v
�
τ ,X t,x

τ ,Iατ
�



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Finite time horizon

vT (t,x ,i) = sup
α∈AT

t,i

E




� T

t
f
�
s,X t,x

s ,Iαs
�
ds −

�

t≤τn≤T

k(τn, ζn) + g
�
T,X t,x

T ,IαT
�




g (T , x , i) = E
��∞

T f

�
s,XT ,x

s , i
�
ds

�

OR any Lipschitz fct s.t. |g(T , x , i)| ≤ Ce−ρT (1 + |x |)

Approximation error

|v (t, x , i)− vT (t, x , i)| ≤ C (1+ |x|) e−ρ̄T
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Time discretization

v̄Π(t,x,i)= sup
α∈AΠ

t,i

E




� T

t
f
�
π(s),X̄ t,x

s ,Iαs
�
ds−

�

t≤τn≤T

k(τn,ιn−1,ιn)+g
�
T,X̄ t,x

T ,IαT
�




Π = {t0 = 0 < t1 < . . . < tN = T}, step h

dX̄s = b
�
π(s) , X̄π(s)

�
ds + σ

�
π(s) , X̄π(s)

�
dWs , 0≤s≤T , X̄0 = x0

Approximation error

|vT (0, x , i)− v̄Π (0, x , i)| ≤ C

�
1+ |x|

3

2

�√
h

cf. [Gassiat et al., 2011]
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Space localization

X̄t ∈ Rd → Pε
�
X̄t

�
∈ Dε

Dε s.t. E
���X̄t − Pε

�
X̄t

���� ≤ ε ∀0 ≤ t ≤ T

Dε bounded domain : ∀x ∈ Dε, |x | ≤ C (T , ε)

Approximation error

|v̄Π (0, x , i)− v̄
ε
Π (0, x , i)| ≤ Cε
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Conditional expectation approximation (1/2)

Dynamic programming principle

v̄Π (T , x , i) = g (T , x , i)

v̄Π (tn, x , i) = max
j∈Iq

�
hf (tn, x , j)− k (tn, i , j) + Φtn,x

j (v̄Π)
�

Φtn,x
j (ϕ) = E

�
ϕ
�
tn+1, X̄tn+1

, j
� ��X̄tn = x

�

Approximation : Least-squares regression

Φtn,x
j (ϕ) � Φ̃tn,x

j (ϕ)= min
λ∈RK

E




�
ϕ
�
tn+1, X̄tn+1

, i
�
−

K�

k=1

λkek
�
X̄tn

�
�2


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Conditional expectation approximation (1/2)

Local basis

ek (x) = 1 {x ∈ Bk}

(Bk)1≤k≤K hypercubes ⊂ Rd , partition of Dε, edges of length δ

cf. [Gobet et al., 2005], [Bouchard and Warin, 2011]

Approximation error

|v̄Π (0, x , i)− ṽΠ (0, x , i)| ≤ C
δ

h
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Conditional expectation approximation (2/2)

Sample approximation

Φ̃tn,x
j (ϕ) � Φ̂tn,x

j (ϕ)= min
λ∈RK

M�

m=1




�
ϕ
�
tn+1,X̄

m
tn+1

,i
�
−

K�

k=1

λkek
�
X̄

m
tn

�
�2



Lemma

∀p ≥ 1 ,
���Φ̂tn,x

j (ϕ)− Φ̃tn,x
j (ϕ)

���
p
≤

Cp
√
M

Γtn,x (ϕ) + ϕ̄tn

P
�
X̄tn ∈ B (x)

�1− 1

p∨2

Extension of [Tan, 2011]

Makes use of
��� 1

M

�M
m=1

Xm

���
p
≤

Cp√
M

�X�p∨2

(Marcinkiewicz-Zygmund + Jensen)
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Rate of convergence

Approximation error

�ṽΠ (0, x , i)− v̂Π (0, x , i)�p ≤
Cp

h
√
M

1+C (T, ε)+
√
h

p (T, δ, ε)1−
1

p∨2

p (T , δ, ε) = mintn∈Π,Bk⊂Dε P
�
X̄tn ∈ Bk

�

Full rate of convergence

�v (0, x , i)− v̂Π (0, x , i)�p ≤

Cp

�
(1+|x |)e−ρ̄T+

�
1+|x |

3

2

�√
h+ε+

δ

h
+

Cp

h
√
M

1+C (T,ε)+
√
h

p(T,δ,ε)1−
1

p∨2

�
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Example

Xt = Wt d-dim. B.M.

C (T , ε) <

�

T log

�
8T

πε
2

d

�

p (T , ε, δ) �
ε

(4T )d
δd

One-parameter rate of convergence

�v (0, x , i)− v̂Π (0, x , i)�p ≤ Cp

�
1 + |x |

3

2

�√
h

T = 1

2ρ̄ ln
�
1

h

�
, ε =

√
h , δ = h

3

2

M = 1

2ρ̄

�
2

ρ̄

�2d �
ln
�
1

h

��2d+1
ln

�
4

πρ̄

ln( 1

h )
h

1
d

�
1

h3(d+1)
. . .
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Computational complexity

Dynamic programming

v̂Π (T , xm, i) = g (T , xm, i)

v̂Π (tn, xm, i) = max
j∈Iq

�
hf (tn, xm, j)− k (tn, i , j) + Φ̂tn,xm

j (v̂Π)
�

Complexity

O
�
q
2
× N ×M log (M)

�

q =number of switches

N =number of time steps

M =number of Monte Carlo trajectories

or O (q × N ×M log (M)) under suitable conditions
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Memory Complexity : Naive implementation

Euler scheme : Forward

xtn+1
= xtn + b (tn, xtn) h + σ (tn, xtn) εi

√
h

εi ∼ N (0, 1)

Dynamic programming : Backward

v̂Π(T ,xm,i) = g(T , xm, i)

v̂Π(tn,xm,i) = max
j∈Iq

�
hf (tn,xm,j)−k(tn,i ,j)+Ê

�
v̂Π

�
tn+1,X̄

tn,xm
tn+1

, j
���

⇒ storage of Monte Carlo sample ⇒ O (N ×M)
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How to avoid the sample storage ?

Memory reduction method

[Chan et al., 2004] 1-dim geometric B.M.

[Chan et al., 2006] d-dim geometric B.M.

[Chan and Wu, 2011] exponential Lévy

�→ limited to additive processes

Our contribution

Extension to any Markovian process
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(Pseudo)Random number generators

set seed s0 s0 rand(M×d)

�
εm,k
1

�k=1...d

m=1...M

s1 rand(M×d)

�
εm,k
2

�k=1...d

m=1...M

s2 · · ·

· · ·

The seeds sn can be set and stored

The i.i.d. sequence εm,k
n can be used for the Euler scheme
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Nicolas Langrené Probabilistic numerical method, Optimal switching problem & Investments in electricity generation 22 / 46



Formulation Numerical scheme Complexity Memory reduction Application Conclusion

(Pseudo)Random number generators

set seed s0 s0 rand(M×d)

�
εm,k
1

�k=1...d

m=1...M

s1

rand(M×d)

�
εm,k
2

�k=1...d

m=1...M

s2 · · ·

· · ·

The seeds sn can be set and stored

The i.i.d. sequence εm,k
n can be used for the Euler scheme
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Nicolas Langrené Probabilistic numerical method, Optimal switching problem & Investments in electricity generation 22 / 46



Formulation Numerical scheme Complexity Memory reduction Application Conclusion

(Pseudo)Random number generators

set seed s0 s0 rand(M×d)

�
εm,k
1

�k=1...d

m=1...M

s1 rand(M×d)

�
εm,k
2

�k=1...d

m=1...M

s2

· · ·

· · ·

The seeds sn can be set and stored

The i.i.d. sequence εm,k
n can be used for the Euler scheme
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Euler scheme

Case of a diffusion

xtn+1
= F (xtn , εi )

F (x , ε) = x + b (tn, x) h + σ (tn, x) .ε
√
h

εi ∼ N (0, 1)

Suppose that ∃F−1(x , ε) s.t. ∀ε, F
�
F−1(x , ε) , ε

�
= x
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General memory reduction method (v1)

Euler scheme

Initialize X [m] , m = 1..M
for i = 1..N − 1

S [i ] ← getseed ()
form = 1..M

ε ← rand (d)
X [m] ← F (X [m] , ε)

end

end

S [N] ← getseed ()

Inverse Euler scheme

Final values in X [m] ,m=1..M
for i = N − 1..1

setseed (S [i ])
form = 1..M

ε ← rand (d)
X [m] ← F−1 (X [m] , ε)

end

end

setseed (S [N])

Doubles the number of calls to rand ()

But memory complexity down to O (M + N)
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Stability ?

f
�
f−1 (x)

�
= x ?

Figure: f
�
f −1 (x)

�
− x for f (x) = 2x + 3 on a sample of 107 pts in

[0, 1]
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Stability ?

f
�
f
−1 (x)

�
= x + �Z , � > 0 , Z r.v.

Examples

Arithmetic B.M. x̃t0 − xt0 = �
�N−1

i=0
zi

�→ tame

Ornstein-Uhlenbeck x̃t0 − xt0 = �
�N−1

i=0

1

(1−αh)i
zi

�→ problem if T > 1

α ln
�
1

�

�
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Stabilizing correction

(a) Without intermediate saves (b) With intermediate saves

Figure: Compound rounding error, Ornstein-Uhlenbeck
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Outline

1 Formulation

2 Numerical scheme

3 Complexity

4 Memory reduction

5 Application

6 Conclusion
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Application to investments in power generation
Features

Not included

Multiple agents / Strategic behaviour

Multizone / Network

Dynamic constraints / Time to build

Included

Multiple factors :
Demand
Installed capacities
Random outages
Energy prices

Power price structural model :
Peaks / Scarcity
Investments feedback
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Factors modelling

Demand Dt

deterministic seasonalities + O.U. process

Capacities Ct

Controlled installed capacities : It = I0− +
�

τn≤t ζ
n

Available capacities : Ct = It × At

At = availability rate (outages)
At = T (O.U. + seasonalities)
T : R �→ ]0, 1[ (cf. [Wagner, 2012])
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Factors modelling

Fuels and CO2 prices

S0
t = CO2 price

Sk
t =fuel price for tech. k ≥ 1

dSt = ΞStdt +ΣStdW
S
t

⇒ Cointegrated geometric B.M.

Non-stationary individual prices

Stationary linear combinations

(provided rank (Ξ) not full, cf. [Benmenzer et al., 2007])

Full fuel price in e/MWh

S̃
k
t = h

0
kS

0
t + hkS

k
t
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Power price
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Objective function

New plant ζ j of type j

Cost κj
�
ζ j
�
= κjf + ζ j × κjp

Output O
j
t = min

�
ζ j × A

j
t ,
�
Dt − C

(j−1)

t

�+
�

Revenue
�
Pt − S̃

j
t

�+

− κjm

Total Gain
�∞
0

e−ρs

�
O

j
s

�
Ps −

�S j
s

�+

− κjm

�
ds − κj

�
ζ j
�

Value function

v(t,x ,i)= sup
α∈At,i

E




d ��

j=1

� ∞

t
e
−ρs

�
O

j
s

�
Ps−

�S j
s

�+
−κjm

�
ds −

�

τn≥t

e
−ρτnκ

�
ζ j
�



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Nicolas Langrené Probabilistic numerical method, Optimal switching problem & Investments in electricity generation 37 / 46



Formulation Numerical scheme Complexity Memory reduction Application Conclusion

Objective function

New plant ζ j of type j

Cost κj
�
ζ j
�
= κjf + ζ j × κjp

Output O
j
t = min

�
ζ j × A

j
t ,
�
Dt − C

(j−1)

t

�+
�

Revenue
�
Pt − S̃

j
t

�+

− κjm

Total Gain
�∞
0

e−ρs

�
O

j
s

�
Ps −

�S j
s

�+

− κjm

�
ds − κj

�
ζ j
�

Value function

v(t,x ,i)= sup
α∈At,i

E




d ��

j=1

� ∞

t
e
−ρs

�
O

j
s

�
Ps−

�S j
s

�+
−κjm

�
ds −

�

τn≥t

e
−ρτnκ

�
ζ j
�



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Numerical example

2 technologies

“Base” tech. S̃1
0
= 40e/MWh, vol.5%,

I 1
0
= 67GW, κ1p = 2.00 109e/GW

“Peak” tech. S̃2
0
= 80e/MWh, vol.15%,

I 1
0
= 33GW, κ2p = 0.24 109e/GW

S̃2
t − 2S̃1

t stationary, D0 = 70GW

Numerical parameters

T = 40 years (+20 years for terminal values)
h = 1/730 (2 steps per day), but investments only once a year
b = 26 = 64 base functions, piecewise linear
M = 5000 M.C. trajectories
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Optimal investments
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Optimal investments
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Price densities
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Strategies comparison
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Extensions

More technologies ⇒ more dimensions

Asymptotic confidence intervals ⇒ second algorithm

Multiple agents
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Nicolas Langrené Probabilistic numerical method, Optimal switching problem & Investments in electricity generation 43 / 46



Formulation Numerical scheme Complexity Memory reduction Application Conclusion

Extensions

More technologies ⇒ more dimensions

Asymptotic confidence intervals ⇒ second algorithm

Multiple agents
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Outline

1 Formulation

2 Numerical scheme

3 Complexity

4 Memory reduction

5 Application

6 Conclusion
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Conclusion

Numerical scheme for optimal switching

Rate of convergence
Memory reduction method

Application to investments in electricity generation

Structural power price model
Numerical resolution

Extensions
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Nicolas Langrené Probabilistic numerical method, Optimal switching problem & Investments in electricity generation 48 / 46


	Annexe

