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Introduction

I Practical motivation: EDF is required by law to hold funds
dedicated to the decommissionning of the nuclear power
plants, as well as the treatment and storage of the radioactive
waste.

I Management of an asset portfolio dedicated to cover the
long-term future costs for the nuclear plants “with a high
degree of confidence” - probabilistic risk constraints

I Related subjects: Asset Liability Management (ALM) problem
for pension funds, banks and insurance companies; longevity
risk; Basel or Solvency regulatory capital requirement etc.



Literature

I In the literature, the continuous-time setting is mostly
considered, with a single liability. We mention for example :

I Föllmer-Leukert (1999, 2000): quantile hedging
I El Karoui-Jeanblanc-Lacoste (2001): portfolio with American

guarantee
I Boyle-Tian (2007): desired benchmark strategy problem
I Bouchard-Elie-Touzi (2009), Bouchard-Moreau-Nutz (2012):

stochastic target problem

I In our work, we consider a finite set of future liabilities, with
risk constraints imposed at each payment date.



Outline

I Formulation of ALM problem with random liabilities.
I Three types of probabilistic risk constraints :

I European-style constraint
I Time-consistent constraint
I Lookback constraint

I Solution of these problems by a dynamic programming
approach

I determine the relationship between the risk constraints at
different dates

I find the least expensive portfolio which outperforms the
stochastic benchmark under different risk constraints.

I Examples and numerical illustrations



A discrete-time setting

I Market (Ω,F ,P) with F = (Ft)0≤t≤T

I Payment dates : 0 = t0 < t1 < · · · < tn ≤ T
I Let Fk := Ftk
I Future liable payments : P1, · · · ,Pn at t1, · · · , tn, which are
F1, · · · ,Fn measurable random variables.

I Portfolio held by an agent with value Ṽ for the payment :

Ṽti = Ṽti− − Pi

I Let Q be an equivalent probability measure such that all
admissible self-financing portfolios are Q-supermartingales, and
for any Q-supermartingale (Mt)0≤t≤T , there exists an
admissible portfolio (Vt)0≤t≤T , which satisfies Vt = Mt for all
t ∈ [0,T ].



The associated self-financing portfolio is :

Vt = Ṽt +
∑

i≥1,ti<t

Pi

The benchmark process is :

St =
∑

i≥1,ti<t

Pi

The agent has certain risk tolerance and searches for
I the cheapest portfolio V which outperforms the benchmark

process S
I the Q-supermartingale M with the smallest initial value which

dominates the benchmark S at all dates t1, · · · , tn under some
risk constraint.



Risk constraints

Let ` : R→ R be a loss function which is convex, decreasing and
bounded from below.

Example :
I `(x) = (−x)+

I `(x) = e−px − 1, p > 0

European-style constraint
Find the minimal value of M0 s.t. there exists a Q-supermartingale
(Mk)n

k=0 with

EP[`(Mk − Sk)] ≤ αk for k = 1, . . . , n. (1)

We denote the set of all such Q-supermartingales byMEU .



American-style constraint

Time-consistent constraint
Find the minimal value of M0 s.t. there exists a Q-supermartingale
(Mk)n

k=0 with

EP[`(Mk − Sk) | Fk−1] ≤ αk for k = 1, . . . , n. (2)

We denote the set of all such Q-supermartingales byMTC .

The above constraint can be viewed as an American-style one:
I let Xk =

∑k
i=1 l(Mi − Si )− αi

I condition (2) is equivalent to any of the following conditions :
I (Xk)n

k=0 is a P-supermartingale
I for all F-stopping times τ and σ taking values in {0, · · · , n},

such that τ ≤ σ,

EP[
σ∑

i=τ+1

{`(Mi − Si )− αi}] ≤ 0



Lookback-style constraint
Maximum constraint
Find the minimal value of M0 s.t. there exists a Q-supermartingale
(Mk)n

k=0 with

EP[ max
k=1,...,n

{`(Mk − Sk)− αk}] ≤ 0. (3)

We denote the set of such Q-supermartingales byMLB .

I So for a given threshold vector (α1, · · · , αn), the following
relation holds:

MLB ⊂MTC ⊂MEU .

I The initial capital requirement for the three constraints satisfy

MEU
0 ≤ MTC

0 ≤ MLB
0



Solving the three problems

I We apply a dynamic programming approach in each case.

I The dynamic programming structure depends on the nature of
the constraint.

I At each time step, the constraint need to be verified for
succeeding dates.

I We obtain recursive formulas for the three cases.



The time-consistent case

The (TC) problem :
Recall thatMTC denotes the set of all Q-supermartingales
(Mk)n

k=0 such that

EP[`(Mk − Sk) | Fk−1] ≤ αk for k = 1, . . . , n.

Dynamic version :
For any k ∈ {0, . . . , n}, letMTC ,k be the set of the
Q-supermartingales (Mt)n

t=k such that

EP[`(Mt − St)|Ft−1] ≤ αt for t = k + 1, . . . , n



Value process for the (TC) case

Define the value process in a backward manner :
I let

Vn = −∞

I for any k < n,

Vk = ess inf
M∈Fk+1

{EQ[M|Fk ] : M ≥ Vk+1 and EP[`(M−Sk+1)|Fk ] ≤ αk+1}

Proposition

Vk = ess inf
(Mt)nt=k∈MTC ,k

Mk , k = 0, . . . , n − 1.



A more explicit result
Let ` be strictly convex, strictly decreasing and of class C 1.
Assume αk > limx→+∞ `(x) for all k and that the derivative `′(x)
satisfies Inada’s conditions limx→−∞ `

′(x) = −∞ and
limx→+∞ `

′(x) = 0. Then

Vn−1 = EQ[Sn + I (λn−1Zn/Zn−1)|Fn−1]

where I is the inverse of `′ and λn−1 ∈ Fn−1 is the solution of

EP[`(I (λn−1Zn/Zn−1))|Fn−1] = αn,

and Z is the Radon-Nikodym derivative of Q w.r.t. P. For k < n,

Vk−1 = EQ[Vk |Fk−1]

+ EQ
[
{Sk − Vk + I (λk−1Zk/Zk−1)}+

∣∣∣Fk−1

]
1EP[l(Vk−Sk )|Fk−1]>αk

,

where λk−1 ∈ Fk−1 is the solution of

EP
[
`
(
I (λk−1Zk/Zk−1) ∨ (V̂k − Sk)

) ∣∣∣Fk−1

]
= αk .



The lookback-style case

The (LB) problem :
Recall thatMLB denotes the set of all Q-supermartingales
(Mk)n

k=0 such that

EP[ max
k=1,...,n

{`(Mk − Sk)− αk}] ≤ 0.

I In the dynamic programming of this problem, the maximum
should be taken into account in the value process.



Value process of the (LB) problem

I For any k = 0, · · · , n − 1, let Vk(Yk , z) be the essential
infimum of Mk ∈ Fk such that there exists a
Q-supermartingale (Mt)n

t=k and a P-supermartingale (Yt)n
t=k

verifying

max
{
z , max

t∈{k+1,...,n}
{`(Mt − St)− αt}

}
≤ Yn.

Proposition

V0(0,−∞) = inf
(Mk)

n
k=0∈MLB

M0.



Recursive formula for the (LB) problem
By convention, we define

Vn(y , z) = (+∞)1{z>y} + (−∞)1{z≤y}

Proposition
Vk(Yk , z) equals the essential infimum of EQ[M|Fk ] where
M ∈ Fk+1 such that there exists Yk+1 ∈ Fk+1 satisfying{

EP[Yk+1|Fk ] = Yk ,

M ≥ Vk+1
(
Yk+1,max(z , `(M − Sk+1)− αk+1)

)
.

In particular,

Vn−1(Yn−1, z) = ess inf
M∈Fn

{EQ[M|Fn−1] : Yn ≥ max(z , `(M − Sn)− αn)}

= ess inf
M∈Fn

{EQ[M|Fn−1] : Yn−1 ≥ EP[max(z , `(M − Sn)− αn)|Fn−1]}



Solving the European-style case

The (EU) problem :
MEU denotes the set of all Q-supermartingales (Mk)n

k=0 such that

EP[`(Mk − Sk)] ≤ αk for k = 1, . . . , n.

I Let V0 be the infimum value of M0 such that there exist a
Q-supermatingale (Mt)n

t=0 and a family of P-supermartingales
(Y k

t )k
t=0, k = 1, . . . , n, satisfying

Y k
0 = αk and `(Mk − Sk) ≤ Y k

k

Proposition

V0 = inf
(Mk)

n
k=0∈MEU

M0.



Dynamic version of the (EU) problem
I For any k = 0, . . . , n − 1 and a family of Fk -measurable

random variables Y k+1, . . . ,Y n, let Vk(Y k+1, · · · ,Y n) be the
essential infimum of all Mk ∈ Fk such that there exists a
Q-supermartingale (Mt)n

t=k and

EP[`(Mt − St)|Fk ] ≤ Y t , t = k + 1, . . . , n.

I By convention, Vn = −∞.

Proposition
Vk(Y k+1, . . . ,Y n) equals the essential infimum of all EQ[M|Fk ],
M ∈ Fk+1 such that there exist a family of P-supermartingales
(Y k+1

t )k+1
t=k , · · · , (Y

n
t )n

t=k which satisfy :
Y t

k = Y t for t = k + 1, · · · , n,
`(M − Sk+1) ≤ Y k+1

k+1 ,

M ≥ Vk+1(Y k+2
k+1 , · · · ,Y

n
k+1).



Corollary
Vk(αk+1, . . . , αn) equals the essential infimum of all EQ[M|Fk ],
M ∈ Fk+1 such that there exist a family of Fk+1-measurable
random variables Y k+2, · · · ,Y n which satisfy :

EP[Y t |Fk ] = αt for t = k + 2, · · · , n,
EP[`(M − Sk+1)|Fk ] ≤ αk+1,

M ≥ Vk+1(Y k+2, · · · ,Y n).

In particular

Vn−1(αn) = ess inf
M∈Fn

{EQ[M|Fn−1] s.t. EP[`(M − Sn)|Fn−1] ≤ αn}



The risk-neutral case P = Q, n = 2
For the European and time-consistent constraints:

V1(α2) = E[S2|F1] + `−1(α2)

For the lookback constraint:

V1(y , z) = +∞ if y < z and E[S2|F1] +`−1(y +α2) otherwise

For the minimal initial value at t = 0:
I

V EU
0 = inf

M∈F1

{
E[M] : E[`(M−S1)] ≤ α1, E[`(M−E[S2|F1])] ≤ α2}

I

V TC
0 = inf

M∈F1
{E[M] : E[`(M−S1)] ≤ α1, `(M−E[S2|F1]) ≤ α2}

I

V LB
0 = inf

M∈F1
{E[M] : E[max{`(M−S1)−α1, `(M−E[S2|F1])−α2}] ≤ 0}



Example with `(x) = (−x)+

A technical lemma
Let (Ω,F ,P) be a probability space, X ,Y ∈ F and α, β ≥ 0. Then,

V0 = inf
M∈F
{E[M] : E[(X −M)+] ≤ α,E[(Y −M)+] ≤ β}

= max{E[X − α],E[Y − β],E[X ∨ Y − α− β]}.

and

V ′0 = inf
M∈F
{E[M] : E[max((X −M)+ − α, (Y −M)+ − β)] ≤ 0}

= E[(X − α) ∨ (Y − β)].

V EU
0 = max

(
E[S1]− α1,E[S2]− α2,E[(S1 ∨ E[S2|F1])]− α1 − α2

)
,

V TC
0 = max

(
E[S2]− α2,E[S1 ∨ (E[S2|F1]− α2)]− α1

)
,

V LB
0 = E[max

(
S1 − α1, (E[S2|F1]− α2)

)
].



Numerical illustration : cost of hedging two objectives

`(x) = (−x)+ and P = Q. The model : S1 = S0eσZ1−σ
2
2 and

S2 = S0eσZ2−σ
2
2 where S0 = 100, σ = 0.2 and Z1,Z2 ∼ N(0, 1)

with correlation ρ = 50%. The first threshold α1 = 5.

Cost of hedging both objectives in an almost sure way: 107.966.



Explicit example for multi-objectives

I For arbitrary n, the explicit solution can only be obtained in
some particular cases.

Example
Assume that `(x) = (−x)+, P = Q, α1, . . . , αn ≥ 0 and the
process (St)0≤t≤n is non-decreasing. Then

MEU
0 = max

k∈{1,...,n}
{E[Sk ]− αk}



Thanks for your attention !



TC case: Idea of the proof

Denote by V̂k the essential infimum of Mk with (Mt)k
t=n ∈MTC ,k .

I The proof is by backward induction on k : assume
Vk+1 = V̂k+1.

I “Vk ≤ V̂k ” : If (Mt)n
t=k ∈MTC ,k , then

(Mt)n
t=k+1 ∈MTC ,k+1 and by induction hypothesis

Mk+1 ≥ Mk+1. By supermartingale property, we have
Vk ≤ EQ[Mk+1|Fk ] ≤ Mk , so Vk ≤ V̂k .

I “Vk ≥ V̂k ” : The opposite inequality is more delicate and relies
on the following fact: if (Mt)n

t=k+1 and (M ′t)n
t=k+1 are

supermartingales inMTC ,k+1, then there exists
(M ′′t )n

t=k+1 ∈MTC ,k+1 such that M ′′k+1 = min(Mk+1,M ′k+1).
Thus we can realize the essential infimum defining V̂k+1 as the
limit of a decreasing sequence.


