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Introduction

Practical motivation: EDF is required by law to hold funds
dedicated to the decommissionning of the nuclear power
plants, as well as the treatment and storage of the radioactive
waste.

Management of an asset portfolio dedicated to cover the
long-term future costs for the nuclear plants “with a high
degree of confidence” - probabilistic risk constraints

Related subjects: Asset Liability Management (ALM) problem
for pension funds, banks and insurance companies; longevity
risk; Basel or Solvency regulatory capital requirement etc.



Literature

In the literature, the continuous-time setting is mostly
considered, with a single liability. We mention for example :
» Fdllmer-Leukert (1999, 2000): quantile hedging
» El Karoui-Jeanblanc-Lacoste (2001): portfolio with American
guarantee
» Boyle-Tian (2007): desired benchmark strategy problem
» Bouchard-Elie-Touzi (2009), Bouchard-Moreau-Nutz (2012):
stochastic target problem

In our work, we consider a finite set of future liabilities, with
risk constraints imposed at each payment date.



Outline

Formulation of ALM problem with random liabilities.
Three types of probabilistic risk constraints :
» European-style constraint
» Time-consistent constraint
» Lookback constraint
Solution of these problems by a dynamic programming
approach
» determine the relationship between the risk constraints at
different dates
» find the least expensive portfolio which outperforms the
stochastic benchmark under different risk constraints.

Examples and numerical illustrations



A discrete-time setting

Market (Q,]'—, P) with F = (.Ft)ogtg'r
Paymentdates: 0=tp < t; <---<t, < T

Let Fy = Fy,
Future liable payments : Py,---, P, at t1,--- , t,, which are
Fi,- -+, Fn measurable random variables.

Portfolio held by an agent with value V for the payment :
Vt,‘ = Vt,'— - Pi

Let Q be an equivalent probability measure such that all
admissible self-financing portfolios are Q-supermartingales, and
for any Q-supermartingale (M;)o<:<T, there exists an
admissible portfolio (V;)o<¢< 7, which satisfies V; = M; for all
tel0, T]



The associated self-financing portfolio is :

Vi=Vet > P

i>1,t;<t

The benchmark process is :

St = E P;
i>1 <t

The agent has certain risk tolerance and searches for

the cheapest portfolio V which outperforms the benchmark
process S

the Q-supermartingale M with the smallest initial value which
dominates the benchmark S at all dates ti,--- , t, under some
risk constraint.



Risk constraints

Let £: R — R be a loss function which is convex, decreasing and
bounded from below.

Example :
0x) = (—x)*
U(x)=e P —-1,p>0

European-style constraint

Find the minimal value of My s.t. there exists a Q-supermartingale
(M) _o with

EF[0(My — SK)] < ax for k=1,...,n. (1)

We denote the set of all such Q-supermartingales by M gy.



American-style constraint

Time-consistent constraint
Find the minimal value of My s.t. there exists a Q-supermartingale
(M) _o with

EP[E(M;( - Sk) ’Fk—l] < oy for k= 1, caeyn (2)
We denote the set of all such Q-supermartingales by M 1.

The above constraint can be viewed as an American-style one:
let X, = Zf'(:l /(M,' — 5,') — O
condition (2) is equivalent to any of the following conditions :
> (Xk)r_g is a P-supermartingale
» for all F-stopping times 7 and o taking values in {0,--- , n},
such that 7 < o,

EP[ i {F(M, - 5,) - ()é,'}] S 0

i=7+1



Lookback-style constraint

Maximum constraint
Find the minimal value of My s.t. there exists a Q-supermartingale
(Mk)Z:O with

Ep[kﬂax {O(My — Si) — oy }] < 0. (3)
We denote the set of such Q-supermartingales by M 5.

So for a given threshold vector (a1, - -, a;), the following
relation holds:
Mg € Mrc C Mgy.

The initial capital requirement for the three constraints satisfy

MOEU < MOTC < M(I)_B



Solving the three problems

We apply a dynamic programming approach in each case.

The dynamic programming structure depends on the nature of
the constraint.

At each time step, the constraint need to be verified for
succeeding dates.

We obtain recursive formulas for the three cases.



The time-consistent case

The (TC) problem :

Recall that M ¢ denotes the set of all Q-supermartingales
(M) _, such that

EP[E(M/( — Sk) |]:k—1] < ay for k= 1, Lo, n.

Dynamic version :

For any k € {0,...,n}, let Mtc y be the set of the
Q-supermartingales (M;)?_, such that

}EP[E(Mt — St)|]:t71] S (675 for t=k + 1,.. ., n



Value process for the (TC) case

Define the value process in a backward manner :

let
V, = —00
for any k < n,
Vi = essinf {EQ[M|F] : M > Vi1 and EF[0(M—Si1)|Fi] < aiesn}
MeFii1
Proposition
Vi= essinf My, k=0,...,n—1.

(Me)_ EMTc &



A more explicit result

Let ¢ be strictly convex, strictly decreasing and of class C*.
Assume a > limy_, 4o ¢(x) for all k and that the derivative ¢/(x)
satisfies Inada’s conditions limy_, _ ¢'(x) = —o0 and

limy— 100 ¢(x) = 0. Then

Vo1 = E[Sy + 1(An—1Zn/ Zn—1)| Fn-1]
where [ is the inverse of ¢ and \,_1 € F,_1 is the solution of
B[ (An-1Z0/ Zn1))| Fat] = o,
and Z is the Radon-Nikodym derivative of Q w.r.t. P. For k < n,
Vie1 = EQ[ V4| Fr_1]
+E? [{Sk = Vi + I(M—1Z/ Zi-1)} ‘fk—l} LEe (V=S| Fr_a]>an

where \_1 € Fi_1 is the solution of

EF [5 </(>\k_1Zk/Zk_1) Vv (Vi — 5k)) ’}"k—l} = Q.



The lookback-style case

The (LB) problem :

Recall that M, g denotes the set of all Q-supermartingales
(My)7_, such that

Ep[k:mlax n{ﬁ(/\/lk —Sk) —ak}] <0.

In the dynamic programming of this problem, the maximum
should be taken into account in the value process.



Value process of the (LB) problem

Forany k=0,---,n—1, let Vi (Y, z) be the essential
infimum of M, € F such that there exists a
Q-supermartingale (M;)7_, and a P-supermartingale (Y;)7_,

verifying
; My — St) — <Y,
max {z te{krialf.-,n}{ ( t t) at}} >
Proposition
Vo(O, *OO) == inf Mo



Recursive formula for the (LB) problem
By convention, we define

Vn(Yv Z) = (+OO)1{z>y} + (_Oo)l{zgy}

Proposition

Vi( Yk, z) equals the essential infimum of EQ[M|F,] where
M € Fiy1 such that there exists Yy 1 € Fy1 satisfying

EF[Yier1lFel = Y,
M > Vk+1(Yk+1, max(z,E(M — 5k+1) — ak+1)).
In particular,
Voe1(Yo-1,2) = ess i]r__lf {EQ[M]}",,_l]  Yn > max(z, (M — S,) — an)}
€Fn

= ess inf {EQ[M|Fn 1] : Yoo1 > EF[max(z, (M — S,) — )| Fn_a]}
€Sn



Solving the European-style case

The (EU) problem :
MEgy denotes the set of all Q-supermartingales (My)]_, such that

EF[6(My — S))] < ai for k=1,...,n.
Let V4 be the infimum value of My such that there exist a

Q-supermatingale (M;)7_, and a family of P-supermartingales
(Ytk)lt;o, k =1,...,n, satisfying

Y& = oy and (M), — Si) < Y[
Proposition

Vo = inf Mo.
(Mk)ZZQEMEU



Dynamic version of the (EU) problem

For any k =0,...,n—1 and a family of F,-measurable
random variables Y**1 . Y7 let Vi (Y**1, ... Y") be the
essential infimum of all M, € F such that there exists a
Q-supermartingale (M;)7_, and

EF[0(My — S| F] < YE, t=k+1,...,n
By convention, V, = —cc.

Proposition
Vi (YKFL, ..., Y") equals the essential infimum of all EQ[M|F,],
M € Fi1 such that there exist a family of P-supermartingales
(YR (YP)r, which satisfy :
Yi=Ytfort=k+1,---,n,
(M = Sii1) < Vi,
M > VkJrl(Y[f_t]?a R YI?+1)‘



Corollary

V(s 1, - - -, @n) equals the essential infimum of all EQ[M|F],
M € Fi1 such that there exist a family of F) . ;-measurable
random variables Y**2 ... Y" which satisfy :

EF[YtFi] = a; for t = k+2,--- ,n,
M > Ve (V<42 v,

In particular

Vo1(an) = essinf {EQM|F,_1] s.t. EF[((M — S,)|Fn1] < an}
€Sn



The risk-neutral case P =Q, n=2

For the European and time-consistent constraints:
Vi(az) = E[So|Fi] + €7 (a2)
For the lookback constraint:
Vily,z) = +oo ify <zand E[S|Fi]+£ 1 (y+a2) otherwise

For the minimal initial value at t = 0:

VEY = Migg__ {E[M] : E[¢((M—51)] < a1, E[{(M—E[S,|F1])] < a2}
VAL Miggr {E[M] : E[¢((M—5})] < a1, ((M—E[S:|F1]) < an}

Vo® =, inf {EIM]: E[max{{(M—S$1)—as, ((M—E[S;| F1])-a2}] < 0}



Example with ¢(x) = (—x)*
A technical lemma
Let (2, F,P) be a probability space, X, Y € F and o, 5 > 0. Then,

Vo = inf {E[M] - E[(X — M)*] < o, E[(Y — M)"] < B}
= max{E[X — o],E[Y — 8,E[X VY —a — A]}.

and
Vi = inf {EIM] : Elmax((X ~ M)" — a(Y — M)* — 9)] <0}
=E[(X —a) V(Y -B)]
VOEU = max (E[Sl] — a1, E[S] — a2, E[(S1 VE[S2|F1])] — aa — aQ)?

Vo € = max (E[Sy] — an, E[S1 V (E[S2]Fi] — a2)] — 1),
VOLB = E[max (51 — 1, (E[Sz‘fl] - 042))].



Numerical illustration : cost of hedging two objectives

52
U(x) = (—x)+ and}P’ Q. The model : S; = Spe??~7 and

Sy, = Spe” 72 where Sg = 100, 0 = 0.2 and Z3,Z> ~ N(0,1)
with correlation p = 50%. The first threshold oy = 5.
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Cost of hedging both objectives in an almost sure way: 107.966.



Explicit example for multi-objectives

For arbitrary n, the explicit solution can only be obtained in
some particular cases.

Example
Assume that /(x) = (—x)", P=Q, a1,...,a, > 0 and the
process (St)o<t<n is non-decreasing. Then

MgV = E[Sk] —
0 ke?}f_)in}{ [Sk] — ax}



Thanks for your attention |

DA



TC case: Idea of the proof
Denote by Vj the essential infimum of My with (M,)k_, € Mrc k.

The proof is by backward induction on k : assume
Vierr = Vi

Vi < Vi I (Me)T_, € Mrc g, then

(M¢)]_ 11 € MTcks1 and by induction hypothesis
M1 > My 1. By supermartingale property, we have
Vi < EQ[Mk+1’.Fk] < My, so V, < Vk

"V > Vk : The opposite inequality is more delicate and relies
on the followmg fact: if (M¢){_, ., and (Mp)]_, ., are
supermartingales in M1 x11, then there exists

(M{){_ 1 € Mc ky1 such that M)/, = min(/\/lkil, M. 1)
Thus we can realize the essential infimum defining Vi as the
limit of a decreasing sequence.



