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Context

Modeling dependence between two prices : one is
electricity Xt , the other is a fuel Yt used to produce
electricity (coal, crude oil).
This modeling is used to price and hedge spread options
(Xt − Yt )

+ (return of a plant).
Today : Prices are modeled by diffusions and dependence
by a constant correlation matrix.
Limitations of this modeling :

Symmetry in the distribution of the difference between the
prices,
P (Xt > Yt ) ' 1

2 for t > 0 .
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Motivation

Is it possible to obtain higher values for the probability that
the price of electricity is over the price of its fuel ?
Use of copulae to find new structures of dependence in a
dynamic time framework.
Some bibliography on dynamic copulae :

Dynamic copulae in discrete time : Fermanian and
Wegkamp (2004); Patton (2006).
Dynamic copulae for time-dependence of a process :
Darsow et al. (1992).
Dynamic copulae for dependence between two processes :
Jaworski and Krzywda (2013); Bosc (2012).
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Contribution

Find new asymmetric copulae admissible for Brownian
motions.
Control P (Xt − Yt ≥ η) with copulae between its infimum
and its supremum for t > 0 and η > 0 when Xt and Yt are
Brownian motions .
Derive a model allowing us to control P (Xt − Yt ≥ η),
having value over 1

2 for it and that can be applied to energy
markets.
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Outline

1 New asymmetric dynamic copulae

2 Difference control between two Brownian motions

3 A two barrier correlation model

4 Application to Energy Markets
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Markov diffusion copulae
The Reflection Brownian Copula

Copulae and Sklar’s theorem

Definition (Copula)

A function C : [0, 1]2 7→ [0, 1] is a copula if :

(i) C is 2-increasing,

(ii) C (u, 0) = C (0, v) = 0, u, v ∈ [0, 1],

(iii) C (u, 1) = u,C (1, u) = u, u ∈ [0, 1].

Theorem (Sklar (1959))

Let X and Y be two random variables with marginal cdfs F X and F Y and
bivariate cdf F X ,Y . There exists a copula C such that

F X ,Y (x , y) = C
(

F X (x) ,F Y (y)
)
, x , y ∈ R.

If F X and F Y are continuous, the copula is uniquely defined. Conversely, if C
is a copula then the function defined by F X ,Y (x , y) = C

(
F X (x) ,F Y (y)

)
for

x, y ∈ R is a bivariate cdf.
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Markov diffusion copulae
The Reflection Brownian Copula

Definition

Definition (Admissible copula for Markovian diffusions)

A collection of copula C = (Ct )t≥0 is an admissible copula for
the n real valued Markovian diffusions, n ≥ 2,

(
X i)

1≤i≤n defined
on a common probability space (Ω,F ,P) if there exists a Rm

Markovian diffusion Z =
(
Z i)

1≤i≤m, m ≥ n, defined on a
probability extension of (Ω,F ,P) such that

L
(
Z i) = L

(
X i) ,1 ≤ i ≤ n,

Z i
0 = X i

0,1 ≤ i ≤ n,
for t ≥ 0, the copula of

(
Z i

t
)

1≤i≤n is Ct .
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Markov diffusion copulae
The Reflection Brownian Copula

Brownian motion case

We denote by CB the set of admissible copulae for
Brownian motions in dimension 2.
Gaussian copulae are well known for Brownian motions.
Our definition includes several classical models :

Deterministic correlation models
Local correlation models
Stochastic correlation models
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Markov diffusion copulae
The Reflection Brownian Copula

Closed formula

Theorem

Let h > 0. The copula

Cref ,h
t (u, v) =


v if Φ−1 (u)− Φ−1 (v) ≥ 2h√

t

W (u, v) + Φ
(

Φ−1 (M (u,1− v))− 2h√
t

)
if Φ−1 (u)− Φ−1 (v) < 2h√

t

is in CB. It is the copula between a Brownian motion and its
reflection according to the barrier h.

Φ is a cdf of a standard normal random variable, W and M are
the lower and upper Frechet copulae.
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Markov diffusion copulae
The Reflection Brownian Copula

Structure of the copula

Two states of correlation : one of comonotonicity (ρ = 1)
and one of countermonotonicity (ρ = −1).
The copula is asymmetric (Ct (u, v) 6= Ct (v ,u)).

FIGURE: Reflection Brownian Copula Cref ,h at time t = 1 with h = 2.
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Markov diffusion copulae
The Reflection Brownian Copula

Extension : Correlated Reflection Brownian Motion

Let h > 0 and ρ ∈ (0,1). The copula
Φρ

(
Φ−1 (u) ,Φ−1 (v) + 2ρh√

t

)
+ v − Φ

(
Φ−1 (v) + 2ρh√

t

)
if u ≥ Φ

(
h√

t

)
Φ−ρ

(
Φ−1 (u) ,Φ−1 (v)

)
+ Φρ

(
Φ−1 (u)− 2h√

t
,Φ−1 (1− v)− 2ρh√

t

)
+

Φρ

(
Φ−1 (u)− 2h√

t
,Φ−1 (v)

)
− Φ

(
Φ−1 (u)− 2h√

t

)
if u < Φ

(
h√

t

)
is in CB. Φρ is the cdf of a couple of standard Gaussian random
variables with correlation equal to ρ.

11 / 37



New asymmetric dynamic copulae
Difference control between two Brownian motions

A two barrier correlation model
Application to Energy Markets

Références

Markov diffusion copulae
The Reflection Brownian Copula

Structure of the Correlated Reflection Brownian Motion

Two states of correlation ρ and −ρ.
The copula is asymmetric.

FIGURE: Reflection Brownian Copula Cref ,h at time t = 1 with h = 2
and extension with ρ = 0.95.
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Markov diffusion copulae
The Reflection Brownian Copula

Extension : Random Barrier

Let ξ be a positive r.v. with law having a density. The copula

v −
∫ Φ−1(M(1−u,v))

−∞

e
−w2

2
√

2π
F
ξ
(√t

2

(
Φ−1 (M (u,1− v))− w

))
dw

is in CB.

FIGURE: ξ follows an exponential law with parameter λ = 2.
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A static result
A dynamic result

Static Result

If X and Y are two standard normal r.v. and PC is the probability
measure associated to the copula C of (X ,Y ), we consider :

S̃η : C → [0,1]
C 7→ PC (X − Y ≥ η)

Theorem

Let η > 0. We have :

(i) Ran
(

S̃η CG

)
=
[
0,Φ

(−η
2

)]
with S̃η CG

the restriction of S̃η
to Gaussian copulae,

(ii) sup
C∈C

S̃η (C) = 2Φ
(−η

2

)
,

(iii) Ran
(

S̃η
)

=
[
0,2Φ

(−η
2

)]
.
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A static result
A dynamic result

Sketch of the proof (1/2)

(ii) Let r = 2Φ
(−η

2

)
. We adapt the result of Frank et al. (1987)

and the copula achieving the supremum is

Cr (u, v) =

{
M (u − 1 + r , v) if (u, v) ∈ [1− r ,1]× [0, r ],
W (u, v) otherwise.

FIGURE: Cr with η = 0.2..
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A static result
A dynamic result

Sketch of the proof (2/2)

(iii) We use the concept of patchwork copula of Durante et al.
(2013) : we consider the copula defined by CG,ρ in
[1− r ,1]× [0, r ] and W otherwise, with ρ varying between −1
and 1.

FIGURE: Patchwork copula with ρ = 0.95.
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A static result
A dynamic result

Dynamic Result

Given two Brownian motions B1 and B2, we consider :

Sη,t : CB → [0,1]
C 7→ PC

(
B1

t − B2
t ≥ η

)
.

Theorem

Let η > 0 and t > 0. We have :

(i) Ran
(

Sη,t Cd
G

)
=
[
0,Φ

(
−η
2
√

t

)]
with Sη,t Cd

G
the restriction of

Sη,t to dynamic Gaussian copulae,

(ii) sup
C∈CB

Sη,t (C) = 2Φ
(
−η
2
√

t

)
,

(iii) Ran (Sη,t ) =
[
0,2Φ

(
−η
2
√

t

)]
.

18 / 37



New asymmetric dynamic copulae
Difference control between two Brownian motions

A two barrier correlation model
Application to Energy Markets

Références

A static result
A dynamic result

Sketch of the proof

(i) We use Gaussian copulae with constant correlations.
(ii) The Reflection Brownian Copula achieves the supremum.
(iii) We use the extension 2 of the Reflection Brownian Copula

with a barrier following a translated exponential law
η
2 + E(λ), and λ varying between 0 and∞.
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Model
Results
An equivalent( ?) local correlation model
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Model
Results
An equivalent( ?) local correlation model

Model

Let X and Y be two independent Brownian motions.

Let η > 0, ν < η and αk =

 0 if k = 0
η if k odd
ν if k even, k 6= 0

.

Let
(
B̃k
)

k≥0,
(
Y k
)

k≥0 and (τk )k≥0 be defined by{
τ0 = 0

B̃0 = −X
,


τk = inf{t ≥ τk−1 : Xt − Y k−1

t = αk} k ≥ 1

B̃k = R(B̃k−1, τk ) k ≥ 1

Y k = ρB̃k +
√

1− ρ2Y k ≥ 0

,

where R(B, τ)t = −Bt + 2(Bt − Bτ )1t≥τ .
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Model
Results
An equivalent( ?) local correlation model

Illustration

FIGURE: One trajectory of X , Y n, X − Y n in the multi-barrier
correlation model with ν = 0, η = 0.5, ρ = 0.9 and n =∞. 22 / 37
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Model
Results
An equivalent( ?) local correlation model

Main results

We can find a semi analytic formula for the CDF of Xt − Y n
t and

we have the following results :

Theorem
Let ρ > 0. For x ∈ [ν, η], the sequence P (Xt − Y n

t ≥ x) is
increasing with n. Xt − Y n

t converges in law towards Xt − Y Nt
t

with Nt <∞ a.s. a counting process.

Theorem

Let t > 0 and η > z > 0. ∀x ∈
[
0,Φ

(
−z
2
√

t

)
+ Φ

(
z−2η
2
√

t

)]
, ∃ ρ ∈

[−1,1] : P
(

Xt (ρ)− Y Nt
t (ρ) ≥ z

)
= x.
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Model
Results
An equivalent( ?) local correlation model

Survival function

FIGURE: Survival function of Xt − Y n
t with parameters ν = 0, η = 0.5

and ρ = 0.9 for t = 1 and t = 20.
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Model
Results
An equivalent( ?) local correlation model

Trajectories of X − Y n

FIGURE: 50 simulations of X − Y n between time 0 and 20 with
parameters ν = 0, η = 0.5 and ρ = 0.9 for n = 0 (upper left), n = 5
(upper right), n = 10 (bottom left), n = 50 (bottom right). 25 / 37
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Model
Results
An equivalent( ?) local correlation model

Empirical copula

FIGURE: Empirical copula of (X,Y) at time t = 20 with parameters ν =
0, η = 0.5 and ρ = 0.9 for n = 0 (upper left), n = 5 (upper right),
n = 10 (bottom left), n = 50 (bottom right). 26 / 37
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Model
Results
An equivalent( ?) local correlation model

Equivalent Model

Let ρ(x) be a continuous and monotone function such that
ρ(x) = ρ1 for x ≤ ν et ρ(x) = ρ2 for x ≥ η. We consider :{

dXt = dBX
t

dYt = ρ (Xt − Yt ) dBX
t +

√
1− ρ (Xt − Yt )

2dBY
t

FIGURE: Empirical survival function of Xt − Yt at t = 1.
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Model
Data and parameters
Numerical Results
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Model
Data and parameters
Numerical Results

A two-factor model

Let f E (t ,T ) (resp. f C (t ,T )) the forward price of the electricity
(resp. coal) at time t with maturity T . We consider the
two-factor model (see Benth and Koekebakker (2008)) :

df E (t ,T )=f E (t ,T )
(
σE

s e−α
E
s (T−t)dBE ,s

t + σE
l dBE ,l

t

)
df C (t ,T )=f C (t ,T )

(
σC

s e−α
C
s (T−t)dBC,s

t + σC
l dBC,l

t

)
We model the dependence as follow :

BE ,s and BE ,l are independent,
BC,s and BC,l are independent,
BE ,s and BC,s are independent,
BE ,l and BC,l are constructed following the multi-barrier
correlation model.

The spot price for commodity i is equal to f i(t , t).
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Model
Data and parameters
Numerical Results

Data and parameters

We use the forward prices on electricity and on coal during
2014 in France to estimate these parameters. The method used
for estimation is the first one of Féron and Daboussi (2015).

Parameters Electricity Coal
σl (year) 10.2555% 9.2602%

σs (year) 97.2925% 11.2134%

αs (year) 17.0363 2.07832

TABLE: Parameters of the two-factor model for electricity and coal

We choose arbitrarly ν = 0, η = 0.5, ρ = 0.9, n =∞ for the
multi-barrier correlation model. In the benchmark model
(constant correlation), the correlation between BE ,l and BC,l is
equal to 0.275546.
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Model
Data and parameters
Numerical Results

Survival function

FIGURE: Empirical survival function of the difference between the
price of electricity and the price of coal at time t = 335 days for
different products in the multi-barrier correlation model and in the
benchmark model
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Model
Data and parameters
Numerical Results

Example of trajectory

FIGURE: One year trajectory of electricity and coal products (Spot,
1MAH, 3MAH, 6MAH) 32 / 37
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Model
Data and parameters
Numerical Results

Limitations

Sensitive to the difference of volatility between the two
forward prices.
Sensitive to the value of f E (0,T )− f C (0,T ). A solution is
to change the value of η and ν. However, only one η and
one ν for all maturities.
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Perspectives and future works

Generalize results on Brownian motions for more general
Itô processes.
Generalize results for P

(
B1

t −min
(
B2

t , ..,B
n
t )
)
≥ η

)
.

Application : we want for the price of electricity to be
greater than the minimal production cost.
Is the local correlation model really equivalent to the
multi-barrier correlation model ?
Calibration of the model.
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Thank you for your attention.

Do you have any questions ?
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