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Intro: Risk management of a gas power plant

Companies operating a gas power plant have an immanent

I short forward position of natural gas (NG),

I long forward position of power.

To reduce price risk they

I buy natural gas on forward markets,

I sell power on forward markets.

Suppose that a German energy company wants to buy today the NG it
needs in 2016.

Problem: German gas forward market is very illiquid.
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Germany Netherlands

Ask

Ask

1 e/MWh 0.1 e/MWh

Bid

Bid

• Bid-ask-spread ↓ as time to delivery approaches
• Dutch and German gas prices are highly correlated
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2 Ways of Hedging

I Hedge 1:

Buy natural gas in G

I Hedge 2:

Buy natural gas in NL.
Shortly before delivery: sell in NL and buy in G.

Pros & Cons:

Hedge 1 Hedge 2
Pro No risk Low liqu. costs
Con High liqu. costs Basis risk
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Optimal trade-off via stochastic control

Trade-off: High liquidity costs versus basis risk

Question: What is the optimal position in German and Dutch NG at any
time before 2016?

=⇒ A singular (stochastic) control problem
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The model

I initial short position : x0 < 0

I T = time horizon

I Xt = primary asset position (e.g. German NG);

Constraints: X0− = x0 and XT = 0

I Yt = proxy position (e.g. Dutch NG)

Constraints: Y0− = 0 and YT = 0
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Minimizing overall costs ⇔ minimizing execution costs

• Pt = forward price of the primary asset at time t (a continuous
martingale)

• Kt = liquidity costs of primary asset at time t (a non-negative
process with càdlàg paths)

• L = half bid-ask-spread of proxy

Expected costs in the primary asset:

C 1(X ) = E

[∫
[0,T ]

PsdXs +

∫
[0,T ]

Ks |dXs |

]
= −P0x0 + E

[∫
[0,T ]

Ks |dXs |

]
.

Expected costs in the proxy:

C 2(Y ) = E

[∫
[0,T ]

L|dYs |

]
Expected execution costs

C (X ,Y ) = E

[∫
[0,T ]

Ks |dXs |+
∫

[0,T ]

L|dYs |

]
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The model cont’d

Risk

• Σ =

(
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

)
covariance matrix

• Instantaneous risk at time t:

f (Xt ,Yt) =

(
Xt

Yt

)T

Σ

(
Xt

Yt

)
• Overall risk:

R(X ,Y ) =

∫ T

0

√
f (Xt ,Yt)dt
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Target function and minimum variance hedge

Control problem:

C (X ,Y ) + λR(X ,Y ) −→ min!

Lemma
Let X be a given primary position path and assume that L = 0. Then the
optimal cross hedge is given by

Y ∗t = −ρσ1

σ2
Xt .

h = ρσ1

σ2
= minimum variance hedge ratio
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Optimal position paths are (piecewise) monotone

Proposition
Let (X ∗,Y ∗) be optimal. Then almost surely

a) X ∗t is non-decreasing, and

b) there exists a càdlàg , adapted and non-decreasing process I such
that Y ∗t = It ∧ −hX ∗t .
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Our method for getting explicit solutions

Assumption A: The optimal cross hedge Y (X ) associated to any X is
non-increasing after 0, i.e. of the form

Y (X )t = y ∧ −ρσ1

σ2
Xt .

Iterative Method:

1. For a given y ≥ 0 determine the optimal primary position X = X (y).
To this end reformulate the problem as a stopping problem.

2. Determine optimal initial cross hedge position y∗.

3. The optimal positions are given by

X ∗t = Xt(y∗) and Y ∗t = y∗ ∧ −ρσ1

σ2
X ∗t .
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The primary position via optimal stopping

For any y ≥ 0 consider the problem

E

[∫
[0,T ]

KsdXs +

∫ T

0

g(Xs)ds

]
−→ min! (1)

where g(x) = λ
√

f (x , y ∧ −ρσ1

σ2
x).

Proposition
For all x ∈ [x0, 0] let τ(x) be the solution of the stopping problem

inf
τ∈T[0,T ]

E [Kτ + τg ′(x)] .

Then an optimal primary position X for (1) is given by

Xt = inf{x ∈ [x0, 0]|τ(x) > t}.
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The primary position via optimal stopping

Proof

Right continuous inverse of a position path:

τ(x) = inf{t ≥ 0|Xt > x}
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The primary position via optimal stopping

Proof

Right continuous inverse of a position path:

τ(x) = inf{t ≥ 0|Xt > x}

Apply a Change of Variables Formula to the cost term∫
[0,T ]

KsdXs =

∫ 0

x0

Kτ(z)dz
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The primary position via optimal stopping

Proof
The risk term satisfies∫ T

0

g(Xs)ds =

∫ T

0

(∫ Xs

x0

g ′(z)dz + g(x0)

)
ds

=

∫ 0

x0

τ(z)g ′(z)dz + g(x0)T

Hence

E

[∫
[0,T ]

KsdXs +

∫ T

0

g(Xs)ds

]
=

∫ 0

x0

E

[
Kτ(z)︸ ︷︷ ︸+ τ(z)g ′(z)︸ ︷︷ ︸

]
dz + g(x0)T

marginal cost + marginal risk

→ Minimize marginal costs + marginal risk pointwise
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Example: Convex deterministic costs

I Liquidity costs are deterministic, decreasing and convex in time

I L = 0 → marginal risk is constant in x

I marginal risk increases linearly in time
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Example: Convex deterministic costs

I Liquidity costs are deterministic and convex in time

I L = 0 → marginal risk is constant in x

I marginal risk increases linearly in time

→ ∃ optimal turning point t∗
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Example cont’d: Optimal buying time

Proposition
Suppose that L = 0 and that K ∈ C1 is decreasing and convex on [0,T ].

If λσ1

√
1− ρ2 ∈ [−K̇ (T ),−K̇ (0)], then the optimal closing time is given

by

t∗ = (K̇ )−1(−λσ1

√
1− ρ2),

and X ∗ = x01[0,t∗) and Y ∗ = −ρσ1

σ2
x01[0,t∗) are the optimal position

processes.
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Example: Concave deterministic costs

I L ≥ 0

I Liquidity costs in primary asset are deterministic and concave

→ Optimal strategies are static
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Example cont’d: Optimal strategies are static

Proposition
Suppose that K is decreasing and concave on [0,T ]. Then the optimal
position strategy is of the form

X ∗t = x∗1[0,T )(t) and Y ∗t = y∗1[0,T )(t),

with x0 ≤ x∗ ≤ 0 and y∗ ≥ 0.
The optimal positions x∗ and y∗ can be calculated explicitly (tedious!).
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Example: Active trading kicks in at a random time

I K jumps at a random time τ̃ from a higher level K+ to a lower level
K−.

I τ̃ is the first jump time of an inhomogeneous Poisson process with
non-decreasing jump intensity.

→ Close positions at time τ̃ : Xs = Ys = 0 for all s ≥ τ̃ .
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Example cont’d: Optimal strategies are static

Proposition
Suppose that K jumps from K+ to K− at time τ̃ . Then the optimal
position strategy is of the form

X ∗t = x∗1[0,τ̃)(t) and Y ∗t = y∗1[0,τ̃)(t),

with x∗ ≤ 0 and y∗ ≥ 0.
The optimal positions x∗ and y∗ can be calculated explicitly.
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Example cont’d: Decision tree

L ≥ L̄

∆K ≥ λσ1E [τ̃ ]

keep primary open

do not cross hedge

yes

close primary

do not cross hedge
no

yes

keep primary open

cross hedge with A forwards
no

I L̄ = σ2
2σ1

(
∆Kρ−

√
(1− ρ2)(λ2σ2

1E [τ̃ ]2 −∆K2)+

)
I A = −σ1

σ2
max

(
0, ρ− 2L

√
1−ρ2√

(λ2σ2
2E [τ̃ ]2−4L2)+

)
x0
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Conclusion

I When hedging on forward markets one frequently has to choose
between liquidity costs and basis risk.

I We introduce a singular control model allowing to characterize
optimal trade-offs.

I Optimal position paths can be obtained by solving families of
stopping problems.

I For specific examples we present optimal position paths in closed
form
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Optimal closure of illiquid positions and applications to the
management of a coal power plant

(based on joint work with S. Ankirchner, M. Jeanblanc and A. Popier)

Thomas Kruse Basis risk versus liquidity costs



Optimal position closure & Managing a coal power plant

I short position: coal and emission rights

I long position: power

I close these positions on forward markets

Here: Illiquidity is modeled by a volume-dependent price impact

Thomas Kruse Basis risk versus liquidity costs



Optimal position closure
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Optimal position closure
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The Almgren & Chriss framework

I T <∞: time horizon

I x ∈ R: initial position

I Xt : position size at time t ∈ [0,T ]

I Ẋt : trading rate (Ẋ ≥ 0: buying, Ẋ ≤ 0: selling)

Xt = x +

∫ t

0

Ẋsds

I Constraint: XT = 0

I Trading at a rate Ẋt creates a temporary price impact:

S real
t = Smid

t + ηsgn(Ẋt)|Ẋt |p−1
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The Almgren & Chriss framework

I T <∞: time horizon

I x ∈ R: initial position

I Xt : position size at time t ∈ [0,T ]

I Ẋt : trading rate (Ẋ ≥ 0: buying, Ẋ ≤ 0: selling)

Xt = x +

∫ t

0

Ẋsds

I Constraint: XT = 0

I Trading at a rate Ẋt creates a temporary, stochastic price impact:

S real
t = Smid

t + ηtsgn(Ẋt)|Ẋt |p−1
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Stochastic liquidity

Liquidation problem:

E

∫ T

0

 ηt |Ẋt |p︸ ︷︷ ︸
execution costs

+ γt |Xt |p︸ ︷︷ ︸
“risk“

 dt

 −→ min
X0=x,XT =0

(2)

I p > 1 (q its Hölder conjugate)

I (ηt): positive, progressively measurable

I (γt): nonnegative, progressively measurable

I stochastic basis (Ω,F ,P, (Ft)) satisfying the usual conditions
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Derivation of the BSDE

v(t, x) = ess inf
X∈A0(t,x)

E

[∫ T

t

(
ηs |Ẋs |p + γs |Xs |p

)
ds
∣∣Ft

]

I The value function is explicit in the x variable:

v(t, x) = Yt |x |p

for some coefficient process Y .

I By deriving a maximum principle we obtain:

dYt =

(
(p − 1)

Y q
t

ηq−1
t

− γt
)

dt + dMt (3)

I Terminal constraint leads to singular terminal condition: YT =∞
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ηs |Ẋs |p + γs |Xs |p

)
ds
∣∣Ft

]

I The value function is explicit in the x variable:

v(t, x) = Yt |x |p

for some coefficient process Y .

I By deriving a maximum principle we obtain:

dYt =

(
(p − 1)

Y q
t

ηq−1
t

− γt
)

dt + dMt (3)

I Terminal constraint leads to singular terminal condition: YT =∞

Thomas Kruse Basis risk versus liquidity costs



Derivation of the BSDE

v(t, x) = ess inf
X∈A0(t,x)

E

[∫ T

t

(
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Derivation of the BSDE
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Integrability Assumptions and Approximation

I For the remainder of the talk we assume that η satisfies

E

∫ T

0

1

ηq−1
t

dt <∞, E

∫ T

0

η2
t dt <∞

and that γ satisfies

E

∫ T

0

γ2
t dt <∞

I Approximation

dY L
t =

(
(p − 1)

(Y L
t )q

ηq−1
t

− γt
)

dt + dML
t

Y L
T = L
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Integrability Assumptions and Approximation

I For the remainder of the talk we assume that η satisfies

E

∫ T

0

1

ηq−1
t

dt <∞, E

∫ T

0

η2
t dt <∞

and that γ satisfies

E

∫ T

0

γ2
t dt <∞

I Approximation

dY L
t =

(
(p − 1)

(Y L
t )q

ηq−1
t

− γt
)

dt + dML
t

Y L
T = L
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Existence and Minimality

Proposition
There exists a solution (Y L,ML). Y L is bounded from above

Y L
t ≤

1

(T − t)p
E

[∫ T

t

(ηs + (T − s)pγs)ds

∣∣∣∣∣Ft

]
.

Existence in the Brownian case follows from Briand et al. 2003

Theorem
There exists a process (Y ,M) such that for every t < T and as L↗∞

I Y L
t ↗ Yt a.s.

I ML → M in M2([0, t]).

The pair (Y ,M) is the minimal solution to (3) with singular terminal
condition YT =∞.
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Optimal Controls

Theorem
The control

Xt = xe−
∫ t

0 ( Ys
ηs

)q−1
ds

belongs to A0(0, x) and is optimal in (2). Moreover, v(t, x) = Yt |x |p.
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Portfolio liquidation

I Liquidation of a portfolio consisting of d ∈ N assets

I Correlation structure leads to a multi-factor liquidation problem

I Value process:

v(t, x) = ess inf
X∈A0(t,x)

E

[∫ T

t

(ẊT
r ηr Ẋr + XT

r γrXrdr

∣∣∣∣Ft

]

where ηt , γt are positive semidefinite matrices for every t ∈ [0,T ]
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Variable reduction

Assume that

I ηt = diag(η1, . . . , ηd) for every t ∈ [0,T ]

I γt = λtΣ where Σ is positive semidefinite matrix and (λt) a
one-dimensional, nonnegative process

Then there exists a positive semidefinite matrix A such that

v(t, x) = xTAT diag(Y 1
t , . . . ,Y

d
t )Ax

where Y 1
t , . . . ,Y

d
t denote the solutions of d independent versions of the

BSDE (3).
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Back to the power plant

I revenues from a coal power plant are essentially determined from the
(clean) dark spread

CDS = SP − 1

h
SC − ρSCO2

I SP : power price, SC : coal price and SCO2 : price of emission rights
I h: heating rate, ρ: emission rate

I Here: Take relative dark spread

rDS = h
SP

hSC

and set λt = c(a− rDSt)
+

I Solve the BSDEs with PDE methods
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Price-sensitive position paths

Figure : Position paths depending on rDS
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Skewness in realized proceeds
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Figure : Histograms of realized proceeds
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Thank you!
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