Hedging forward positions: Basis risk versus liquidity costs

Thomas Kruse Université d'Evry Val d'Essonne

Joint work with Stefan Ankirchner and Peter Kratz

November 21, 2014 Séminaire FIME Paris

Intro: Risk management of a gas power plant

Companies operating a gas power plant have an immanent

- short forward position of natural gas (NG),
- long forward position of power.

To reduce **price risk** they

- buy natural gas on forward markets,
- sell power on forward markets.

Suppose that a German energy company wants to buy today the NG it needs in 2016.

Problem: German gas forward market is very illiquid.

Netherlands Germany Ask 0.1 €/MWh 1 €/MWh Bid

- Bid-ask-spread ↓ as time to delivery approaches
- Dutch and German gas prices are highly correlated

2 Ways of Hedging

► Hedge 1:

Buy natural gas in G

► Hedge 2:

Buy natural gas in NL.

Shortly before delivery: sell in NL and buy in ${\sf G}.$

Pros & Cons:

	Hedge 1	Hedge 2
Pro	No risk	Low liqu. costs
Con	High liqu. costs	Basis risk

Optimal trade-off via stochastic control

Trade-off: High liquidity costs versus basis risk

Question: What is the optimal position in German and Dutch NG at *any* time before 2016?

⇒ A singular (stochastic) control problem

The model

- ▶ initial short position : $x_0 < 0$
- ightharpoonup T = time horizon
- $ightharpoonup X_t = \text{primary asset position (e.g. German NG)};$

Constraints:
$$X_{0-} = x_0$$
 and $X_T = 0$

• $Y_t = \text{proxy position (e.g. Dutch NG)}$

Constraints:
$$Y_{0-} = 0$$
 and $Y_T = 0$

Minimizing overall costs ⇔ minimizing execution costs

- P_t = forward price of the primary asset at time t (a continuous martingale)
- K_t = liquidity costs of primary asset at time t (a non-negative process with càdlàg paths)
- L = half bid-ask-spread of proxy

Expected costs in the primary asset:

$$C^{1}(X) = E\left[\int_{[0,T]} P_{s} dX_{s} + \int_{[0,T]} K_{s} |dX_{s}|\right] = -P_{0} x_{0} + E\left[\int_{[0,T]} K_{s} |dX_{s}|\right].$$

Expected costs in the proxy:

$$C^2(Y) = E\left[\int_{[0,T]} L|dY_s|\right]$$

Expected execution costs

$$C(X,Y) = E\left[\int_{[0,T]} K_s |dX_s| + \int_{[0,T]} L|dY_s|\right]$$

The model cont'd

Risk

- $\Sigma = \begin{pmatrix} \sigma_1^2 & \rho\sigma_1\sigma_2 \\ \rho\sigma_1\sigma_2 & \sigma_2^2 \end{pmatrix}$ covariance matrix
- Instantaneous risk at time t:

$$f(X_t, Y_t) = \begin{pmatrix} X_t \\ Y_t \end{pmatrix}^T \Sigma \begin{pmatrix} X_t \\ Y_t \end{pmatrix}$$

Overall risk:

$$R(X,Y) = \int_0^T \sqrt{f(X_t,Y_t)} dt$$

Target function and minimum variance hedge

Control problem:

$$C(X,Y) + \lambda R(X,Y) \longrightarrow \min!$$

Lemma

Let X be a given primary position path and assume that L=0. Then the optimal cross hedge is given by

$$Y_t^* = -\rho \frac{\sigma_1}{\sigma_2} X_t.$$

 $h=
horac{\sigma_1}{\sigma_2}=$ minimum variance hedge ratio

Optimal position paths are (piecewise) monotone

Proposition

Let (X^*, Y^*) be optimal. Then almost surely

- a) X_t^* is non-decreasing, and
- b) there exists a càdlàg , adapted and non-decreasing process I such that $Y_t^* = I_t \wedge -hX_t^*$.

Our method for getting explicit solutions

Assumption A: The optimal cross hedge Y(X) associated to any X is non-increasing after 0, i.e. of the form

$$Y(X)_t = y \wedge -\rho \frac{\sigma_1}{\sigma_2} X_t.$$

Iterative Method:

- 1. For a given $y \ge 0$ determine the optimal primary position X = X(y). To this end reformulate the problem as a stopping problem.
- 2. Determine optimal initial cross hedge position y^* .
- 3. The optimal positions are given by

$$X_t^* = X_t(y^*)$$
 and $Y_t^* = y^* \wedge -\rho \frac{\sigma_1}{\sigma_2} X_t^*$.

For any $y \ge 0$ consider the problem

$$E\left[\int_{[0,T]} K_s dX_s + \int_0^T g(X_s) ds\right] \longrightarrow \min! \tag{1}$$

where
$$g(x) = \lambda \sqrt{f(x, y \land -\rho \frac{\sigma_1}{\sigma_2} x)}$$
.

Proposition

For all $x \in [x_0, 0]$ let $\tau(x)$ be the solution of the stopping problem

$$\inf_{\tau \in \mathcal{T}_{[0,T]}} E\left[K_{\tau} + \tau g'(x)\right].$$

Then an optimal primary position X for (1) is given by

$$X_t = \inf\{x \in [x_0, 0] | \tau(x) > t\}.$$

Proof

Right continuous inverse of a position path:

$$\tau(x) = \inf\{t \ge 0 | X_t > x\}$$

Proof

Right continuous inverse of a position path:

$$\tau(x) = \inf\{t \ge 0 | X_t > x\}$$

Apply a Change of Variables Formula to the cost term

$$\int_{[0,T]} K_s dX_s = \int_{x_0}^0 K_{\tau(z)} dz$$

Proof

The risk term satisfies

$$\int_0^T g(X_s)ds = \int_0^T \left(\int_{x_0}^{X_s} g'(z)dz + g(x_0)\right)ds$$
$$= \int_{x_0}^0 \tau(z)g'(z)dz + g(x_0)T$$

Hence

$$E\left[\int_{[0,T]} K_s dX_s + \int_0^T g(X_s) ds\right] = \int_{x_0}^0 E\left[\underbrace{K_{\tau(z)}} + \underbrace{\tau(z)g'(z)}\right] dz + g(x_0)T$$

$$marginal\ cost + marginal\ risk$$

→ Minimize marginal costs + marginal risk pointwise

Example: Convex deterministic costs

- ▶ Liquidity costs are *deterministic*, decreasing and convex in time
- ▶ $L = 0 \rightarrow \text{marginal risk is constant in } x$
- marginal risk increases linearly in time

Example: Convex deterministic costs

- ▶ Liquidity costs are *deterministic* and convex in time
- ▶ $L = 0 \rightarrow \text{marginal risk is constant in } x$
- marginal risk increases linearly in time
- $\rightarrow \exists$ optimal turning point t^*

Example cont'd: Optimal buying time

Proposition

Suppose that L=0 and that $K \in \mathcal{C}^1$ is decreasing and convex on [0,T]. If $\lambda \sigma_1 \sqrt{1-\rho^2} \in [-\dot{K}(T), -\dot{K}(0)]$, then the optimal closing time is given by

$$t^* = (\dot{K})^{-1}(-\lambda \sigma_1 \sqrt{1-\rho^2}),$$

and $X^*=x_01_{[0,t^*)}$ and $Y^*=ho\frac{\sigma_1}{\sigma_2}x_01_{[0,t^*)}$ are the optimal position processes.

Example: Concave deterministic costs

- ► *L* ≥ 0
- ▶ Liquidity costs in primary asset are *deterministic* and concave
- \rightarrow Optimal strategies are static

Example cont'd: Optimal strategies are static

Proposition

Suppose that K is decreasing and concave on [0, T]. Then the optimal position strategy is of the form

$$X_t^* = x^* \mathbf{1}_{[0,T)}(t) \text{ and } Y_t^* = y^* \mathbf{1}_{[0,T)}(t),$$

with $x_0 \le x^* \le 0$ and $y^* \ge 0$.

The optimal positions x^* and y^* can be calculated explicitly (tedious!).

Example: Active trading kicks in at a random time

- K jumps at a random time $\tilde{\tau}$ from a higher level K_+ to a lower level K_- .
- ightharpoonup is the first jump time of an inhomogeneous Poisson process with non-decreasing jump intensity.
- ightarrow Close positions at time $\tilde{\tau}$: $X_s = Y_s = 0$ for all $s \geq \tilde{\tau}$.

Example cont'd: Optimal strategies are static

Proposition

Suppose that K jumps from K_+ to K_- at time $\tilde{\tau}$. Then the optimal position strategy is of the form

$$X_t^* = x^* 1_{[0,\tilde{\tau})}(t) \text{ and } Y_t^* = y^* 1_{[0,\tilde{\tau})}(t),$$

with $x^* \le 0$ and $y^* \ge 0$.

The optimal positions x^* and y^* can be calculated explicitly.

Example cont'd: Decision tree

Conclusion

- ▶ When hedging on forward markets one frequently has to choose between liquidity costs and basis risk.
- We introduce a singular control model allowing to characterize optimal trade-offs.
- Optimal position paths can be obtained by solving families of stopping problems.
- For specific examples we present optimal position paths in closed form

Optimal closure of illiquid positions and applications to the management of a coal power plant

(based on joint work with S. Ankirchner, M. Jeanblanc and A. Popier)

Optimal position closure & Managing a coal power plant

short position: coal and emission rights

► long position: power

close these positions on forward markets

Here: Illiquidity is modeled by a volume-dependent price impact

Optimal position closure

Optimal position closure

The Almgren & Chriss framework

- ▶ $T < \infty$: time horizon
- $\triangleright x \in \mathbb{R}$: initial position
- ▶ X_t : position size at time $t \in [0, T]$
- \dot{X}_t : trading rate ($\dot{X} \ge 0$: buying, $\dot{X} \le 0$: selling)

$$X_t = x + \int_0^t \dot{X}_s ds$$

► Constraint: $X_T = 0$

The Almgren & Chriss framework

- ▶ $T < \infty$: time horizon
- \triangleright $x \in \mathbb{R}$: initial position
- ▶ X_t : position size at time $t \in [0, T]$
- \dot{X}_t : trading rate ($\dot{X} \ge 0$: buying, $\dot{X} \le 0$: selling)

$$X_t = x + \int_0^t \dot{X}_s ds$$

- ▶ Constraint: $X_T = 0$
- ▶ Trading at a rate \dot{X}_t creates a temporary price impact:

$$S_t^{\mathsf{real}} = S_t^{\mathsf{mid}} + \eta \mathsf{sgn}(\dot{X}_t) |\dot{X}_t|^{p-1}$$

The Almgren & Chriss framework

- ▶ $T < \infty$: time horizon
- \triangleright $x \in \mathbb{R}$: initial position
- ▶ X_t : position size at time $t \in [0, T]$
- \dot{X}_t : trading rate ($\dot{X} \ge 0$: buying, $\dot{X} \le 0$: selling)

$$X_t = x + \int_0^t \dot{X}_s ds$$

- ► Constraint: $X_T = 0$
- ▶ Trading at a rate \dot{X}_t creates a temporary, stochastic price impact:

$$S_t^{\mathsf{real}} = S_t^{\mathsf{mid}} + \eta_t \mathsf{sgn}(\dot{X}_t) |\dot{X}_t|^{p-1}$$

Stochastic liquidity

Liquidation problem:

$$E\left[\int_{0}^{T} \left(\underbrace{\eta_{t}|\dot{X}_{t}|^{p}}_{\text{execution costs}} + \underbrace{\gamma_{t}|X_{t}|^{p}}_{\text{"risk"}}\right) dt\right] \longrightarrow \min_{X_{0}=x, X_{T}=0}$$
 (2)

- ightharpoonup p > 1 (q its Hölder conjugate)
- \blacktriangleright (η_t) : positive, progressively measurable
- $ightharpoonup (\gamma_t)$: nonnegative, progressively measurable
- stochastic basis $(\Omega, \mathcal{F}, P, (\mathcal{F}_t))$ satisfying the usual conditions

$$v(t,x) = \underset{X \in \mathcal{A}_0(t,x)}{\operatorname{ess inf}} E\left[\int_t^T \left(\eta_s |\dot{X}_s|^p + \gamma_s |X_s|^p\right) ds |\mathcal{F}_t\right]$$

$$v(t,x) = \underset{X \in \mathcal{A}_0(t,x)}{\operatorname{ess inf}} E\left[\int_t^T \left(\eta_s |\dot{X}_s|^p + \gamma_s |X_s|^p\right) ds |\mathcal{F}_t\right]$$

▶ The value function is explicit in the *x* variable:

$$v(t,x)=Y_t|x|^p$$

for some coefficient process Y.

$$v(t,x) = \underset{X \in \mathcal{A}_0(t,x)}{\operatorname{ess inf}} E\left[\int_t^T \left(\eta_s |\dot{X}_s|^p + \gamma_s |X_s|^p\right) ds |\mathcal{F}_t\right]$$

▶ The value function is explicit in the *x* variable:

$$v(t,x) = Y_t |x|^p$$

for some coefficient process Y.

By deriving a maximum principle we obtain:

$$dY_t = \left((p-1) \frac{Y_t^q}{\eta_t^{q-1}} - \gamma_t \right) dt + dM_t \tag{3}$$

$$v(t,x) = \underset{X \in \mathcal{A}_0(t,x)}{\operatorname{ess inf}} E\left[\int_t^T \left(\eta_s |\dot{X}_s|^p + \gamma_s |X_s|^p\right) ds |\mathcal{F}_t\right]$$

▶ The value function is explicit in the *x* variable:

$$v(t,x)=Y_t|x|^p$$

for some coefficient process Y.

By deriving a maximum principle we obtain:

$$dY_t = \left((p-1) \frac{Y_t^q}{\eta_t^{q-1}} - \gamma_t \right) dt + dM_t \tag{3}$$

▶ Terminal constraint leads to singular terminal condition: $Y_T = \infty$

Integrability Assumptions and Approximation

 \blacktriangleright For the remainder of the talk we assume that η satisfies

$$E\int_0^T rac{1}{\eta_t^{q-1}} dt < \infty, \quad E\int_0^T \eta_t^2 dt < \infty.$$

and that γ satisfies

$$E\int_0^T \gamma_t^2 dt < \infty$$

Integrability Assumptions and Approximation

 \blacktriangleright For the remainder of the talk we assume that η satisfies

$$E\int_0^T rac{1}{\eta_t^{q-1}}dt < \infty, \quad E\int_0^T \eta_t^2 dt < \infty$$

and that γ satisfies

$$E\int_0^T \gamma_t^2 dt < \infty$$

Approximation

$$dY_t^L = \left((p-1) \frac{(Y_t^L)^q}{\eta_t^{q-1}} - \gamma_t \right) dt + dM_t^L$$
$$Y_T^L = L$$

Existence and Minimality

Proposition

There exists a solution (Y^L, M^L) . Y^L is bounded from above

$$Y_t^L \leq \frac{1}{(T-t)^p} E\left[\left.\int_t^T (\eta_s + (T-s)^p \gamma_s) ds\right| \mathcal{F}_t\right].$$

Existence in the Brownian case follows from Briand et al. 2003

Existence and Minimality

Proposition

There exists a solution (Y^L, M^L) . Y^L is bounded from above

$$Y_t^L \leq rac{1}{(T-t)^p} E\left[\left.\int_t^T (\eta_s + (T-s)^p \gamma_s) ds
ight| \mathcal{F}_t
ight].$$

Existence in the Brownian case follows from Briand et al. 2003

Theorem

There exists a process (Y, M) such that for every t < T and as $L \nearrow \infty$

- $\triangleright Y_t^L \nearrow Y_t \text{ a.s.}$
- $\blacktriangleright M^L \to M \text{ in } \mathcal{M}^2([0,t]).$

The pair (Y, M) is the minimal solution to (3) with singular terminal condition $Y_T = \infty$.

Optimal Controls

Theorem

The control

$$X_t = xe^{-\int_0^t \left(\frac{Y_s}{\eta_s}\right)^{q-1} ds}$$

belongs to $\mathcal{A}_0(0,x)$ and is optimal in (2). Moreover, $v(t,x)=Y_t|x|^p$.

Portfolio liquidation

- ▶ Liquidation of a portfolio consisting of $d \in \mathbb{N}$ assets
- Correlation structure leads to a multi-factor liquidation problem
- Value process:

$$v(t,x) = \underset{X \in \mathcal{A}_0(t,x)}{\operatorname{ess inf}} E\left[\int_t^T (\dot{X}_r^T \eta_r \dot{X}_r + X_r^T \gamma_r X_r dr \bigg| \mathcal{F}_t\right]$$

where η_t, γ_t are positive semidefinite matrices for every $t \in [0, T]$

Variable reduction

Assume that

- $\eta_t = diag(\eta^1, \dots, \eta^d)$ for every $t \in [0, T]$
- $\gamma_t = \lambda_t \Sigma$ where Σ is positive semidefinite matrix and (λ_t) a one-dimensional, nonnegative process

Variable reduction

Assume that

- $\eta_t = diag(\eta^1, \dots, \eta^d)$ for every $t \in [0, T]$
- $\gamma_t = \lambda_t \Sigma$ where Σ is positive semidefinite matrix and (λ_t) a one-dimensional, nonnegative process

Then there exists a positive semidefinite matrix A such that

$$v(t,x) = x^T A^T \operatorname{diag}(Y_t^1, \dots, Y_t^d) Ax$$

where Y_t^1, \ldots, Y_t^d denote the solutions of d independent versions of the BSDE (3).

Back to the power plant

revenues from a coal power plant are essentially determined from the (clean) dark spread

$$CDS = S^{P} - \frac{1}{h}S^{C} - \rho S^{CO_2}$$

- ▶ S^P : power price, S^C : coal price and S^{CO_2} : price of emission rights
- h: heating rate, ρ : emission rate
- ► Here: Take relative dark spread

$$rDS = h \frac{S^P}{hS^C}$$

and set $\lambda_t = c(a - rDS_t)^+$

▶ Solve the BSDEs with PDE methods

Price-sensitive position paths

Figure: Position paths depending on rDS

Skewness in realized proceeds

Figure: Histograms of realized proceeds

Literature

The talk is based on

- S. Ankirchner, P. Kratz and T. Kruse, Hedging Forward Positions: Basis Risk Versus Liquidity Costs. SIAM Journal on Financial Mathematics, 4:1, 668-696, 2013.
- S. Ankirchner, M. Jeanblanc and T. Kruse. BSDEs with singular terminal condition and control problems with constraints. SIAM Journal on Control and Optimization, 52(2):893913, 2014.
- S. Ankirchner, T. Kruse. Optimal position targeting with stochastic linear-quadratic costs. To appear in the AMaMeF volume of Banach Center Publications, 2014.

Further references

- ▶ P. Briand, B. Delyon, Y. Hu, Ying, E. Pardoux and L. Stoica. L^p solutions of backward stochastic differential equations. Stochastic Processes and Their Applications, 2003
- P. Graewe, U. Horst, J. Qiu. A Non-Markovian Liquidation Problem and Backward SPDEs with Singular Terminal Conditions, 2013
- ▶ A. Popier. Backward stochastic differential equations with singular terminal condition. Stochastic Processes and Their Applications, 2006.
- A. Popier. Backward stochastic differential equations with random stopping time and singular final condition. Annals of Probability, 2007.
- A. Schied. A control problem with fuel constraint and Dawson-Watanabe superprocesses, 2013. To appear in Annals of Applied Probability.

Thank you!