Emissions Derivatives and Singular Forward Backward SDEs

Nizar TOUZI

Ecole Polytechnique Paris

Joint work with: R. Carmona, F. Delarue and G.E. Espinosa

Séminaire FIME, Chaire Fianance et Développement Durable June 24, 2011

Allowance prices dynamics

 $(\Omega,\mathcal{F},\mathbb{P})$

B d-dim Brownian motion under a risk-neutral measure \mathbb{Q} $\mathbb{F}=\{\mathcal{F}_t,t\geq 0\}$: augmented filtration of the Brownian motion

Assume there is a liquid market of carbon emissions allowances, denote the price process

$$A = \{A_t; 0 \le t \le T\}$$

- ullet A is a \mathbb{F} -martingale under \mathbb{Q}
- $dA_t = Z_t dB_t$ for some progressively measurable process Z
- $A_T = \lambda \mathbb{1}_{[\Lambda,\infty)}(E_T)$ where
 - ullet λ is the penalty
 - $E_t = \sum_{i \in \mathcal{I}} E_t^i$ is the aggregate of the E_t^i representing the **cumulative emission** up to time t of firm i
 - ullet Λ is the cap imposed by the regulator

Emissions Dynamics

Assume (dynamics under \mathbb{P})

$$dE_t^i = (b_t^i - \xi_t^i)dt + \sigma_t^i dW_t, \quad E_0^i = 0.$$

- If $\xi_t^i \equiv 0$, $\{E_t^i\}_{0 \le t \le T}$ cumulative emissions of firm i in BAU
- $\{\xi_t^i\}_{0 \le t \le T}$ abatement rate of firm i
- Assumptions on emission rates b_t^i and volatilities σ_t^i to be articulated later

One may view E_t^i as a prediction of the emissions of firm i

Individual Firm Optimization Problems

Abatement costs for firm i given by cost function $c_t^i: \mathbb{R} \to \mathbb{R}$

- c^i is C^1 and strictly convex
- ullet c satisfies Inada-like conditions for each $t \in [0, T]$

$$(c^i)'(-\infty) = -\infty$$
 and $(c^i)'(+\infty) = +\infty$.

• $c^{i}(0) = \min c_{t}^{i} (\xi^{i} \equiv 0 \text{ corresponds to BAU})$

(e.g. $c^{i}(x) = \beta |x|^{1+\alpha}$ for some $\beta > 0$ and $\alpha > 0$)

Each firm chooses its abatement strategy ξ^i and its investment θ^i in allowances. Its terminal wealth is given by

$$X_T^i = X_T^{i,\boldsymbol{\xi}^i,\theta} = x^i + \int_0^T \theta_t^i dA_t - \int_0^T c^i(\boldsymbol{\xi}_t^i) dt - E_T^{\boldsymbol{\xi}^i} A_T.$$

Solving the Individual Firm Optimization Problems

Preferences of firm i given by a C^1 , increasing, strictly concave utility function $U^i: \mathbb{R} \to \mathbb{R}$ satisfying Inada conditions:

$$(U^i)'(-\infty) = +\infty$$
 and $(U^i)'(+\infty) = 0$.

The optimization problem for firm i is :

$$V(x^{i}) := \sup_{(\xi^{i}, \theta^{i}) \in \mathcal{A}^{i}} \mathbb{E}^{\mathbb{P}} \{ U^{i}(X_{T}^{i, \xi^{i} \theta^{i}}) \}$$

If no non-standard restriction on \mathcal{A}^i set of admissible strategies for firm i

Proposition

If an equilibrium allowance price $\{A_t\}_{0\leq t\leq T}$ exists, then the optimal abatement strategy $\hat{\xi}^i$ is given by

$$\hat{\xi}_t^i = [(c^i)']^{-1}(A_t).$$

 ${\bf NB}$: The optimal abatement strategy $\hat{\xi}^i$ is independent of the utility function U^i

Finding the Equilibrium Allowance Price

Recall

$$dE_t^i = \left[\tilde{b}_t^i - [(c^i)']^{-1}(A_t) \right] dt + \sigma_t^i dB_t, \quad E_0^i = 0, \text{ for each } i$$

- Assume
 - $\forall i, \tilde{b}_t^i = \tilde{b}^i(t) E_t^i$ or $\forall i, \tilde{b}_t^i = \tilde{b}^i(t)$
 - $\forall i, \sigma_t^i = \sigma^i(t)$.
- Set

$$b:=\sum_{i\in\mathcal{I}} \tilde{b}^i, \ \sigma:=\sum_{i\in\mathcal{I}} \sigma^i, \ \mathrm{and} \ f:=\sum_{i\in\mathcal{I}} [(c^i)']^{-1}.$$

Therefore we have the following FBSDE

$$dE_t = \{b(t, E_t) - f_t(A_t)\}dt + \sigma(t)dB_t, \quad E_0 = 0$$
 (1)

$$dA_t = Z_t dB_t, \quad A_T = \lambda \mathbb{1}_{[\Lambda, +\infty)}(E_T),$$
 (2)

Theoretical Existence and Uniqueness

Theorem

If $\sigma(t) \geq \underline{\sigma} > 0$ then for any $\lambda > 0$ and $\Lambda \in \mathbb{R}$, FBSDE (1)-(2) admits a unique solution $(E, A, Z) \in M^2$. Moreover, A_t is nondecreasing w.r.t λ and nonincreasing w.r.t Λ .

Proof

- Approximate the singular terminal condition $\lambda \mathbb{1}_{[\Lambda,+\infty)}(E_T)$ by an increasing sequence $\{\varphi^n(E_T)\}_n$ of smooth monotone functions of E_T
- Use
 - comparison results for BSDEs
 - Monotonicity of f and φ^n
 - the fact that E_T has a density (implying $\mathbb{P}\{E_T = \Lambda\} = 0$)

to control the limits

PDE Characterization

Assume GBM for BAU emissions (Chesney-Taschini, Seifert-Uhrig-Homburg-Wagner, Grüll-Kiesel) i.e. b(t,e)=be and $\sigma(t,e)=\sigma e$

$$\begin{cases}
E_t = E_0 + \int_0^t (bE_s - f(A_s))ds + \int_0^t \sigma E_s d\tilde{W}_s \\
A_t = \lambda \mathbf{1}_{[\Lambda,\infty)}(E_T) - \int_t^T Z_t d\tilde{W}_t.
\end{cases} (3)$$

Then, allowance price is of the form $A_t = v(t, E_t)$ for a (deterministic function v which MUST solve (Nonlinear PDE)

$$\partial_t v(t,e) + \left(be - f(v(t,e))\right) \partial_e v(t,e) + \frac{1}{2} \sigma^2 e^2 \partial_{ee}^2 v(t,e) = 0$$
$$v(T,.) = \mathbf{1}_{[\Lambda,\infty)}$$

Emissions Derivative pricing

The price at time t of a call option with maturity τ and strike K on an allowance forward contract maturing at time $T > \tau$ is given by

$$V(t, E_t) = \mathbb{E}_t\{(A_{\tau} - K)^+\} = \mathbb{E}_t\{(v(\tau, E_{\tau}) - K)^+\}$$

V solves (Linear PDE)

$$\partial_t V(t,e) + \left(be - f(v(t,e))\right) \partial_e V(t,e) + \frac{1}{2} \sigma^2 e^2 \partial_{ee}^2 V(t,e) = 0$$
$$V(\tau,.) = (v(\tau,.) - K)^+$$

Decoupled Case : $f \equiv 0$.

Explicit Solution (R.C. - Hinz)

$$\begin{split} v^0(t,e) &= \lambda \mathbb{P}\left[E_T^0 \geq \Lambda | E_t^0 = e\right] \\ &= \lambda \Phi\left(\frac{\ln(e/\Lambda e^{-b(T-t)})}{\sigma\sqrt{T-t}} - \frac{\sigma\sqrt{T-t}}{2}\right) \\ V^0(t,e) &= \mathbb{E}\left[(v^0(\tau,E_\tau^0) - K)^+ | E_t^0 = e\right] \end{split}$$

where E^0 is the geometric Brownian motion :

$$\frac{dE_t^0}{E_t^0} = bdt + \sigma dW_t$$

used as proxy estimation of the cumulative emissions.

Small Abatement Asymptotics

For $\epsilon \geq 0$ small, let v^{ϵ} and V^{ϵ} be the prices of the allowances and the option for $f = \epsilon f_0$, i.e.

$$\begin{split} &-\partial_{t}v^{\epsilon}-\left(be-\epsilon f_{0}(v^{\epsilon})\right)\partial_{e}v^{\epsilon}-\frac{1}{2}\sigma^{2}e^{2}\partial_{ee}^{2}v^{\epsilon}\\ &v^{\epsilon}(T,.)=\lambda\mathbf{1}_{[\Lambda,\infty)}\\ &-\partial_{t}V^{\epsilon}-\left(be-\epsilon f_{0}(v^{\epsilon})\right)\partial_{e}V^{\epsilon}-\frac{1}{2}\sigma^{2}e^{2}\partial_{ee}^{2}V^{\epsilon}=0\\ &V^{\epsilon}(\tau,.)=(v^{\epsilon}(\tau,.)-K)^{+} \end{split}$$

Proposition

$$\begin{split} V^{\epsilon}(t,s) &= V^{0}(t,s) \\ + \epsilon \ \mathbb{E}_{t,e} \left[\mathbf{1}_{[\Lambda,\infty)}(v^{0})(\tau,E_{\tau}^{0}) \int_{t}^{T} f_{0}(v^{0})(s,E_{s}^{0}) \partial_{e} v^{0}(s \vee \tau,E_{s \vee \tau}^{0}) \frac{E_{s \vee \tau}^{0}}{E_{s}^{0}} ds \right] \\ + \circ (\epsilon), \end{split}$$

Option Prices

11 values of EPSILON ranging from 0 to 1.0 for K=0.5

A Slightly Different Model

Single good (e.g. **electricity**) regulated economy, with price dynamics given **exogenously** (e.g. regulated utilities)!

$$dP_t = \mu(t, P_t)dt + \sigma(t, P_t)dW_t$$

Firm i

- Controls its instataneous rate of production q_t^i
- **Production** over [0, t]

$$Q_t^i := \int_0^t q_t^i dt$$

• Costs of production given by $c_t^i: \mathbb{R}_+ \mapsto \mathbb{R}$ C^1 strictly convex satisfying Inada-like conditions

$$(c_t^i)'(0) = 0, \quad (c_t^i)'(+\infty) = +\infty$$

• Cumulative emissions $E_t^i := e^i Q_t^i$

Individual Firm Optimization Problem

P&L (terminal wealth)

$$X_{T}^{i} = X_{T}^{i,q^{i},\theta^{i}} = x^{i} + \int_{0}^{T} \theta_{t}^{i} dA_{t} + \int_{0}^{T} [P_{t}q_{t}^{i} - c_{t}^{i}(q_{t}^{i})]dt - e^{i}Q_{T}^{i}A_{T}$$

Proposition

If such an equilibrium exits for the price of an allowance, the optimal production strategy \hat{q}^i is given by :

$$\hat{q}_t^i = [(c^i)']^{-1}(P_t - e^i A_t).$$

 ${\bf NB}$: As before the optimal production schedule \hat{q}^i does not depend on the utility function

Existence of Allowance Equilibrium Prices

- ullet Set $E_t := \sum_{i \in \mathcal{I}} E_t^i$ for the total aggregate emissions up to time t
- Define $f(p, a) := \sum_{i \in \mathcal{I}} \varepsilon^i [(c^i)']^{-1} (p \varepsilon^i a)$

Then the corresponding FBSDE under \mathbb{Q} reads

FBSDE
$$\begin{cases} dP_t = \sigma(t, P_t)dB_t, & P_0 = p \\ dE_t = f(P_t, A_t)dt, & E_0 = 0 \\ dA_t = Z_t dB_t. \end{cases}$$

with terminal condition $A_T = \lambda \mathbf{1}_{[\Lambda, +\infty)}(E_T)$

NB: The volatility of the forward equation is degenerate!

Existence and Uniqueness

Assume further forward diffusion elliptic $\delta^{-1} > \sigma(t, p) \ge \delta > 0$

Theorem

Assuming uniformly Lipschitz coefficients, there exists a unique progressively measurable quadruplet $(P_t, E_t, A_t, Z_t)_{0 \le t \le T}$ satisfying FBSDE on [0, T] and

$$\mathbf{1}_{(\Lambda,\infty)}(E_T) \leq A_T \leq \mathbf{1}_{[\Lambda,\infty)}(E_T).$$

The terminal condition $A_T = \mathbf{1}_{[\Lambda,\infty)}(E_T)$ may not be satisfied!

Singularity of the Terminal Value

Theorem

- E_t has a smooth density whenever t < T,
- The distribution of E_T has a (Dirac) point mass at Λ , i.e.

$$\mathbb{P}\{E_T=\Lambda\}>0.$$

• The support of the conditional distribution of A_T given $\{E_T = \Lambda\}$ is the **WHOLE** interval [0, 1]!

Consequences

- The terminal condition $A_T = 1_{[\Lambda,\infty)}(E_T)$ is not satisfied!
- At time T, the price A_T of one allowance is not determined by the model on the set {E_T = Λ} of positive probability!

