# Mitigation of Natural and Industrial Disasters: The Roles of Insurance and Land Use Regulation

Céline Grislain-Letrémy<sup>1</sup> Bertrand Villeneuve<sup>2</sup>

Work in progress

**FIME 2010** 

<sup>1</sup>University Paris-Dauphine and CREST <sup>2</sup>University Paris-Dauphine and CREST

| Introduction | Model | Natural disasters | Industrial disasters | Conclusion |
|--------------|-------|-------------------|----------------------|------------|
|              |       |                   |                      |            |





- 3 Natural disasters
- Industrial disasters
- 5 Conclusion



| Introduction | Model       | Natural disasters | Industrial disasters | Conclusion |
|--------------|-------------|-------------------|----------------------|------------|
| ●○○○○○       | 00000       | 0000              | 000                  |            |
| A study o    | f major ris | ks                |                      |            |

#### **Our questions**

- How do insurance and urbanization policies interact ?
- What is the impact of liability rules on this interaction ?

#### Our framework

- Urban model;
- Perfect information;
- Risk averse households;
- Compulsory insurance.



France, Xynthia, February 2010.



France, AZF, September 2001.



| Introduc<br>○●○○○ | ction<br>O                                     | Model<br>00000                                          | Natural disasters<br>0000  | Industrial disasters<br>000                        | Conclusion |
|-------------------|------------------------------------------------|---------------------------------------------------------|----------------------------|----------------------------------------------------|------------|
| Liat              | oility and                                     | insurance                                               |                            |                                                    |            |
|                   |                                                |                                                         |                            |                                                    |            |
|                   | Natural disa                                   | asters                                                  |                            | Industrial disasters                               |            |
|                   | Liability                                      |                                                         |                            |                                                    |            |
| -                 | Public respo                                   | nsibility                                               |                            | Firm's liability                                   |            |
|                   | Insurance sy                                   | stem                                                    |                            |                                                    |            |
| -                 | In several co<br>Uniform prei<br>Actuarial flo | ountries, state ir<br>mium in France<br>od insurance in | the US                     | Victims' insurance for househol<br>Or no insurance | lds        |
|                   | Cost to insu                                   | rers in France (                                        | property damag             | e)                                                 |            |
| -                 | 1982-2006:<br>French state                     | Bn€ 8.3 (floodi<br>guarantee: M€                        | ng & clay)<br>E 263 (2000) | AZF (2001): Bn€ 1.5<br>Grande Paroisse: Bn€ 2      |            |
|                   |                                                |                                                         |                            |                                                    |            |



| Introduction | Model | Natural disasters | Industrial disasters | Conclusion |
|--------------|-------|-------------------|----------------------|------------|
|              | 00000 | 0000              | 000                  | 000        |
| Urban choi   | ces   |                   |                      |            |



France, Xynthia, February 2010.

Source: Reuters





France, ONIA/AZF plant and neighborhoods.

Source: IGN



| 000000    | 00000      | 0000    | 000 | 000 |
|-----------|------------|---------|-----|-----|
| Urbanizat | ion and in | surance |     |     |

- By pricing risk (or not), insurance impacts urban choices.
- In turn, location choices impact cost for insurance system.
  I.e. households create externalities on the liable part, that is

| Natural disasters | Industrial disasters |
|-------------------|----------------------|
| The whole society | The firm             |

 $\Rightarrow$  The liable part wants to limit space availability.



| Introduction | Model | Natural disasters | Industrial disasters | Conclusion |
|--------------|-------|-------------------|----------------------|------------|
| ○○○○●○       | 00000 | 0000              | 000                  | 000        |
| Literature   |       |                   |                      |            |

## Urban economics and risk.

- Theoretical urban models: Fujita and Thisse (2002), Tatano et al. (2004); With insurance: Frame (1998), Frame (2001).
- Applications of the hedonic prices method: Natural risks: Harrison et al. (2001), Bin et al. (2008); Industrial risks: Sauvage (1997), Travers (2007).

### Insurance and prevention.

- Insurance and mitigation of natural disasters: Picard (2008);
- Law and economics: Sanseverino-Godfrin (1996), Shavell (1982), Demougin and Fluet (2007).



| Introduction<br>00000 | Model<br>00000 | Natural disasters | Industrial disasters | Conclusion |
|-----------------------|----------------|-------------------|----------------------|------------|
| Main resu             | lts            |                   |                      |            |

#### Natural disasters

- Actuarial insurance pricing implements a Pareto optimum.
- Insurance policy. Switch from uniform to actuarial insurance without relocation.
   Necessary conditions on risk for the approbation by majority voting.
- *Urbanization policy.* Under uniform insurance, building prohibition or expropriation do not achieve optimality by itself.

### Industrial disasters

- Despite of firm's strategy of land purchase, risk remains imperfectly internalized. Thus, there is a rationale for state intervention.
- Compensation policy. The state can implement the optimal allocation by organizing transfers between households and the firm.



| Introduction | Model | Natural disasters | Industrial disasters | Conclusion |
|--------------|-------|-------------------|----------------------|------------|
|              |       |                   |                      |            |

Introduction



- 3 Natural disasters
- Industrial disasters
- 5 Conclusion



| Introduction | Model | Natural disasters | Industrial disasters | Conclusion |
|--------------|-------|-------------------|----------------------|------------|
| 000000       | ●0000 | 0000              | 000                  | 000        |
| Timing       |       |                   |                      |            |

Stage 0: Regulation.

Restrictions are imposed on insurance tariffs and (in some versions) on land use.

Stage 1: Markets.

Insurers choose a pricing in these tariffs.

## Stage 2: Individual choices. Households decide their location.







### Space.

- Surface per house at each location;
- Density of households;
- Space constraints: local and global.

## Risk.

- Loss probability depends on location;
- Cost of damage depends on location and surface used.



| Introduction | Model | Natural disasters | Industrial disasters | Conclusion |
|--------------|-------|-------------------|----------------------|------------|
| 000000       | ○○●○○ | 0000              | 000                  | 000        |
| Insurance    |       |                   |                      |            |

- Instantaneous repairs;
- Complete insurance.

#### Natural disasters: state insurance.

- Risk correlated inside a community. Mutualization between numerous communities ⇒ we assume risk neutrality.
- Insurance premium depends on location and surface used;
- Zero profit.

### Industrial disasters: free insurance by the firm.

- Risk neutrality of the firm;
- Firm identified and solvent  $\Rightarrow$  null premium for households.



| Introduction | Model | Natural disasters | Industrial disasters | Conclusion |
|--------------|-------|-------------------|----------------------|------------|
| 000000       | ○○○●○ | 0000              | 000                  |            |
| Households   |       |                   |                      |            |

## N households.

- Same income;
- Risk averse households;
- Utility function: concave with respect to the quantity of the composite good and to housing surface.

## Rent.

- No opportunity land cost. In empty areas, rent is null.
- Redistributed rent.



| Introduction | Model | Natural disasters | Industrial disasters | Conclusion |
|--------------|-------|-------------------|----------------------|------------|
| 000000       | ○○○○● | 0000              | 000                  | 000        |
| Equilibrim   |       |                   |                      |            |

People compete for space and less risky locations

- Density, rents, risk exposure, insurance prices
- Budget constraints: individual, insurance sector, state
- Liability rules:
  - Natural disasters: state insurance
  - Technological disasters: free insurance by the firm



| Introduction | Model | Natural disasters | Industrial disasters | Conclusion |
|--------------|-------|-------------------|----------------------|------------|
|              |       |                   |                      |            |

Introduction

## 2 Model

- 3 Natural disasters
- Industrial disasters

## 5 Conclusion



| Introduction<br>000000 | Model<br>00000 | Natural disasters | Industrial disasters | Conclusion<br>000 |
|------------------------|----------------|-------------------|----------------------|-------------------|
| Equilibrium            |                |                   |                      |                   |

#### If insurance is ...

- Actuarial: Trade-off between insurance cost and land price.
- *Uniform:* Rent, density and housing surface are constant across locations.



Introduction Model Natural disasters Industrial disasters Conclusion

### Pareto optimality

Actuarial insurance pricing implements a Pareto optimum.

- Actuarial insurance internalizes risk externalities.
- Actuarial insurance Pareto dominates uniform insurance: in the case of loss, the same total housing surface is affected, but the number of damaged houses is higher under uniform insurance.

### Recommandation

Reform swichting from uniform to actuarial insurance.

- Long term: if the moving costs are lower than the utility gain, this reform is a Pareto improving policy.
- Short term, where nobody relocates: winners and losers.





#### Acceptance of the reform

- If loss probability is strictly convex, acceptance.
- If loss probability is strictly concave, rejection.
- If loss probability is linear, undetermined result of the vote.





| Urbanizatio | n nolicy | recommendatio |     | 000 |
|-------------|----------|---------------|-----|-----|
| Urhanizatic | n nolicy | recommandatio | าทร |     |

### Recommandations

- O Density constraints implement the optimal allocation.
- 2 Building prohibition does not.
- S Expropriation is equivalent to prohibition.
  - Equivalence between smooth density constraints and actuarial pricing of insurance.
  - Building prohibition does not implement the optimal allocation. For a given land restriction, uniform insurance is Pareto dominated by actuarial one. + Under actuarial insurance, bans decrease the utility level.
  - Building prohibition is equivalent to expropriation, since rents are redistributed. Same space limit (x<sup>\*</sup><sub>BP</sub>).



| Introduction | Model | Natural disasters | Industrial disasters | Conclusion |
|--------------|-------|-------------------|----------------------|------------|
|              |       |                   |                      |            |

Introduction

## 2 Model

3 Natural disasters

Industrial disasters

## 5 Conclusion



| Introduction  | Model      | Natural disasters | Industrial disasters | Conclusion |
|---------------|------------|-------------------|----------------------|------------|
| 000000        | 00000      | 0000              | ●○○                  | 000        |
| Firm's strate | gy of land | purchase          |                      |            |

### A new industrial project is rendered public

The households were in equilibrium

### New households equilibrium under free insurance

Households do not perceive risk and create external effect on firm (the ultimate responsible for damages): no reason to move.

 $\Rightarrow$  Land purchase by the firm.

### Two market mechanisms / two compensation principles

- Competition for land between the firm and households (x<sub>0</sub><sup>\*</sup>): compensation for rent increase, but not for "compaction";
- 2 Full compensation for moving  $(x_{FC}^*)$ .

 $\Rightarrow$  Different rules give predictable differences in efficiency and on who wins and who loses.



| Introduction | Model       | Natural disasters | Industrial disasters | Conclusion |
|--------------|-------------|-------------------|----------------------|------------|
| 000000       | 00000       | 0000              | ○●○                  | 000        |
| Rationale 1  | for state i | ntervention       |                      |            |

## Comparison of space limits

- Land is more expensive in the case of full compensation.
- Limiting space is more expensive for the firm than for the state.

$$x_{BP}^* \le x_0^* \le x_{FC}^*.$$

- Under exposure to natural disasters, the spared amount is entirely redistributed by the state among households, whereas only a fraction of it is given by the firm; households are poorer.
- Despite of firm's strategy, risk remains imperfectly internalized.





#### Recommandation

To implement the optimal allocation, the state could organize transfers between households and the firm.





| Introduction | Model | Natural disasters | Industrial disasters | Conclusion |
|--------------|-------|-------------------|----------------------|------------|
|              |       |                   |                      |            |

Introduction

## 2 Model

3 Natural disasters

Industrial disasters







- Liability → insurance.
  Liability determines insurance scheme.
- Insurance  $\rightarrow$  urbanization. Insurance pricing impacts location choices. These choices determine liable part's financial exposure.
- Urbanization → liable party. Liable party tries to limit space availability via markets or coercion.

### Public policies

A general equivalence of insurance or transfers policies and urbanization policies.





In many countries, insurance and urbanization policies have been built separately (France, United States, Netherlands...).

## Main limitation: burden of past choices.

- Insurance system;
- Urbanization policies and difficult expropriations.





New Orleans, August 2005 after Hurricane Katrina.

Source: Colligan Worldpress

