

# Accelerated simulation of power grid reliability indices

Wander Wadman
Jason Frank & Daan Crommelin
CWI Amsterdam

Seminar Institute Henri Poincaré



## How reliable are modern power grids?



$$V_{min} \le |V(t)| \le V_{max},$$
  
 $|I(t)| \le I_{max},$ 

at all nodes at all connections



#### Research aim

[Li and Billinton 1994]

Probability
Expected duration
Expected number
Expected size (kWh)

of power curtailments during a time interval  ${\mathcal T}$ 



#### Research aim

[Li and Billinton 1994]

Compute reliability indices

$$\mathbb{E}[J] = \begin{cases} \text{Probability} \\ \text{Expected duration} \\ \text{Expected number} \\ \text{Expected size (kWh)} \end{cases}$$

of power curtailments during a time interval  $\mathcal{T}$ ,

given the distribution of S(t) of nodal power injections.

### Model

#### A grid with

- *N* nodes
- $M \le N(N-1)/2$  connections

Discrete time domain  $\mathcal{T} = \{0, t_1, t_2, ..., T\}$ 



#### Vectors of stochastic processes:

- nodal power injections  $\{S(t), t \in \mathcal{T}\}$  with values  $S(t) \in \mathbb{C}^N$
- nodal voltages  $\{V(t), t \in \mathcal{T}\}$  with values  $V(t) \in \mathbb{C}^N$
- connections currents  $\{I(t), t \in \mathcal{T}\}$  with values  $I(t) \in \mathbb{C}^M$

### Model

[Grainger and Stevenson 1994]

#### Power flow equations

For every  $t \in \mathcal{T}$ , solve the nonlinear algebraic system

$$P_{j} = \sum_{k} |V_{j}||Y_{jk}||V_{k}|\cos(\theta_{jk} + \delta_{k} - \delta_{j}),$$

$$Q_{j} = -\sum_{k} |V_{j}||Y_{jk}||V_{k}|\sin(\theta_{jk} + \delta_{k} - \delta_{j}),$$

for all  $V_j = |V_j|e^{i\delta_j}$ , given admittances  $Y_{jk} = |Y_{jk}|e^{i\theta_{jk}}$ ,  $P_j = \text{Re}\{S_j\}$ ,  $Q_j = \text{Im}\{S_j\}$ .

Ohm's law  $\Rightarrow$  connection currents  $I_{jk}$ 

### Crude Monte Carlo is inefficient

Event  $C = \{a \text{ curtailment during } \mathcal{T}\}$  is rare!

$$\widehat{P}_n := \frac{1}{n} \sum_{i=1}^{1} \mathbf{1}_{\{C \text{ in sample i}\}} \text{ for } \mathbb{P}(C).$$

Relative variance

$$\frac{\operatorname{Var}\widehat{P}_n}{\mathbb{P}(C)^2} = \frac{1 - \mathbb{P}(C)}{n\mathbb{P}(C)} \to \infty \quad \text{as } \mathbb{P}(C) \to 0.$$

[#CMC samples] x [# time steps] x [duration power flow solver] = LONG!



# Splitting technique to estimate $\mathbb{P}(C)$

[L'Ecuyer et al. 2006], [Garvels 2000]

Decompose

$$\mathbb{P}(C) = \prod \mathbb{P}(T_k < T | T_{k-1} < T),$$

with

$$T_k := \min\{t \in \mathcal{T}: h(X(t)) \ge l_k\},$$

importance function

$$h: \mathbb{R}^{N+M} \to \mathbb{R}$$
,

and

$$X(t) := [|V(t)|, |I(t)|] \in \mathbb{R}^{N+M}.$$

Unbiased splitting estimator:

$$\hat{P} \coloneqq \prod_k \hat{p}_k$$





# Controlling the estimator accuracy

[Amrein and Künsch 2011]

**Ideal setting:**  $\hat{P}$  is work-normalized asymptotically efficient:

$$\frac{\operatorname{Var}\widehat{P}}{\mathbb{P}(C)^2} \sim \frac{(\log \mathbb{P}(C))^2}{n}$$

If conditional probabilities do not depend on the entrance states

$$\frac{\operatorname{Var}\widehat{P}}{\mathbb{P}(C)^2} \le -1 + \prod_{k} \frac{r_k - 1}{r_k - 2},$$

with  $r_k$  the (fixed) number of successes at level k.





## Importance function

$$h(X(t)) := \max_{j} \frac{X_{j}(t) - L_{j}}{U_{j} - L_{j}}$$





## Other grid reliability indices

[Wadman, Crommelin and Frank 2013]

We decompose

$$\mathbb{E}[J] = \underbrace{\mathbb{P}(C)}_{\widehat{P}} \underbrace{\mathbb{E}[J|C]}_{\widehat{J}^{\widehat{C}}}.$$

Estimate  $\mathbb{E}[J]$  by  $\hat{P}\hat{J}^C$ , with

$$\hat{J}^C = \frac{1}{n} \sum_{i=1}^n \hat{J}_i^C.$$



Again, we control the accuracy:

$$\frac{\operatorname{Var}\widehat{P}\widehat{J}^{C}}{\mathbb{E}[J]^{2}} = \frac{\operatorname{Var}\widehat{P}}{\mathbb{P}(C)^{2}} + \frac{\operatorname{Var}\widehat{J}^{C}}{\mathbb{E}[J|C]^{2}} + \frac{\operatorname{Var}\widehat{P}}{\mathbb{P}(C)^{2}} \frac{\operatorname{Var}\widehat{J}^{C}}{\mathbb{E}[J|C]^{2}}.$$



# Workload decreases dramatically

#### Required samples for a 95% CI



## LDT: Large Devations Theory

Vector of N SDEs

$$dS^{\varepsilon}(t) = b(S^{\varepsilon}(t))dt + \varepsilon LdW(t), \qquad \varepsilon > 0$$

Good rate function

$$I(f) \coloneqq \frac{1}{2} \int_0^T ||L^{-1}(f' - b(f))||^2 dt$$

Rare event...

$$\mathbb{P}\{\exists \tau \leq T : p(S^{\varepsilon}(\tau)) = P_{max}\}\$$

## LDT: Large Devations Theory

Vector of N SDEs

$$dS^{\varepsilon}(t) = b(S^{\varepsilon}(t))dt + \varepsilon LdW(t), \qquad \varepsilon > 0$$

Good rate function

$$I(f) \coloneqq \frac{1}{2} \int_0^T ||L^{-1}(f' - b(f))||^2 dt$$

Rare event...

$$\lim_{\varepsilon \downarrow 0} -\varepsilon \log \mathbb{P} \{ \exists \tau \leq T : p(S^{\varepsilon}(\tau)) = P_{max} \} = \inf_{f : \{ \exists \tau \leq T : p(f(\tau)) = P_{max} \}} I(f) =: I^*$$

... has approximation

$$\mathbb{P}\{\exists \tau \leq T : p(S^{\varepsilon}(\tau)) = P_{max}\} \sim e^{-\varepsilon I^*}$$



# LDT: finding critical connections

#### Compute decay rate $I^*$ for all connections

SDEs Ornstein-Uhlenbeck:

$$dS^{\varepsilon}(t) = D(\mu - S^{\varepsilon}(t))dt + \varepsilon LdW(t).$$

Then

$$I^* = \inf_{f: \{\exists \tau \le T: p(f(\tau)) = P_{max}\}} \frac{1}{2} \int_0^T ||L^{-1}(f' + Df - D\mu)||^2 dt$$

$$=\inf_{\tau\leq T}g(\tau)\,,$$

with

$$g(\tau) := \inf_{f:\{p(f(\tau))=P_{max}\}} \frac{1}{2} \int_0^{\tau} ||L^{-1}(f'+Df-D\mu)||^2 dt.$$

## LDT: the optimization

$$g(\tau) := \inf_{f:\{p(f(\tau))=P_{max}\}} \frac{1}{2} \int_0^{\tau} ||L^{-1}(f'+Df-D\mu)||^2 dt.$$
 (1)

- 1. Necessary conditions: Euler–Lagrange
- 2. OU  $\Rightarrow$  f fullfills 2<sup>nd</sup> order ODEs
- 3. Assuming DC power flow

$$p(S^{\varepsilon}(\tau)) := v^{\mathsf{T}} S^{\varepsilon}(t) = P_{max}$$

then (1) becomes quadratic programming with 1 equality constraint.

Remains:

$$I^* = \inf_{\tau \le T} g(\tau).$$

# LDT based splitting technique

#### Importance function

$$h(t,x) = 1 - \frac{I^*(t,x)}{I^*(0,S(0))}.$$

#### Proxies for $I^*$

- Num. optimizing  $\tau$
- Assuming  $\tau_{opt} = T$
- Assuming fixed constant end point

