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W How reliable are modern power grids?

&)

Vo < V()| < Vinaxs at all nodes
11(t)| < Lngx at all connections



W Research aim

[Li and Billinton 1994]

Probability
Expected duration
Expected number
Expected size (KWh)

of power curtailments during a time interval



W Research aim

Compute reliability indices

[Li and Billinton 1994]

( Probability
Expected duration

Expected number
\ Expected size (kWh)

E[J] = -

of power curtailments during a time interval T,

given the distribution of S(t) of nodal power injections.



w Model

A grid with
* N nodes
M <N(N —1)/2 connections

[12(1)

T O—O

S3(t), V3(t)

Discrete time domain T = {0, ¢4, t,, ...,

Vectors of stochastic processes:

 nodal power injections {S(t),t € T} with values S(t) € CN
* nodal voltages {V(t),t € T} with values V(¢t) € CV
 connections currents {I(t),t € T} with values I(t) € CM



W Model

Power flow equations
For every t € T, solve the nonlinear algebraic system

[Grainger and Stevenson 1994]

b= ) ViIlYidIVidcos (O + i - &),
k

Q == ) IVII¥ulIVidlsin(Oy + 8 — ),
k

for all V; = |Vj|e181', given admittances Yix = |ij|ei91"<, P = Re{Sj},

Ohm’s law = connection currents I;x



W Crude Monte Carlo is inefficient

Event C = {a curtailment during 7'} is rare!

1
1
ﬁz 1(¢in sample i} for P(C).

i=1
Relative variance

Var B, 1-P(C)
P(C)2  nP(C)

as P(C) - 0.

[#CMC samples] x [# time steps] x [duration power flow solver| =

LONG!



W Splitting technique to estimate IP(C)

[L'Ecuyer et al. 2006], [Garvels 2000]

Decompose P(C) =[IP(Ty, <T|Ty-1 <T),
with Ty == min{t € T: h(X(t)) = I},
importance function  h:RMN*tM o R,

and X(t) = [[V@®)I, [1(t)|] € RV+M,

Unbiased splitting estimator: /; ///////////ni{%;é /é iél},tfs/é 57/////////




W Controlling the estimator accuracy

[Amrein and Kiinsch 2011]

Ideal setting: P is work-normalized asymptotically efficient:

Var P (logP(C))?
P(C)? - n

If conditional probabilities do not depend on the entrance states

Var P r, — 1 3 ;
< -1+ ‘ ‘ , g
IP)(C)Z T'k—z :

s ‘
with 7, the (fixed) number ?:él /\/

of successes at level k.




W Importance function

X;(t) — L
U, — L

h(X(t)) = mj_ax

1 - Vmin Vmax Imax
. . 113 < Imax
\4 | i |
()—)
O _

Vmin < V3 < Vmax



W Other grid reliability indices

[Wadman, Crommelin and Frank 2013]

We decompose | [ Raesvense 72
E/] = P(C) EJ|C] . f/\/

Estimate E[/]by PJ¢, with

o= g T, foT
ndaj=1' !

Again, we control the accuracy:

Var PJ¢  VarP . Var J¢ . Var P VarJ¢
E[JI?  P(C)? E[IC]?  P(C)?E[|C]?




w Workload decreases dramatically

Required samples for a 95% CI

250,000
y Factor 80
smaller!
3075

Crude Monte Splitting
Carlo technique




W LDT: Large Devations Theory

Vector of N SDEs
dS€(t) = b(Sé(t))dt + sLdW (¢t), e>0

Good rate function

T
1) =3 [ 117G =~ bylPa
0

Rare event...

P{3t < T:p(S%(7)) = Pnax!



W LDT: Large Devations Theory

Vector of N SDEs
dS€(t) = b(Sé(t))dt + sLdW (¢t), e>0

Good rate function

T
1) =3 [ 117G =~ bylPa
0

Rare event...

léj{g —elogP{ATt < T:p(S%(1)) = Pyax} = I(f) =1"

in
f{31<T:p(f (t))=Pmax}

... has approximation
P{37 < T:p(S°(1)) = Bpax} ~ e~



W LDT: finding critical connections

Compute decay rate I for all connections
SDEs Ornstein-Uhlenbeck:

dSé(t) = D(u — Se(t))dt + eLdW (t).

Then
I* = inf ~[NL™Y(f" + Df — Dp)||*dt
- (m)) b )2 f IL~*(f" + Df — Du)l|
= Info®.
with
7): = inf f IL=Y(f' + Df — Du)l|*dt.
g( ) f{p(f(f))— max}2 f f H



W LDT: the optimization

. — -1 2
g@y=  nf j ILX(F" + Df — Dwl2de. (1)

1. Necessary conditions: Euler—Lagrange
2. OU = f fullfills 2" order ODEs
3. Assuming DC power flow

p(5€(7)): = VTSS(t) = Bnax

then (1) becomes quadratic programming with 1 equality constraint.

Remains:

*

inf g(7).

T<T



w LDT based splitting technique

Importance function

Proxies for I*

* Num. optimizing t

* Assuming 7y, =T

« Assuming fixed
constant end point




