

High order schemes for HJB equations

Xavier Warin

Time dependan HJB

- Problem and hypothesis Semi lagrangian space continuou
- Convergence with spatial discretization
- Numerical considerations
- Numerical results

Stationary HJB

Problem Definitions and hypothesis Convergence results Application Numerical results

High order schemes for HJB equations FIME

Xavier Warin

EDF R&D & FiME, Laboratoire de Finance des Marchés de l'Energie (www.fime-lab.org)

December 2013

Schedule

High order schemes for HJB equations

Xavier Warin

Time dependant HJB

Problem and hypothesis Semi lagrangian space continuou results

Convergence with spatial discretization

Numerical considerations Numerical

results

Stationary HJB

Problem Definitions and hypothesis Convergence results Application Numerical results

Time dependant HJB

- Problem and hypothesis
- Semi lagrangian space continuous results
- Convergence with spatial discretization
- Numerical considerations
- Numerical results

2 Stationary HJB

- Problem
- Definitions and hypothesis
- Convergence results
- Application
- Numerical results

Problem

High order schemes for HJB equations

Xavier Warin

Time dependan[:] HJB

Problem and hypothesis

Semi lagrangian space continuous results

with spatial discretization

considerations

Numerical results

Stationary HJB

Problem Definitions and hypothesis Convergence results Application Numerical results

$$\frac{\partial v}{\partial t}(t,x) - \inf_{a \in A} \left(\frac{1}{2} tr(\sigma_a(t,x)\sigma_a(t,x)^T D^2 v(t,x)) + b_a(t,x) Dv(t,x) + c_a(t,x)v(t,x) + f_a(t,x) \right) = 0 \text{ in } Q$$
$$v(0,x) = g(x) \text{ in } \mathbf{R}^d$$
(1)

where

• $Q:=(0,\,T] imes {f R}^d$, A complete metric space,

- $\sigma_a(t,x)$ is a $d \times q$ matrix,
- b_a and f_a coefficients functions defined on Q in \mathbf{R}^d and R.

HJB associated to a controled process with W_s a q D brownian motion:

$$dX_s^{t,x} = b_a(s, X_s^{t,x})dt + \sigma_a(t, X_s^{t,x})dW_s$$
(2)

Notation and hypothesis

High order schemes for HJB equations

Xavier Warin

Time dependant HJB

Problem and hypothesis

Semi lagrangian space continuous results

Convergence with spatial discretization

Numerical considerations

Numerical results

Stationary HJB

Problem Definitions and hypothesis Convergence results Application Numerical results

$$|w|_{0} = \sup_{(t,x)\in Q} |w(t,x)|, \qquad [w]_{1} = \sup_{(s,x)\neq (t,y)} \frac{|w(s,x) - w(t,y)|}{|x-y| + |t-s|^{\frac{1}{2}}}$$
$$|w|_{1} = |w|_{0} + [w]_{1}$$

 $C_1(Q)$ space space of functions with a finite $| |_1$ norm. Classical assumption :

$$\sup_{a} |g|_{1} + |\sigma_{a}|_{1} + |b_{a}|_{1} + |f_{a}|_{1} + |c_{a}|_{1} \le \hat{K}$$
(3)

Proposition

Classical spaces :

If the coefficients of the equation 1 satisfy 3, there exists an unique viscosity solution of the equation 1 belonging to $C_1(Q)$. If u_1 and u_2 are respectively sub and supersolution of equation 1 satisfying $u_1(0,.) \le u_2(0,.)$ then $u_1 \le u_2$.

Monotone scheme consideration

High order schemes for HJB equations

Xavier Warin

Time dependant HJB

Problem and hypothesis

Semi lagrangian space continuous results

Convergence with spatial discretization

Numerical considerations

Numerical results

Stationary HJB

Problem Definitions and hypothesis Convergence results Application Numerical results

- Monotone Scheme (Barles Souganidis framework [1]) converge to viscosity solution.
 - Non monotone scheme may not converge [3] or converge to bad solution
- If $D_a = \sigma_a(t, x)\sigma_a(t, x)^T$ not diagonally dominant no classical Finite Difference Method is monotone,

Barles Souganidis for PDE

High order schemes for HJB equations

Xavier Warin

Time dependant HJB

Problem and hypothesis

Semi lagrangian space continuous results

with spatial discretization

Numerical considerations

Numerical results

Stationary HJB

Problem Definitions and hypothesis Convergence results Application Numerical results

$$\frac{\partial v}{\partial t}(t,x) + F(t,x,v(t,x),Dv(t,x),D^2v(t,x)) = 0 \text{ in } Q$$
$$v(0,x) = g(x) \text{ in } \mathbf{R}^d \qquad (4)$$

where F elliptic

Parabolic equation

$$F(t, x, u, p, A) \le F(t, x, u, p, B) \text{ if } A \ge B$$
(5)

In our problem

$$F(t, x, u, p, A) = -\inf_{a \in A} (\frac{1}{2} tr(D_a A) + b_a(t, x)p + (6))$$

$$c_a(t, x)u(t, x) + f_a(t, x))$$
(7)

Barles Souganidis for PDE

High order schemes for HJB equations

Xavier Warin

Time dependant HJB

Problem and hypothesis

- Semi lagrangian space continuous results
- with spatial discretization
- Numerical considerations
- Numerical results

Stationary HJB

Problem Definitions and hypothesis Convergence results Application Numerical results

The Scheme

$$S(h, t, x, v_h(t, x), [v_h]_{t,x}) = 0, (t, x) \in X_h$$

$$v_h(0, x) = g(x), x \in X_h \cup \{t = 0\}$$
(8)
(9)

- A grid $h = (\Delta t, \Delta x)$ and $X_h = \Delta t \{0, 1..., N_T\} \times \Delta x Z^d$,
- v_h approximation of v, $[v_h]_{t,x}$ values at other points than (t,x)

Barles Souganidis for PDE

High order schemes for HJB equations

Xavier Warin

Time dependant HJB

Problem and hypothesis

Semi lagrangian space continuous results

Convergence with spatial discretization

Numerical considerations

Numerical results

Stationary HJB

Problem Definitions and hypothesis Convergence results Application Numerical results

- Suppose the scheme monotone : if $u \le v$ $S(h, t, x, r, u) \ge S(h, t, x, r, v)$ (10)
- Suppose it is consistent : ϕ smooth, when h goes to 0, $|S(h, t, x, \phi(t, x), [\phi]_{t,x}) - \phi_t - F(t, x, \phi, D\phi, D^2\phi)| \longrightarrow 0$
- Stable v_h uniformly bounded in h

Then v_h converge to viscosity solution of 4

An example of monotone scheme : the implicit scheme for heat equation

High order schemes for HJB equations

Xavier Warin

Time dependant HJB

Problem and hypothesis

Semi lagrangian space continuous results

with spatial discretization

Numerical considerations

Numerical results

Stationary HJB

Problem Definitions and hypothesis Convergence results Application Numerical results

$$v_t - D^2 v = 0 \text{ in }]0, T] \times \mathbf{R}$$
 (11)
 $v(0, x) = g(x)$ (12)

The implicit scheme

$$\frac{v_i^{n+1} - v_i^n}{\Delta t} = \frac{v_{i+1}^{n+1} + v_{i-1}^{n+1} - 2v_i^{n+1}}{\Delta x^2}$$
(13)

$$S(\Delta t, \Delta x, (n+1)\Delta t, i\Delta x, u_i^{n+1}, [u_{i-1}^{n+1}, u_i^n, u_{i+1}^{n+1}]) =$$
(14)

$$u_i^{n+1}\left(\frac{1}{\Delta t} + \frac{2}{\Delta x^2}\right) - \frac{u_i}{\Delta t} - \frac{u_{i-1}}{\Delta x^2} - \frac{u_{i+1}}{\Delta x^2}$$
(15)

Decreasing in u_{i-1}^{n+1} , u_{i+1}^{n+1} and u_i^n

High order schemes for HJB equations

Xavier Warin

Time dependant HJB

Problem and hypothesis

Semi lagrangian space continuous results

Convergence with spatial discretization

Numerical considerations

Numerical results

Stationary HJB

Problem Definitions and hypothesis Convergence results Application Numerical results Currently used monotone scheme relying on Barles Souganidis:

- Generalized finite differences by Bonnans Zidani [2] : take non adjacent point to approximate finite difference such that the approximation is monotone. Not too costly in 2D.
- Monte Carlo techniques and the resolution of a Second Order Backward Stochastic Differential Equation. See Fahim, Touzi, Warin [4], Tan [5] for non linear problem,
- Semi Lagrangian methods developed by Camilli Falcone
 [6], generalized by Munos Zidani [7], Debrabant Jakobsen
 [8] with linear interpolation. Easy to implement.

1D example of Semi Lagrangian scheme

Using developpment of ϕ

schemes for HJB equations Xavier Warin

High order

Time dependant HJB

Problem and hypothesis

Semi lagrangian space continuous results

Convergence with spatial discretization

Numerical considerations

results

Stationary HJB

Problem Definitions and hypothesis Convergence results Application Numerical results

$$\begin{split} \phi(x + b_{a}h + \sigma_{a}\sqrt{h}) &= \phi(x) + b_{a}D\phi(x) + \sqrt{h}\sigma_{a}D\phi + \frac{\sigma_{a}^{2}h}{2}D^{2}\phi + \frac{\sigma_{a}^{2}h^{3/2}}{6}D^{3}\phi + O(h^{2})\\ \phi(x + b_{a}h - \sigma_{a}\sqrt{h}) &= \phi(x) + b_{a}D\phi(x) - \sqrt{h}\sigma_{a}D\phi + \frac{\sigma_{a}^{2}h}{2}D^{2}\phi - \frac{\sigma_{a}^{2}h^{3/2}}{6}D^{3}\phi + O(h^{2}) \end{split}$$

So

$$(\phi(x+b_ah+\sigma_a\sqrt{h})+\phi(x+b_ah-\sigma_a\sqrt{h})-2\phi(x))\simeq 2b_aD\phi(x)+\sigma_a^2D^2\phi+O(h^2)$$

And use explicit scheme

$$\begin{array}{lll} v(t+h,x) & = & v(t,x) + \inf_{a \in A} \frac{1}{2} (v(t,\phi_{a,h}^+(t,x)) + v(t,\phi_{a,h}^-(t,x)) - 2v(t,x)) + \\ & & hc_a(t,x)v(t,x) + hf_a(t,x) \\ \phi_{a,h}^+(t,x) & = & x + b_a(t,x)h + \sigma_a(t,x)\sqrt{h} \\ \phi_{a,h}^-(t,x) & = & x + b_a(t,x)h - \sigma_a(t,x)\sqrt{h} \end{array}$$

Remark on the scheme

High order schemes for HJB equations

Xavier Warin

Time dependant HJB

Problem and hypothesis

Semi lagrangian space continuous results

Convergence with spatial discretization

Numerical considerations

Numerical results

Stationary HJB

Problem Definitions and hypothesis Convergence results Application Numerical results

- Either a finite difference scheme,
- A characteristic method with an explicit Euler Scheme discretization where brownian discretized with binomial :

$$X_{t+h}^{t,x,\pm} = x + b_{a}(s,x)h \pm \sigma_{a}(t,x)\sqrt{h}$$

So

$$\begin{split} \phi(t+h,x) &= \mathbb{E}(\phi(X_{t+h}^{t,x,+})) + hc_a(t,x)\phi(t,x) + hf_a(t,x) \\ &\simeq \mathbb{E}(e^{c_a(t,x)h}\phi(X_{t+h}^{t,x})) + hf_a(t,x) \end{split}$$

High order schemes for HJB equations

D dimensional version

$$v(t+h,x) = v(t,x) + \inf_{a \in A} L_{a,h}(v)(t,x)$$

with

$$\begin{split} \mathcal{L}_{a,h}(v)(t,x) &= \sum_{i=1}^{q} \frac{1}{2q} (v(t,\phi_{a,h,i}^{+}(t,x)) + v(t,\phi_{a,h,i}^{-}(t,x)) - 2v(t,x)) + hc_{a}(t,x)v(t,x) \\ &+ hf_{a}(t,x) \\ \phi_{a,h,i}^{+}(t,x) &= x + b_{a}(t,x)h + (\sigma_{a})_{i}(t,x)\sqrt{hq} \\ \phi_{a,h,i}^{-}(t,x) &= x + b_{a}(t,x)h - (\sigma_{a})_{i}(t,x)\sqrt{hq} \end{split}$$

where $(\sigma_a)_i$ column *i* of σ_a And initialize

$$v(t,x)=(1-\frac{t}{h})g(x)+\frac{t}{h}v(h,x),\forall t\in[0,h].$$

dependan HJB

> Problem and hypothesis

Semi lagrangian space continuous results

Convergence with spatial discretization

Numerical consideration

Numerical results

Stationary HJB

Problem Definitions and hypothesis Convergence results Application Numerical results

Convergence for time discretization (Debrabant-Jakobsen 2013), Camilli Falcone

High order schemes for HJB equations

Xavier Warin

Proposition

Time dependant HJB

Problem and hypothesis

Semi lagrangian space continuous results

Convergence with spatial discretization

Numerical considerations

Numerical results

Stationary HJB

Problem Definitions and hypothesis Convergence results Application Numerical results The solution v_h of previous equations is uniquely defined and belongs to $C^1(Q)$. We check that if $h \leq (16 \sup_a \{ |\sigma_a|_1^2 + |b_a|_1^2 + 1 \} \land 2 \sup_a |c_a^+|_0)^{-1}$, there exists C such that

$$|v - v_h|_0 \le Ch^{\frac{1}{4}} \tag{16}$$

Moreover, there exists C independent of h such that

$$|v_h|_0 \leq C \tag{17}$$

$$|v_h(t,x)-v_h(t,y)| \leq C|x-y|, \forall (x,y) \in Q^2$$
 (18)

Spatial discretization

High order schemes for HJB equations

Xavier Warin

Time dependan HJB

Problem and hypothesis Semi lagrangian space continuou results

Convergence with spatial discretization

Numerical considerations

Numerical results

Stationary HJB

Problem Definitions and hypothesis Convergence results Application Numerical results

• Meshe
$$(i_1 \Delta x, ..., i_d \Delta x)$$
, $\overline{i} = (i_1, ..., i_d) \in \mathbf{Z}^d$ coordinate of $M_{\overline{i}}$

• For a grid $(\xi_i)_{i=0,..N} \in [-1,1]^N$, $y_{\tilde{i},\tilde{j}}$ point of $M_{\tilde{i}}$ with coordinate $(\Delta x(i_1 + 0.5(1 + \xi_{j_1})), ..., \Delta x(i_d + 0.5(1 + \xi_{j_d}))$ and $\tilde{j} = (j_1, ..., j_d) \in [0, N]^d$

Figure : Discretization grids in 2D

Approximation operator

High order schemes for HJB equations

Xavier Warin

Time dependant HJB

Problem and hypothesis Semi lagrangian space continuou results

Convergence with spatial discretization

Numerical considerations

Numerical results

Stationary HJB

Problem Definitions and hypothesis Convergence results Application Numerical results For v in $C(\mathbf{R}^d)$, $T_{h,\Delta x,N}((v^{\bar{i},\tilde{j}})_{\bar{i},\tilde{j}})$ function $C(\mathbf{R}^d)$ constructed from the set $(v^{\bar{i},\tilde{j}})_{\bar{i},\tilde{j}}$ and defining an approximation of v in $C(\mathbf{R}^d)$.

Remark

Example : N = 1, $\xi_0 = -1$, $\xi_1 = 1$, take $T_{h,\Delta x,1}$ as the linear interpolator

General Scheme

High order schemes for HJB equations

Xavier Warin

Time dependant HJB

Problem and hypothesis Semi lagrangian space continuou results

Convergence with spatial discretization

Numerical considerations

Numerical results

Stationary HJB

Problem Definitions and hypothesis Convergence results Application Numerical results

Approximation of the function needed to evaluate

$$v(y_{\tilde{i},\tilde{j}} + b_a h \pm \sigma_a \sqrt{h}) \tag{19}$$

Use $T_{h,\Delta x,N}$

$$egin{array}{ll} v^{ar{i},ar{j}}_{h,\Delta imes,N}(t+h) &=& v^{ar{i},ar{j}}_{h,\Delta imes,N}(t)+\inf_{a\in \mathcal{A}}\left[\hat{L}_{a,h}(t,y_{ar{i},ar{j}})
ight] \end{array}$$

$$\begin{split} \hat{L}_{a,h}(t,y_{\tilde{i},\tilde{j}}) &= \sum_{i=1}^{q} \frac{1}{2q} (T_{h,\Delta x,N}((v_{h,\Delta x,N}^{\tilde{k},\tilde{l}}(t))_{\tilde{k},\tilde{l}}))(\phi_{a,h,i}^{+}(t,x)) + \\ & T_{h,\Delta x,N}((v_{h,\Delta x,N}^{\tilde{k},\tilde{l}}(t))_{\tilde{k},\tilde{l}}))(\phi_{a,h,i}^{-}(t,x)) - \\ & 2v(t,y_{\tilde{i},\tilde{j}})) + hc_{a}(t,y_{\tilde{i},\tilde{j}})v(t,y_{\tilde{i},\tilde{j}}) + hf_{a}(t,y_{\tilde{i},\tilde{j}}) \end{split}$$

Linear interpolation between 0 and h once $v_{h,\Delta x,N}^{\bar{i},\tilde{j}}(h)$ calculated

How to choose $T_{h,\Delta x,N}$?

High order schemes for HJB equations

Xavier Warin

- Time dependant HJB
- Problem and hypothesis Semi lagrangian space continuous results
- Convergence with spatial discretization
- Numerical considerations
- Numerical results

Stationary HJB

Problem Definitions and hypothesis Convergence results Application Numerical results

- N = 1, linear interpolator, defines a monotone scheme,
- N > 1 want to use a high degree approximation on each mesh (Spline , Lagrange)

High order schemes for HJB equations

Xavier Warin

Time dependant HJB

Problem and hypothesis Semi lagrangian space continuou results

Convergence with spatial discretization

Numerical considerations

Numerical results

Stationary HJB

Problem Definitions and hypothesis Convergence results Application Numerical results

Assumption

Suppose $T_{h,\Delta \times,N}$ is from $C_0(Q)$ to $C_0(Q)$, that there exists a function of $h \ \tilde{K}_h \xrightarrow{h \longrightarrow 0} 0$ s.t. for $x \in M_{\bar{i}}$

$$(T_{h,\Delta x,N}f)(x) = \sum_{\tilde{i}} (w^h_{\tilde{i},\tilde{j}}(f))(x)f(y_{\tilde{i},\tilde{j}})$$
(20)

$$0 \leq (1 - ilde{K}_h h) \leq \sum_{ ilde{j}} (w^h_{ ilde{l}, ilde{j}}(f))(x) \leq 1 + ilde{K}_h h$$
 (21)

and functions $w_{\overline{i},\overline{j}}^{h}(f)$ positive weights functions depending on f, h and the support $M_{\overline{i}}$.

Convergence result

Theorem

High order schemes for HJB equations

Xavier Warin

Time dependant HJB

Problem and hypothesis Semi lagrangian space continuous results

Convergence with spatial discretization

Numerical considerations

Numerical results

Stationary HJB

Problem Definitions and hypothesis Convergence results Application Numerical results Suppose $T_{h,\Delta x,N}$ satisfies previous assumptions, $(h_p, \Delta x_p) \longrightarrow (0,0)$ such that $\frac{\Delta x_p}{h_p} \longrightarrow 0$, $h_p \leq \min(\frac{1}{\theta \hat{K}}, 1)$. $\tilde{v}_{h_p,\Delta x_p,N}(t) = T_{h,\Delta x,N}((v_{h,\Delta x,N}^{\tilde{i},\tilde{j}}(t))_{(\tilde{i},\tilde{j})})$ converges to the viscosity solution of HJB. There exists C independent on h_p , $N, \Delta x_p$ s.t. for h_p small enough

$$|\tilde{v}_{h_p,\Delta x,N}-v|_0 \leq C(h_p^{\frac{1}{4}}+\frac{\Delta x_p}{h_p}+\tilde{K}_{h_p})$$
(22)

When linear interpolation $w_{i,\tilde{j}}^{h}(f)$ independant of f. Can we build other approximations ?

Truncated Lagrange interpolators

High order schemes for HJB equations

Xavier Warin

Time dependant HJB

Problem and hypothesis Semi lagrangian space continuou results

Convergence with spatial discretization

Numerical considerations

Numerical results

Stationary HJB

Problem Definitions and hypothesis Convergence results Application Numerical results

- 1D Lagrange interpolator $I_{\Delta \times,N}^X$ with quadrature points $X = (\xi_i)_{i=0,N} \in [-1,1]^{N+1}$ given.
- $|I_{\Delta \times, N}^{X}(v)|_{\infty} \leq (1 + \lambda_{N}(X))|v|_{\infty}$ with $\lambda_{N}(X)$ Lebesgue constant associated to X.
 - Runge effect associated to equidistant points :

• So use polynomial interpolator associated to Gauss Lobatto Legendre or Gauss Lobatto Chebyshev grid.

Truncated Lagrange interpolators (nD)

High order schemes for HJB equations

Xavier Warin

Time dependant HJB

Problem and hypothesis Semi lagrangian space continuous results

Convergence with spatial discretization

Numerical considerations

Numerical results

Stationary HJB

Problem Definitions and hypothesis Convergence results Application Numerical results $\underline{v}_{\overline{i}} = \min_{\widetilde{j}} v(y_{\overline{i},\widetilde{j}})$ $\overline{v}_{\overline{i}} = \max_{\widetilde{i}} v(y_{\overline{i},\widetilde{j}})$

$$\hat{I}^X_{h, ilde{K}_h,\Delta imes,N}(v) ~=~ (\underline{v}_{ar{i}} - ilde{K}_h h | \underline{v}_{ar{i}} |) ee I^X_{\Delta X,N}(v) \wedge (ar{v}_{ar{i}} + ilde{K}_h h | ar{v}_{ar{i}} |)$$

Proposition

Define

The interpolator $\hat{l}_{h,\tilde{K}_h,\Delta\times,N}^{\chi}$ satisfies the previous assumptions s.t. $\tilde{v}_{h,\Delta\times,N}$ converges to the viscosity solution.

$$||v- ilde{v}_{h,\Delta x,N}||_{\infty} \leq O(h^{rac{1}{4}})+O(rac{\Delta x}{h})+O(\mathcal{K}_h)$$

Truncated Lagrange interpolators (nD)

High order schemes for HJB equations

Xavier Warin

Time dependant HJB

Problem and hypothesis Semi lagrangian space continuou

Convergence with spatial discretization

Numerical considerations

Numerical results

Stationary HJB

Problem Definitions and hypothesis Convergence results Application Numerical results

Proposition

Consistency error is at worst $O(h + \frac{\Delta x^2}{h})$ and at best in $O(h + \frac{\Delta x^{N+1}}{h})$

Remark

- Convergence result not better than linear (should take $\Delta x = h^{5/4}$)
- We expect truncature to be limited to non smooth area as we refine
 - Consistency equal to consistency of linear interpolator when truncature,
 - Consistency of high order schemes when no troncature

Truncated cubic spline

High order schemes for HJB equations

Xavier Warin

Time dependant HJB

Problem and hypothesis Semi lagrangian space continuous results

Convergence with spatial discretization

Numerical considerations

Numerical results

Stationary HJB

Problem Definitions and hypothesis Convergence results Application Numerical results In 1D y_{i,j} with i the mesh number and j = 0 or 1 corresponding to the left or right part of the mesh.
 y_{i,1} = y_{i+1,0}. Use three successive points

• in ND, spline in first dimension, then spline on the coefficients in second dimension etc....

Truncated cubic spline

High order schemes for HJB equations

Xavier Warin

Time dependant HJB

Problem and hypothesis Semi lagrangian space continuous results

Convergence with spatial discretization

Numerical considerations

Numerical results

Stationary HJB

Problem Definitions and hypothesis Convergence results Application Numerical results • $I_{\Delta x,2}^{X_c}$ cubic spline interpolator,

• Truncated interpolator:

$$\hat{I}_{h, \tilde{k}_h, \Delta x}^{X_c}(v) \;\;=\;\; (\underline{v}_{\overline{i}} - ilde{K}_h h | \underline{v}_{\overline{i}} |) \lor I_{\Delta x, 2}^{X_c}(v) \land (ar{v}_{\overline{i}} + ilde{K}_h h | ar{v}_{\overline{i}} |)$$

Proposition

The consistency error (Cubic Spline) is at worst in $O(h + \frac{\Delta x^2}{h})$ and at best in $O(h + \frac{\Delta x^4}{h})$.

Proposition

 $\tilde{v}_{h,\Delta x,1}$ obtained by the interpolator $\hat{l}_{h,\tilde{k}_h,\Delta x}^{X_c}$ converge to the viscosity solution v

$$||v - \widetilde{v}_{h,\Delta imes,1}||_{\infty} \leq O(h^{rac{1}{4}}) + O(rac{\Delta x}{h}) + O(K_h)$$

Approximation with Bernstein polynomials

High order schemes for HJB equations

Xavier Warin

Time dependant HJB

Problem and hypothesis Semi lagrangian space continuous results

Convergence with spatial discretization

Numerical considerations

Numerical results

Stationary HJB

Problem Definitions and hypothesis Convergence results Application Numerical results

- Not an interpolation
- Definition in 1D

$$B_N(f)(x) = \sum_{i=0}^N f(\frac{i}{N}) P_{N,i}(x)$$

$$P_{N,i} = \binom{N}{i} x^{i} (1-x)^{N-1}$$

- Positive weights, independant of the function so monotone approximation
- Define by tensorization in ND

Convergence property of Bernstein approximation

High order schemes for HJB equations

Xavier Warin

Time dependant HJB

Problem and hypothesis Semi lagrangian space continuou results

Convergence with spatial discretization

Numerical considerations

Numerical results

Stationary HJB

Problem Definitions and hypothesis Convergence results Application Numerical results

$$|f(x_1,..,x_d) - B_{N,..,N}(f)(x_1,..,x_d)| \le \frac{C}{N} \sum_{i}^{d} |\frac{\partial^2 f}{\partial x_i^2}(x_1,..,x_d)|$$

S

Result for Bernstein

High order schemes for HJB equations

Xavier Warin

Time dependant HJB

Problem and hypothesis Semi lagrangian space continuou results

Convergence with spatial discretization

Numerical considerations

Numerical results

Stationary HJB

Problem Definitions and hypothesis Convergence results Application Numerical results

Proposition

 $\tilde{v}_{h,\Delta x,N}$ converges to the viscosity solution

$$||v - \tilde{v}_{h,\Delta x,N}||_{\infty} \leq O(h^{\frac{1}{4}}) + O(\frac{\Delta x}{h})$$

consistency error of order $O(h + \frac{\Delta x^2}{Nh})$.

Boundary conditions

High order schemes for HJB equations

Xavier Warin

Time dependan[:] HJB

Problem and hypothesis Semi lagrangian space continuou results

Convergence with spatial discretization

Numerical considerations

Numerical results

Stationary HJB

Problem Definitions and hypothesis Convergence results Application Numerical results

- $x + bh \pm \sqrt{h}\sigma$ can lead us outside of domain,
- avoid extrapolation when possible
- modify the scheme if possible to respect 'mean' and 'variance'
 - initial scheme $dX^+ = dX^- = \sigma\sqrt{h}$ with $P^- = P^+ = \frac{1}{2}$.
 - modified scheme : try to find dX^+ , dX^- , P^+ , P^- s.t.

$$dX^+ dX^- = \sigma^2 h$$

$$P^+ = \frac{\sigma^2 h}{(dX^+)^2 + \sigma^2 h}$$

$$P^- = \frac{(dX^+)^2}{(dX^+)^2 + \sigma^2 h}$$

Modification of the scheme for boundary conditions

Parallelization techniques

High order schemes for HJB equations

- Xavier Warin
- Time dependant HJB
- Problem and hypothesis Semi lagrangian space continuous results
- Convergence with spatial discretization

Numerical considerations

- Numerical results
- Stationary HJB
- Problem Definitions and hypothesis Convergence results Application Numerical results

- each processor computes at time tⁿ a part of the discretization grid;
- communication needed at date t^{n+1} .

A first case without control

High order schemes for HJB equations

Xavier Warin

Time dependant HJB

- Problem and hypothesis Semi lagrangian space continuous results
- Convergence with spatial discretization

Numerical considerations

Numerical results

Stationary HJB

Problem Definitions and hypothesis Convergence results Application Numerical results

$$\begin{array}{rcl} f_a(t,x) &=& sinx_1 sinx_2((1+2\beta)(2-t)-1) \\ && -2(2-t) cosx_1 cosx_2 sin(x_1+x_2) cos(x_1+x_2) \\ c_a(t,x) &=& 0, \quad b_a(t,x) = 0 \quad \sigma_a(t,x) = \sqrt{2} \left(\begin{array}{c} sin(x_1+x_2) & \beta & 0 \\ cos(x_1+x_2) & 0 & \beta \end{array} \right) \end{array}$$

•
$$\beta = 0.1$$
 , $Q = (0,1] \times [-2\pi,2\pi]^2$.

- Number of time steps 2000.
- Solution u(t, x) = (2 t)sinx1sinx2

	LINEAR					CUBIC			MPCSL				TCHEB 3			
ſ	NbM	Err	Rate	Time	NbM	Err	Rate	Time	NbM	Err	Rate	Time	NPW	Err	Rate	Time
ſ	240	0.310		112	20	0.461		2	20	0.815		3	10	0.888		6
	480	0.119	1.37	448	40	0.037	3.61	10	40	0.166	2.28	10	20	0.165	2.42	31
	960	0.040	1.57	1815	80	0.005	2.88	41	80	0.007	4.55	42	40	0.0086	4.25	133
1	1920	0.0075	2.40	7334	160	0.0005	3.16	165	160	0.0005	3.61	170	80	0.00108	3.004	552
	LEGEND 2				LEGEND 3				BERN 2				BERN 3			
ſ	NbM	Err	Rate	Time	NbM	Err	Rate	Time	NbM	Err	Rate	Time	NPW	Err	Rate	Time
1	10	0.86		1	10	0.877		5	120	0.643		718	120	0.5528		2811
	20	0.059	3.85	6	20	0.165	2.40	21	240	0.227	1.50	2878	240	0.1784	1.631	11292
	40	0.0069	3.0	25	40	0.0085	4.27	92	480	0.077	1.55	11551	480	0.0557	1.678	45446
L	80	0.0010	2.70	104	80	0.00107	2.99	380	980	0.021	1.84	46467	960	0.01532	1.86239	181897

Non regular case without control

High order schemes for HJB equations

Xavier Warin

Time dependant HJB

Problem and hypothesis Semi lagrangian space continuou results

Convergence with spatial discretization

Numerical considerations

Numerical results

Stationary HJB

Problem Definitions and hypothesis Convergence results Application Numerical results

$$u(t,x) = (1+t)sin(\frac{x_2}{2}) \begin{cases} sin\frac{x_1}{2} & pour -2\pi < x_1 < 0\\ sin\frac{x_1}{4} & pour 0 < x_1 < 2\pi \end{cases}$$

with

$$\begin{split} f_a(t,x) &= & \sin \frac{x_2}{2} \left\{ \begin{array}{l} \sin \frac{x_1}{2} \left(1 + \frac{1+t}{4}\right) (\sin^2 x_1 + \sin^2 x_2) & \text{for } -2\pi < x_1 < 0 \\ \sin \frac{x_1}{4} \left(1 + \frac{1+t}{16}\right) (\sin^2 x_1 + 4\sin^2 x_2) & \text{for } 0 < x_1 < 2\pi \end{array} \right. \\ & \left. - \sin x_1 \sin x_2 \cos \frac{x_2}{2} \left\{ \begin{array}{l} \frac{1+t}{4} \cos \frac{x_1}{4} & \text{for } 0 < x_1 < 2\pi \end{array} \right. \\ \left. \frac{1+t}{4} \cos \frac{x_1}{4} & \text{for } 0 < x_1 < 2\pi \end{array} \right. \right\} \\ c_a(t,x) &= & 0, \quad b_a(t,x) = 0 \quad \sigma_a(t,x) = \sqrt{2} \left(\begin{array}{l} \sin x_1 \\ \sin x_2 \end{array} \right) \end{split}$$

On take $Q = (0,1] \times [-2\pi,2\pi]^2$, the number of time step is equal to 2000.

Table : Test case 2

	LINE	AR		CUBIC				MPCSL				TCHEB 3			
NbM	Err	Rate	Time	NbM	Err	Rate	Time	NbM	Err	Rate	Time	NbM	Err	Rate	Time
640	0.038	1.858	557	80	0.00875		17	80	0.00875		18	10	0.290		3
1280	0.013	1.481	2240	160	0.00439	0.994	70	160	0.00439	0.994	72	20	0.0136	4.41	12
2560	0.0070	0.89	8662	320	0.00220	0.998	285	320	0.00220	0.998	288	40	0.00398	1.77	51
5120	0.0035	0.998	34820	640	0.00110	0.999	1177	640	0.00110	0.999	1221	80	0.00128	1.63	212
LEGEND 2				LEGEND 3				BERN 2				BERN 3			
NbM	Err	Rate	Time	NbM	Err	Rate	Time	NbM	Err	Rate	Time	NbM	Err	Rate	Time
10	0.0593		1	10	0.2859		2	80	0.3774		112	80	0.3144		429
20	0.01422	2.06	2	20	0.0137	4.378	9	160	0.1889	0.998	448	160	0.135	1.21	1734
40	0.00411	1.788	11	40	0.0040	1.780	39	320	0.066	1.513	1794	320	0.0460	1.557	6937
80	0.00132	1.63	46	80	0.00129	1.629	160	640	0.0186	1.82	7197	640	0.0128	1.837	27892

Control problem

Solution

$$u(t, x_1, x_2) = (\frac{3}{2} - t) sinx_1 sinx_2$$

HJB equations Xavier Warin

High order schemes for

Time dependan HJB

Problem and hypothesis Semi lagrangian space continuou results

Convergence with spatial discretization

Numerical consideration:

Numerical results

Stationary HJB

Problem Definitions and hypothesis Convergence results Application Numerical results Coefficients are given by

 $Q=(0,1] imes [-\pi,\pi]^2$, number of time step 1000, number of control 4000. CPU time for 192 cores.

Table : Test case 3

	LIN	EAR		CUBIC			MPCSL				TCHEB 3					
NbM	Err	Rate	Time	NbM	Err	Rate	Time	NbM	Err	Rate	Time	NbM	Err	Rate	Time	
80	0.59		237	10	0.312		19	10	0.688		30	4	0.671		27	
160	0.147	2.00	850	20	0.0499	2.64	30	20	0.050	3.773	29	8	0.0986	2.767	47	
320	0.044	1.738	3334	40	0.0072	2.79	96	40	0.0064	2.97	98	16	0.0119	3.046	184	
640	0.014	1.659	13259	80	0.001	2.85	384	80	0.001	2.57	387	32	0.00122	3.28	735	
	LEGEND 2				LEGEND 3				BERN 2				BERN 3			
NbM	Err	Rate	Time	NPW	Err	Rate	Time	NPW	Err	Rate	Time	NPW	Err	Rate	Time	
4	0.632		6	4	0.677		20	20	0.7479		181	20	0.769		758	
8	0.0710	3.152	14	8	0.0988	2.77	31	40	0.706	0.0832	789	40	0.5898	0.383	2362	
16	0.0094	2.913	49	16	0.0117	3.07	116	80	0.3210	1.136	2533	80	0.2334	1.3369	9436	
32	0.0023	2.01	149	32	0.0011	3.339	465	160	0.0801	2.003	10111	160	0.0563	2.050	37750	

Problem to solve

High order schemes for HJB equations

Xavier Warin

Time dependant HJB

Problem and hypothesis Semi lagrangian space continuous results

Convergence with spatial discretization

Numerical considerations

Numerical results

Stationary HJB

Problem

Definitions and hypothesis Convergence results Application Numerical results

$$F(x, u, \mathbf{D}u, \mathcal{D}^2u) = 0$$
 in \mathbf{R}^N ,

with

$$\begin{array}{ll} F(x,t,p,X) &=& \sup_{\alpha \in \mathcal{A}} \mathcal{L}^{\alpha}(x,t,p,X), \\ \mathcal{L}^{\alpha}(x,t,p,X) &=& -tr[a^{\alpha}(x)X] - b^{\alpha}(x)p + c^{\alpha}(x)t - f^{\alpha}(x), \end{array}$$

a, b, c, f are at least continuous on $\mathbb{R}^N \times \mathcal{A}$ with values in S(N) matrices, \mathbb{R}^N , \mathbb{R} and $\mathbb{R} \mathcal{A}$ is a compact metric space.

Assumptions

Assumption

HJB equations Xavier Warin

High order

schemes for

Time dependant HJB

Problem and hypothesis Semi lagrangian space continuous results

Convergence with spatial discretization

Numerical considerations

Numerical results

Stationary HJB

Problem

Definitions and hypothesis Convergence results Application Numerical results

For any $\alpha \in A$, $\mathbf{a}^{\alpha} = \frac{1}{2}\sigma^{\alpha}\sigma^{\alpha t}$ for some $N \times P$ matrix σ^{α} . Furthermore there exists λ , K independent of α such that:

$$c^{lpha} \geq \lambda > 0, \,\, ext{and} \,\, |\sigma^{lpha}|_1 + |b^{lpha}|_1 + |f_1^{lpha}| \leq K$$

(23

Assumption

The constant λ in 2 satisfies $\lambda > \sup_{\alpha} [\sigma^{\alpha}]_{1}^{2} + [b^{\alpha}]_{1}$

Assumption

For every $\delta > 0$, there are $M \in \mathbb{N}$ and $\{\alpha_i\}_{i=1}^M \subset \mathcal{A}$, such that for any $\alpha \in \mathcal{A}$

$$\inf_{1\leq i\leq M}(|\sigma^{\alpha}-\sigma^{\alpha_i}|_0+|b^{\alpha}-b^{\alpha_i}|_0+|c^{\alpha}-c^{\alpha_i}|_0+|f^{\alpha}-f^{\alpha_i}|_0)<\delta$$

Previous results (Barles Jakobsen [9], [10])

High order schemes for HJB equations

Xavier Warin

Time dependant HJB

Problem and hypothesis Semi lagrangian space continuou results

Convergence with spatial discretization

Numerical considerations

Numerical results

Stationary HJB

Problem

Definitions and hypothesis Convergence results Application Numerical results Assume 2. There exists an unique viscosity u solution of 23 in $C_b(\mathbf{R}^N)$. If w_1 and w_2 are in $C_b(\mathbf{R}^N)$ and are sub- and supersolution of 23 respectively, then $w_1 \leq w_2$ in \mathbf{R}^N . Assume 3, then u is in $C^{0,1}(\mathbf{R}^N)$.

Theorem

Proposition

Let S be a monotone, consistent and uniformly continuous and when a discrete bounded solution u_h can be found for

$$S(h, x, u_h(x), [u_h]_x) = 0, x \in \mathbf{R}^N$$
(24)

then u_h converges to the viscosity solution of the problem (and convergence rates)

Definitions

Definition

High order schemes for HJB equations

Xavier Warin

Time dependant HJB

- Problem and hypothesis Semi lagrangian space continuous results
- Convergence with spatial discretization
- Numerical considerations
- Numerical results

Stationary HJB

Problem

Definitions and hypothesis

Convergence results Application Numerical results

An $\epsilon(p, K)$ monotone scheme S is s.t. there exists $\bar{\lambda}$ satisfying:

• for every h > 0, $x \in \mathbb{R}^N$, $r \in \mathbb{R}$, for every functions $w \in C^{0,1}(\mathbb{R}^N)$, $v \in C_b(\mathbb{R}^N)$ such that $v \ge w$:

$$S(h, x, r, [v]_x) \le S(h, x, r, [w]_x) + K|w|_{0,1}h^{\rho}$$
(25)

• for every h > 0, $x \in \mathbb{R}^N$, $r \in \mathbb{R}$, for every functions $w \in C_b(\mathbb{R}^N)$, $v \in C^{0,1}(\mathbb{R}^N)$ such that $v \ge w$:

$$S(h, x, r, [v]_x) \le S(h, x, r, [w]_x) + K|v|_{0,1}h^p$$
(26)

 for every h > 0, x ∈ R^N, r ∈ R, m ≥ 0, for every function u ∈ C_b(R^N):

$$S(h, x, r+m, [u+m]_x) \ge S(h, x, r, [u]_x) + \overline{\lambda}m$$
(27)

Definitions

High order schemes for HJB equations

Xavier Warin

Time dependant HJB

Problem and hypothesis Semi lagrangian space continuou results

Convergence with spatial discretization

Numerical considerations

Numerical results

Stationary HJB

Problem

Definitions and hypothesis

Convergence results Application Numerical results

Definition

An $\epsilon(c)$ solution *u* of scheme *S* is a continuous function which satisfies:

$$|S(h, x, u(x), [u]_x)| < c$$

Definition

An $\epsilon(c)$ subsolution (supersolution) u of scheme S is a continuous function which satisfies:

 $S(h, x, u(x), [u]_x) < c$ $(S(h, x, u(x), [u]_x) > -c)$

Assumptions for the scheme

High order schemes for HJB equations

Xavier Warin

Time dependant HJB

Problem and hypothesis Semi lagrangian space continuou results

Convergence with spatial discretization

Numerical considerations

results

Stationary HJB

Problem Definitions and hypothesis

Convergence results

Application Numerical results

Assumption

The scheme S is $\epsilon(p, K)$ monotone.

Assumption

- (Regularity of S scheme) For every h > 0 and φ ∈ C_b(ℝ^N), x → S(h, x, φ(x), [φ]_x) is bounded and continuous in ℝ^N and the function r → S(h, x, r, [φ]_x) is uniformly continuous for bounded r, uniformly in x ∈ ℝ^N.
- (Consistency) There exists integers m , k_i i = 1, m, and a constant K such that for every h ≥ 0, x ∈ R^N and a smooth function φ

$$|F(x,\phi(x),\mathcal{D}\phi(x),\mathcal{D}^2\phi)-S(h,x,\phi(x),[\phi]_x)|\leq K\sum_{i=1}^m h^{k_i}|\mathcal{D}^i\phi|_0$$

 We suppose that there exists C and r independent of h such that for each h we can find a ε(Ch^r) solution u_h of scheme S.

Discrete comparison result

High order schemes for HJB equations

Xavier Warin

Time dependant HJB

Problem and hypothesis Semi lagrangian space continuous results

Convergence with spatial discretization

Numerical considerations

Numerical results

Stationary HJB

Problem Definitions and hypothesis

Convergence results

Application Numerical results

Lemma

Assume 5. Let $v \in C_b(\mathbb{R}^N)$ and $u \in C^{0,1}(\mathbb{R}^N)$. If u is a subsolution of scheme S and v is an $\epsilon(C)$ supersolution of scheme S then

$$u \leq v + rac{1}{ar{\lambda}}(Kh^p|u|_{0,1}+C)$$

Convergence result

High order schemes for HJB equations

Xavier Warin

Time dependant HJB

Problem and hypothesis Semi lagrangian space continuous results

Convergence with spatial discretization

Numerical considerations

Numerical results

Stationary HJB

Problem Definitions and hypothesis

Convergence results

Application Numerical results

Assume 2, 3, 5, 6. We have the following bounds for us

Assume 2, 3, 5, 6. We have the following bounds for $u_h = \epsilon(\tilde{C}h')$ solution:

$$u-u_h \leq \hat{C}(h^{\min(p,r)}+h^{\min(k_i/r)})$$

where \hat{C} depends on \tilde{C} . Besides assume 4 then there exists \hat{C} depending on \tilde{C} such that :

$$u_h - u \leq \hat{C}(h^{\min(p,r)} + h^{\min_{i=1,m} \frac{k_i}{3i-2}})$$

Remark

Theorem

Same estimation as Barles Jakobsen with some other terms

- *h^r* error associated to discrete resolution
- h^{p} error associated to monotony perturbation in comparison result

A Camilli Falcone style scheme

High order schemes for HJB equations

Xavier Warin

Time dependant HJB

Problem and hypothesis Semi lagrangian space continuous results Convergence

with spatial discretization

considerations

Numerical results

Stationary HJB

Problem Definitions and hypothesis Convergence results

Application Numerical results "Time" monotone scheme setting $[\phi]_x(z) = \phi(x+z)$

$$\hat{S}(h, y, t, [\phi]_{x}) = \sup_{\alpha \in \mathcal{A}} \left\{ -\frac{1}{h} (G(h, \alpha, y, [\phi]_{x}) - t) + c^{\alpha}(y)t - f^{\alpha}(y) \right\}$$

$$G(h, \alpha, y, [\phi]_x) = \frac{1 - hc^{\alpha}(y)}{2P} \sum_{i=1}^{P} \left([\phi]_x (hb^{\alpha}(y) + \sqrt{hP}\sigma_i^{\alpha}(y)) + [\phi]_x (hb^{\alpha}(y) - \sqrt{hP}\sigma_i^{\alpha}(y)) \right)$$

Non monotone scheme (interpolation error)

$$S(h, y, t, [\phi]_x) = \hat{S}(h, y, t, [\hat{I}_{\Delta x, M}\phi]_x)$$

where $\hat{l}_{\Delta x,M}$ a truncated interpolator (Lagrange, Spline ...) Try to find ϵ solution :

$$|S(h, y, U(y), [I_{\Delta x, M}U]_y)| \leq \epsilon(h, \Delta x), \text{ for } y \in X_{\Delta X, M} := (y_{\overline{i}, \overline{j}})_{\overline{i}, \overline{j}}$$
(28)

Convergence result

High order schemes for HJB equations

Xavier Warin

Time dependant HJB

Problem and hypothesis Semi lagrangian space continuous results

Convergence with spatial discretization

Numerical considerations

results

Stationary HJB

Problem Definitions and hypothesis Convergence results Application

Numerical results

Proposition

Assume 2 hold and that $\Delta x = h^q$. Then the scheme 28 satisfies assumptions 5, 6 with $k_2 = 2q - 1$, $k_4 = 1$, p = q - 1

T defined for U a function on $X_{\Delta x,M}$:

$$(T_{h,\Delta x}U)(x) = \inf_{\alpha \in \mathcal{A}} \left\{ (1 - hc^{\alpha}(x))(\Pi_{\Delta x,h}(U))(x) + hf^{\alpha}(x) \right\} \text{ for } x \in X_{\Delta x,M}$$

where the operator $\Pi_{\Delta \times, h}$ is

$$(\Pi_{\Delta x,h}U)(x) = \frac{1}{2P} \sum_{i=1}^{2P} \left((I_{\Delta x,M}U)(x+hb^{\alpha}(x)+\sqrt{h}\sigma_i^{\alpha}(x)) + (I_{\Delta x,M}U)(x+hb^{\alpha}(x)-\sqrt{h}\sigma_i^{\alpha}(x)) \right)$$

Proposition

Assume 2, 3 hold. Suppose that $\Delta x = h^q$ with q > 2. There exists s depending on h and C independent of h such that $u_h = T_{h,\Delta x}^s 0$ is a $\epsilon(Ch^{q-2})$ solution of scheme S.

Convergence results

High order schemes for HJB equations

Xavier Warin

Time dependant HJB

Problem and hypothesis Semi lagrangian space continuous results

Convergence with spatial discretization

Numerical considerations

Numerical results

Stationary HJB

Problem Definitions and hypothesis Convergence results

Application Numerical results

Proposition

Suppose u_h has been constructed as in proposition 10, framework gives us that we can find q such that

$$|u-u_h| < Ch^{\frac{1}{10}}$$

Previous result non optimal :

Proposition

Taking $q \geq \frac{5}{4}$, u_h been constructed as in proposition 10, we have

$$|u-u_h| < Ch^{\frac{1}{4}}$$

Regular problem

High order schemes for HJB equations

Xavier Warin

Time dependant HJB

Problem and hypothesis Semi lagrangian space continuou results

Convergence with spatial discretization

Numerical considerations

Numerical results

Stationary HJB

Problem Definitions an hypothesis Convergence results Application Numerical

results

$$u(x,y) = sin(\pi x)sin(\pi y)$$

$$c_a(t,x) = C, \quad \sigma_a(t,x) = \sigma a \mathbb{H}, \quad b^{\alpha} = b \mathbf{1}$$

$$f^{\alpha}(x,y) = (C + \pi^2 \sigma^2 \mathbb{1}_{u(x,y)>0})u(x,u) - b\pi(\cos(\pi x)\sin(\pi y) + \sin(\pi x)\cos(\pi y))$$

$$Q = [0, 2]^2$$
, $b = 0.3, c = 0.55, \sigma = 1, A = [0, 1]$

and the boundary condition is a Dirichlet one with 0 value, h = 0.0002

Table : Test case 1

	NbM		LINEAR		Q	UADRATI	С	CUBIC			
Г		Err	ItN	Time	Err	ItN	Time	Err	ItN	Time	
1	10	1.169	25900	138	0.051	29483	919	0.183	45108	5182	
	20	1.028	26555	468	0.0065	29398	3619	0.0083	29486	10770	
	40	0.758	27211	1879	0.0012	29485	12633	0.0011	29706	43371	
	80	0.243	28076	6923	0.0003	29621	50988	0.0003	29788	175163	
	160	0.103	28620	27762	0.0003	29748	19517				
L	320	0.018	29282	108000							

Second regular problem

solution

$$u(x,y) = sin(\pi x)sin(\pi y)$$

$$c_a(t,x) = C, \quad \sigma_a(t,x) = \sigma a
ature, \quad b^{lpha} = b(a,\sqrt{1-a^2}), a \in [\underline{a},\overline{a}]$$

Noting

$$\begin{split} \tilde{\mathsf{a}} &= \frac{\sin(\pi y) \cos(\pi x)}{\sqrt{\sin(\pi x)^2 \cos(\pi y)^2 + \cos(\pi x)^2 \sin(\pi y)^2}},\\ \phi(\mathsf{a}) &= a \sin(\pi y) \cos(\pi x) + \sqrt{1 - a^2} \sin(\pi x) \cos(\pi y), \end{split}$$

for $b \leq 0$, the function f^{α} is here given by

$$f^{\alpha}(x,y) = (C + \pi^2 \sigma^2)u(x,u) - b\pi K$$

where K is the maximum of $\phi(\underline{a})$, $\phi(\overline{a})$ and $\phi(\overline{a})$ conditionally to $\underline{a} \leq \overline{a} \leq \overline{a}$. We take $\underline{a} = -1$, $\overline{a} = 1$, $\sigma = 1$, C = 0.6, b = -1, $Q = [0, \frac{1}{2}]$. As boundary Dirichlet.

Table : Test case 2

1	NbM		LINEAR		QL	JADRATI	С	CUBIC				
		Err	ItN	Time	Err	ItN	Time	Err	ItN	Time		
	8	0.1195	493	2	0.0115	1304	33	0.012	1571	99		
	16	0.0632	903	13	0.0022	1318	100	0.0022	1589	390		
	32	0.0191	1197	50	0.0003	1319	405	0.0003	1590	1574		
	64	0.0062	1278	207								

High order schemes for HJB equations

Xavier Warin

Time dependan HJB

Problem and hypothesis Semi lagrangian space continuou results

Convergence with spatial discretization

consideration:

results

Stationary HJB

Problem Definitions ar hypothesis Convergence results

Numerical

results

Available on...

High order schemes for HJB equations

Xavier Warin

Time dependant HJB

Problem and hypothesis Semi lagrangian space continuou results

Convergence with spatial discretization

Numerical considerations

Numerical results

Stationary HJB

Problem Definitions and hypothesis Convergence results Application

Numerical results

• Time dependant :

http://arxiv.org/abs/1310.6121

• Stationnary :

http://arxiv.org/abs/1312.5052

References I

High order schemes for HJB equations

Xavier Warin

Time dependan HJB

Problem and hypothesis Semi lagrangian space continuou results

Convergence with spatial discretization

consideration Numerical

Stationary

Problem Definitions an hypothesis Convergence results

Numerical results G. BARLES AND P. E. SOUGANIDIS, *Convergence of Approximation Schemes for Fully Non-linear Second Order Equation*, Asymptotic Anal., 4, (1991), pp. 271–283

J.F. BONNANS AND H. ZIDANI, *A fast algorithm for the two dimensional HJB equation of stochastic control*, ESAIM:M2AN, 38-4 , (2004), pp . 723–735

A. M. OBERMAN, Convergent difference schemes for degenerate elliptic and parabolic equations: HamiltonJacobi equations and free boundary problems, SIAM J. Numer. Anal, 44,(2006), pp 879–895

A. FAHIM, N. TOUZI. AND X. WARIN, *A Probabilistic Numerical Scheme for Fully Nonlinear PDEs*, Annals of Applied Probability 21, 4, (2011), pp. 1322–1364.

References II

High order schemes for HJB equations

Xavier Warin

Time dependan HJB

Problem and hypothesis Semi lagrangian space continuou results

Convergence with spatial discretization

Numerical considerations

results

Stationary HJB

Problem Definitions and hypothesis Convergence results

Numerical results X. TAN , A splitting method for fully nonlinear degenerate parabolic PDEs, Electron. J. Probab. 18(15), (2013), pp. 1–24

F. CAMILLI AND M. FALCONE, An approximation scheme for the optimal control of diffusion processes, Modélisation Mathématique et Analyse Numérique 29.1,(1995), pp. 97–122

R. MUNOS AND H. ZIDANI, Consistency of a simple multidimensional scheme for Hamilton-Jacobi-Bellman equations, C. R. Acad. Sci. Paris, Ser. I Math, (2005)

K. DEBRABANT AND E. R. JAKOBSEN., Semi-Lagrangian schemes for linear and fully non-linear diffusion equations, Math. Comp, no. 283 (2013), pp. 1433–1462

References III

High order schemes for HJB equations

Xavier Warin

Time dependan HJB

- Problem and hypothesis Semi lagrangian space continuou results
- Convergence with spatial discretization
- Numerical considerations
- Numerical results

Stationary HJB

- Problem Definitions and hypothesis Convergence results
- Numerical results

G. BARLES AND E. R. JAKOBSEN, On the convergence rate of approximation schemes for Hamilton-Jacobi-Bellman equations, M2AN, vol 36, N1,(2002), pp 33–54

G. BARLES AND E. R. JAKOBSEN, Error bounds for monotone approximation schemes for Hamilton-Jacobi-Bellman equations, SIAM J. Numer. Anal., 43(2), (2005), pp 540-558