

Interpolation and function [representation](#page-46-0) with grids in stochastic control

Xavier Warin

Interpolation and function representation with grids in stochastic control FIME

Xavier Warin

EDF R&D & FIME, Laboratoire de Finance des Marchés de l'Energie (www.fime-lab.org)

September 2015

Schedule

Interpolation and function [representation](#page-0-0) with grids in stochastic control

Xavier Warin

[Examples](#page-32-0)

[Advertisement](#page-2-0)

2 [Interpolation methods](#page-5-0)

- **•** [Interpolation and representation of a function with](#page-6-0) [classical grids](#page-6-0)
- [Hierarchical representation of functions and linear sparse](#page-16-0) [grids](#page-16-0)
- [Quadratic and cubic sparse grids](#page-27-0)

3 [Examples](#page-32-0)

- [Sparse grids for regression methods](#page-32-0)
- **•** [Sparse grids for Semi Lagrangian schemes](#page-36-0)

Where is it possible to get software with effective methods in stochastic control ?

Interpolation and function [representation](#page-0-0) with grids in stochastic control

Xavier Warin

[Advertisement](#page-2-0)

<https://gitlab.com/stochastic-control/libstoc>

- Should be open for the end of this year,
- Most of what is presented below is included
	- \bullet C++ library, multi OS
	- **2** MPI and threaded version
	- **3** Python binding for python users
	- **4** Extensive documentation.....

Including the following resolution methods

Interpolation and function [representation](#page-0-0) with grids in stochastic control

Xavier Warin

[Advertisement](#page-2-0)

-
-

- **1** Regression methods (adaptive local grids, sparse grids, global polynomials)
- ² Dynamic Programming with Longstaff Schwartz dealing with stocks (for storage etc...)
- ³ Semi Lagrangian methods for HJB equations (with linear interpolator, high order interpolators for full grids and sparse grids)
- **•** Stochastic Dual Dynamic Programming methods for multi stock optimization
- **•** Framework for optimization and simulation of the optimal control.

Should be considered in future versions

Interpolation and function [representation](#page-0-0) with grids in stochastic control

Xavier Warin

[Advertisement](#page-2-0)

- Adaptation for sparse grids (local adaptation and dimension adaptation)
- Finite Difference for singular problems,

When open, don't hesitate to test and send feed back..

Interest of the representation/interpolation of a function in stochastic control

Interpolation and function [representation](#page-0-0) with grids in stochastic control

Xavier Warin

[Interpolation](#page-5-0) methods

- Calculation of conditional expectation (regressions ...)
- Evaluation of a function depending on stocks (interpolation due to dynamic programming)
- Semi Lagrangian methods (characteristics ...) needs interpolation on a grid....

Linear interpolation

Interpolation and function [representation](#page-0-0) with grids in stochastic control

Xavier Warin

Interpolation and [representation of](#page-6-0) a function with classical grids

[Examples](#page-32-0)

The most common interpolation : given some regular meshes, interpolation linearly between the values on the mesh.

- Loved the theorist (permit to keep monotone schemes, stable etc...)
- easy to tensorize in dimension d
- Slow convergence of the interpolator $I_{1,\Delta x}$: mesh $\Delta \mathsf{x} = (\Delta \mathsf{x}^1, ..., \Delta \mathsf{x}^d)$, $f \in \mathcal{C}^{k+1}(\mathsf{R}^d)$ with $k \leq 1$

$$
||f - I_{1,\Delta x}f||_{\infty} \leq c \sum_{i=1}^d \Delta x_i^{k+1} \sup_{x \in [-1,1]^d} |\frac{\partial^{k+1} f}{\partial x_i^{k+1}}|
$$

If f is only Lispchitz

$$
||f - I_{1,\Delta x}f||_{\infty} \leq K \sup_{i} \Delta x_{i}
$$

Slow convergence while refining

Interpolation and function [representation](#page-0-0) with grids in stochastic control

Xavier Warin

Interpolation and [representation of](#page-6-0) a function with classical grids

Figure: Linear interpolator error for $sin(2\pi x)$

Spectral finite elements interpolator

I

Interpolation and function [representation](#page-0-0) with grids in stochastic control Xavier Warin

Interpolation and [representation of](#page-6-0) a function with classical grids

.

On a grid $[-1, 1]$, $N + 1$ points $X = (x_0, ..., x_N)$, interpolate by the unique polynomial of degree N such that

$$
N_N^X(f)(x_i)=f(x_i), 0\leq i\leq N
$$

Introduce the Lagrange polynomials $l_i^X, 0 \le i \le N$ (satisfying $l_i^X(x_j)=\delta_{i=j}$)

$$
I_N^X(f)(x) = \sum_{i=0}^N f(x_i)I_i^X(x)
$$

Stability and convergence of the interpolator

Interpolation and function [representation](#page-0-0) with grids in stochastic control

Xavier Warin

Interpolation and [representation of](#page-6-0) a function with classical grids

[Examples](#page-32-0)

Standard results with $\lambda_N(X) = max_{x \in [-1,1]} \sum_{i=0}^N |I_i^X(x)|$ the Lebesgue constant :

 \bullet

 $||I_N^X(f)(x)||_{\infty} \leq \lambda_N(X) ||f||_{\infty}$ Difficult to control $||||_{\infty}$

$$
||I_N^X(f)(x)-f||_{\infty}\leq C\lambda_N(X)w(f,\frac{1}{N})
$$

where w is the modulus of continuity

$$
w(f, \delta) = \sup_{\substack{x_1, x_2 \in [-1, 1] \\ |x_1 - x_2| < \delta}} |f(x_1) - f(x_2)|
$$

Try the find the grids with the best λ_N . Erdös theorem :

$$
\lambda_N(X) > \frac{2}{\Pi} \log(N+1) - C
$$

Runge effect : uniform grid X_u is not optimal

Interpolation with optimal Lebesgue constant : Gauss Legendre Lobatto

Interpolation and function [representation](#page-0-0) with grids in stochastic control

Xavier Warin

Interpolation and [representation of](#page-6-0) a function with classical grids

The grids in
$$
[-1, -1]
$$
 : $\eta_1 = -1, \eta_{N+1} = 1$, and η_i
(*i* = 2, ..., *N*) zeros of L'_N . Legendre polynomials satisfies :

$$
(N+1)L_{N+1}(x) = (2N+1)xL_N(x) - NL_{N-1}(x)
$$

Lebesgue constant $\lambda_N(X_{GLL})\simeq \frac{2}{\Pi}$ $\frac{2}{\Pi}$ ln(N + 1). Interpolation formula on $[-1, 1]$

$$
I_N(f) = \sum_{k=0}^N \tilde{f}_k L_k(x),
$$

$$
\tilde{f}_k = \frac{1}{\gamma_k} \sum_{i=0}^N \rho_i f(\eta_i) L_k(\eta_i),
$$

$$
\gamma_k = \sum_{i=0}^N L_k(\eta_i)^2 \rho_i,
$$

and
$$
\rho_i = \frac{2}{(M+1)ML_M^2(\eta_i)}, 1 \leq i \leq N+1.
$$

Runge effect on Gauss Legendre Lobatto

Interpolation and function [representation](#page-0-0) with grids in stochastic control

Xavier Warin

Interpolation and [representation of](#page-6-0) a function with classical grids

Back to the problem of the meshes with GLL interpolator

Interpolation and function [representation](#page-0-0) with grids in stochastic control Xavier Warin

Interpolation and [representation of](#page-6-0) a function with classical grids

Keep 4 meshes and increase the polynomial approximation on each mesh.

Mesh construction dimension d

Interpolation and function [representation](#page-0-0) with grids in stochastic control Xavier Warin

Interpolation and [representation of](#page-6-0) a function with classical grids

Define approximation by tensorization :

Figure: Gauss Legendre Lobatto points on 2×2 meshes

Interpolation results in dimension d with meshes of size $\Delta x = (\Delta x_1, \Delta x_2, \Delta x_d)$

Interpolation and function [representation](#page-0-0) with grids in stochastic control Xavier Warin

Interpolation and [representation of](#page-6-0) a function with classical grids

$$
\text{If } f \in C^{k+1}([-1,1]^d), \ k \leq N
$$

$$
||f - I_{N,\Delta x}^X f||_{\infty} \le c \frac{(1 + \lambda_N(X))^d}{N^k} \sum_{i=1}^d \Delta x_i^{k+1} \sup_{x \in [-1,1]^d} |\frac{\partial^{k+1} f}{\partial x_i^{k+1}}|
$$

- Of course, accuracy limited by the regularity of the solution.
- Is there a more effective way than tensorization to deal with functions in dimension d?

Linear hierarchical representation in 1D

Interpolation and function [representation](#page-0-0) with grids in stochastic control

Xavier Warin

 \bullet

Hierarchical [representation of](#page-16-0) functions and linear sparse grids

- Hat function : $\phi^{(L)}(x) = \max(1 |x|, 0)$,
- \bullet By dilatation (level *l*) and translation (given by *i*) $\phi_{l,i}^{(L)}$ $\phi^{(L)}(x) = \phi^{(L)}(2^l x - i)$

$$
W^{(L)}_I \ := \ \ \text{span}\left\{\phi^{(L)}_{I,i}(x): 1\leq i\leq 2^I-1, i \text{ odd}\right\}
$$

• Hierarchical space

$$
V_n = \bigoplus_{l \leq n} W_l^{(L)}
$$

• Nodal equivalent representation :

$$
V_n = \text{span}\left\{\phi_{n,i}^{(L)}(x) : 1 \le i \le 2^l - 1\right\}
$$

Example in 1 D

Interpolation and function [representation](#page-0-0) with grids in stochastic control

Xavier Warin

Hierarchical [representation of](#page-16-0) functions and linear sparse grids

Figure: One dimensional $W^{(L)}$ spaces : $W_1^{(L)}$, $W_2^{(L)}$, $W_3^{(L)}$, $W_4^{(L)}$ and the nodal representation $\mathcal{W}^{(L,N)}_4$

Interpolation in 1 D

Interpolation and function [representation](#page-0-0) with grids in stochastic control

Xavier Warin

Hierarchical [representation of](#page-16-0) functions and linear sparse grids

$$
I^{(L)}(f)(x) = \sum_{1 \leq n, 1 \leq i \leq 2^{l}-1, i \text{ odd}} \alpha_{1,i}^{(L)} \phi_{1,i}^{(L)}(x)
$$

where for $m = x_{l,i}$

$$
\alpha^{(L)}(m) := \alpha_{l,i}^{(L)} = f(m) - 0.5(f(e(m)) + f(w(m)))
$$

where $e(m)$ is the east neighbor of m and $w(m)$ the west one.

Nodal versus hierarchical approach

Interpolation and function [representation](#page-0-0) with grids in stochastic control

Xavier Warin

Hierarchical [representation of](#page-16-0) functions and linear sparse grids

Figure: Example of hierarchical coefficients

- **•** Hierarchical values : estimation of the discrete second derivative of the function : adaptation possible by refining at node with highest hierarchical values,
- Same solution as linear interpolation in 1 D,
- But basis function supports intersect a lot : full matrix appearing in numerical methods.

Extension of the Sparse grid to dimension d

Interpolation and function [representation](#page-0-0) with grids in stochastic control

Xavier Warin

Hierarchical [representation of](#page-16-0) functions and linear sparse grids

• Basis functions :
$$
\phi_{\underline{l},\underline{i}}^{(L)}(x) = \prod_{j=1}^{d} \phi_{\underline{l},\underline{i}}^{(L)}(x_j)
$$
 for $\underline{x} = (x_1, \ldots, x_d)$, a multi-level $\underline{l} := (l_1, \ldots, l_d)$ and a multi-index $\underline{i} := (i_1, \ldots, i_d)$.

with

$$
B_{\underline{l}}:=\left\{\underline{i}:1\leq i_j\leq 2^{l_j}-1, i_j \text{ odd }, 1\leq j\leq d\right\}
$$

$$
W_{\underline{l}}^{(L)} := \text{span}\left\{\phi_{\underline{l},\underline{i}}^{(L)}(\underline{x}) : \underline{i} \in B_{\underline{l}}\right\}
$$

Sparse grid

C

$$
V_n = \bigoplus_{|\underline{l}|_1 \leq n+d-1} W_{\underline{l}}^{(L)}
$$

- Full grid $V_n^F = \bigoplus_{|\underline{l}|_\infty \leq n}$ $W_l^{(L)}$ l
- Possible representation of V_n in term of nodal basis.

2 Full and Sparse basis

Interpolation and function [representation](#page-0-0) with grids in stochastic control

Xavier Warin

Hierarchical [representation of](#page-16-0) functions and linear sparse grids

Representation of the W subspace for $1 \leq 3$ in dimension 2.

Figure: The two dimensional subspace $W_I^{(L)}$ $\frac{1}{2}$ up to $l = 3$. Additional hierarchical functions corresponding to the full grid in dashed lines.

Error associated to linear space grid

Interpolation and function [representation](#page-0-0) with grids in stochastic control

Xavier Warin

Hierarchical [representation of](#page-16-0) functions and linear sparse grids

[Examples](#page-32-0)

With roughly
$$
a_{n,d} = 2^n \frac{n^{d-1}}{(d-1)!}
$$
 points, if $\left|\left|\frac{\partial^{2d} u}{\partial x_1^2 \dots \partial x_d^2}\right|\right|_{\infty} < \infty$,
[3, 5, 6]

$$
||f - I1(f)||_{\infty} = O(2^{-2n} \log(2^n)^{d-1})
$$
 (1)

to compare to the full grid interpolator

$$
||f - I1(f)||_{\infty} = O(2^{-2n})
$$
 (2)

with 2^{dn} points.

The number of points increases slowly with the dimension with sparse grids with an error slowly above the full grid.

Incorporation boundary points

Interpolation and function [representation](#page-0-0) with grids in stochastic control

Xavier Warin

 W_1

 W_{2}

Hierarchical [representation of](#page-16-0) functions and linear sparse grids

- **•** Either add boundary points
- **e** either modify the basis functions near the boundary.

Figure: One dimensional $W^{(L)}$ spaces with linear functions with "exact " boundary (left) and "modified " boundary (right) : $W_1^{(L)}$, W (L) 2 , W (L) 3 , W (L) 4

grids

Grids with boundary points

Figure: Sparse grid in dimension 2 and 3 with boundary points

Grids with extrapolation

Xavier Warin

Hierarchical [representation of](#page-16-0) functions and linear sparse grids

Figure: Sparse grid in dimension 2 and 3 without boundary points

Incorporation boundary points

Interpolation and function [representation](#page-0-0) with grids in stochastic control

Xavier Warin

Hierarchical [representation of](#page-16-0) functions and linear sparse grids

- **o** first method : explosion of the number of points with the dimension
	- in dimension 5, 2.8 millions points for 6401 inside the domain,
	- can't deal with some very high dimension problems
- second method : only effective if boundary points non important

Depending on the problem,

- stocks problems need accurate boundary treatment (dimension limited to 5) : first method needed
- PDE resolution in infinite domain, regression for conditional expectation will use the second method (dimension 7 to 10)

Quadratic sparse grids

Interpolation and function [representation](#page-0-0) with grids in stochastic control

Xavier Warin

[Quadratic and](#page-27-0) cubic sparse grids

How to upgrade the convergence properties of sparse grids without adding points...

On $[2^{-l}(i-1), 2^{-l}(i+1)]$ by

$$
\phi_{l,i}^{(Q)}(x) = \phi^{(Q)}(2^l x - i)
$$

with $\phi^{(Q)}(x) = 1 - x^2$.

 $I^{(Q)}(f)(x) = \sum$ I≤n,1≤i≤2¹-1,i odd $\alpha_{l,i}^{(Q)}$ $\begin{smallmatrix} (Q) \ A,i \end{smallmatrix} \phi_{I,i}^{(\mathcal{Q})}$ $\binom{(\vee)}{l,i}(x)$

quadratic (cont)

Interpolation and function [representation](#page-0-0) with grids in stochastic control

Xavier Warin

[Quadratic and](#page-27-0) cubic sparse grids

where for $m = x_{l,i}$

$$
\alpha(m)^{(Q)} = f(m) - \left(\frac{3}{8}f(w(m)) + \frac{3}{4}f(e(m)) - \frac{1}{8}f(e(e(m)))\right)
$$

=
$$
\alpha(m)^{(L)}(m) - \frac{1}{4}\alpha(m)^{(L)}(e(m))
$$

=
$$
\alpha(m)^{(L)}(m) - \frac{1}{4}\alpha(m)^{(L)}(df(m))
$$

where $df(m)$ is the direct father of the node m in the tree.

Quadratic basis functions incorporating boundary points

Interpolation and function [representation](#page-0-0) with grids in stochastic control Xavier Warin

[Quadratic and](#page-27-0) cubic sparse grids

Figure: One dimensional $W^{(Q)}$ spaces with quadratic with "exact" boundary (left) and "modified" boundary (right) : $W_1^{(Q)}$, $W_2^{(Q)}$, $W_3^{(Q)}$, $W_4^{(Q)}$

High order error

Interpolation and function [representation](#page-0-0) with grids in stochastic control

Xavier Warin

[Quadratic and](#page-27-0) cubic sparse grids

- The methodology can be used for Cubic, Quartic interpolators,
- if $\sup_{\alpha_i \in \{2,..,p+1\}} \bigg\{||\frac{\partial^{\alpha_1+..+\alpha_d}u}{\partial x_1^{\alpha_1}...\partial x_n^{\alpha_d}}$ $\frac{\partial^{\alpha_1+\ldots+\alpha_d} u}{\partial x_1^{\alpha_1}...\partial x_d^{\alpha_d}}\big|\big|_\infty\bigg\} < \infty$ then for $I^2 := I^{(Q)}$, $I^3 := I^{(C)}$ by :

$$
||f - Ip(f)||_{\infty} = O(2^{-n(p+1)}log(2^n)^{d-1}), \quad p = 2, 3
$$

Adaptation for sparse grids

Interpolation and function [representation](#page-0-0) with grids in stochastic control

Xavier Warin

[Quadratic and](#page-27-0) cubic sparse grids

Two strategies:

- Local adaptation :
	- Refine nodes with highest surplus adding sons (left and right) in all directions ,
	- Derefine (if use in temporal problem) if surplus calculated to small,
	- Not sure to refine/derefine at the good points,
	- Necessity to be sure that all added nodes have fathers in all directions (if not, add points)
- Dimension adaptation: select a multilevel according to an error estimation and refine all the points at this level in all directions.

The adaptation to choose should depend on the problem....

Benchmarks for bermudean options

Interpolation and function [representation](#page-0-0) with grids in stochastic control

Xavier Warin

[Examples](#page-32-0)

[Sparse grids for](#page-32-0) regression methods

- d assets with same characteristics $S_0^i = 1$, $\sigma^i = 0.2$, no correlation
- Maturity $T = 1$, interest rate $r = 0.05$, strike $K = 1$.
- $\Delta t = \frac{1}{10},$
- \bullet Exercise dates *j* Δt , *j* = 1, *T* / Δt ,
- pay off ($K-\frac{1}{4}$ d \sum d $i=1$ $(S_{\mathcal{T}}^{i})^{+}$ basket american put. Reference calculated in [\[7\]](#page-46-4).

Use sparse grids with approximated boundary treatment.

First results dimension 1, 3

Interpolation and function [representation](#page-0-0) with grids in stochastic control

Xavier Warin

[Sparse grids for](#page-32-0) regression methods

Table: Results in dimension 1

Table: Results in dimension 3

No interest in high order approximation : solution not enough regular ?

First results dimension 5, 6 (Linear sparse grids)

Interpolation and function [representation](#page-0-0) with grids in stochastic control

Xavier Warin

[Sparse grids for](#page-32-0) regression methods

Table: Results in dimension 5

Table: Results in dimension 6

First conclusion for the use of sparse grids for regressions

Interpolation and function [representation](#page-0-0) with grids in stochastic control

Xavier Warin

[Examples](#page-32-0)

[Sparse grids for](#page-32-0) regression methods

- Till dimension 6, provide good results for american style basket options,
- No reference in dimension above 6,
- Comparing to [\[7\]](#page-46-4), less particles seem to be necessary. Not sure sparse grids for regressions are competitive (till dimension 6),
- Cost of the method is in the matrix construction (nearly a full one).

HJB problem

Interpolation and function [representation](#page-0-0) with grids in stochastic control

Xavier Warin

Sparse grids for [Semi Lagrangian](#page-36-0) schemes

$$
\frac{\partial v}{\partial t}(t,x) = \inf_{a \in A} \left(\frac{1}{2} tr(\sigma_a(t,x)\sigma_a(t,x)^T D^2 v(t,x)) + b_a(t,x)Dv(t,x) + c_a(t,x)v(t,x) + f_a(t,x) \right) = 0 \text{ in } Q
$$

$$
v(0,x) = g(x) \text{ in } \mathbf{R}^d
$$
 (3)

where

- $Q := (0, T] \times \mathbf{R}^d$, A complete metric space,
- \bullet $\sigma_{\alpha}(t, x)$ is a $d \times q$ matrix,
- b_a and f_a coefficients functions defined on Q in \mathbf{R}^d and R.

HJB associated to a controlled process $X_s^{t,x}$ with W_s a q dimensional Brownian motion:

$$
dX_s^{t,x} = b_a(s, X_s^{t,x})dt + \sigma_a(t, X_s^{t,x})dW_s \qquad (4)
$$

1D example of Semi Lagrangian scheme

Interpolation and function [representation](#page-0-0) with grids in

stochastic control

Xavier Warin

Sparse grids for [Semi Lagrangian](#page-36-0) schemes

Using development of ϕ

$$
\phi(x + b_a h + \sigma_a \sqrt{h}) = \phi(x) + h b_a D\phi(x) + \sqrt{h} \sigma_a D\phi + \frac{\sigma_a^2 h}{2} D^2 \phi + \frac{\sigma_a^2 h^{3/2}}{6} D^3 \phi + O(h^2)
$$

$$
\phi(x + b_a h - \sigma_a \sqrt{h}) = \phi(x) + h b_a D\phi(x) - \sqrt{h} \sigma_a D\phi + \frac{\sigma_a^2 h}{2} D^2 \phi - \frac{\sigma_a^2 h^{3/2}}{6} D^3 \phi + O(h^2)
$$

So

$$
(\phi(x + b_a h + \sigma_a \sqrt{h}) + \phi(x + b_a h - \sigma_a \sqrt{h}) - 2\phi(x)) \simeq 2h b_a D\phi(x) + h \sigma_a^2 D^2 \phi + O(h^2)
$$

And use explicit scheme

$$
v(t + h, x) = v(t, x) + \inf_{a \in A} \frac{1}{2} [(v(t, \phi_{a,h}^+(t, x)) + v(t, \phi_{a,h}^-(t, x)) - 2v(t, x)) +\nhc_a(t, x)v(t, x) + hf_a(t, x)]
$$

$$
\phi_{a,h}^+(t, x) = x + b_a(t, x)h + \sigma_a(t, x)\sqrt{h}
$$

$$
\phi_{a,h}^-(t, x) = x + b_a(t, x)h - \sigma_a(t, x)\sqrt{h}
$$

Need for some interpolation

Interpolation and function [representation](#page-0-0) with grids in stochastic control

Xavier Warin

Sparse grids for [Semi Lagrangian](#page-36-0) schemes

 $v(t,.)$ represented on a grid, for $v(t, \phi_{a,h}^{\pm}(t,x))$ interpolation on a grid is required,

- Regular full grids with high order interpolators are possible [\[8\]](#page-46-5)
- Results with sparse grids [\[9\]](#page-46-6)

Portfolio optimization problem

Interpolation and function [representation](#page-0-0) with grids in stochastic control

Xavier Warin

Sparse grids for [Semi Lagrangian](#page-36-0) schemes

- $\{\mathcal{S}_t, t\in[0,\, \mathcal{T}]\}$ be an Ito process modeling the price evolution of n financial securities.
- $\{\theta_t, t \in [0, T]\}$ the investor strategy,
- Portfolio value

$$
dX_t^{\theta} = \theta_t \cdot \frac{dS_t}{S_t} + (X_t^{\theta} - \theta_t \cdot 1) \frac{dS_t^0}{S_t^0} = \theta_t \cdot \frac{dS_t}{S_t} + (X_t^{\theta} - \theta_t \cdot 1) r_t dt,
$$

• Maximize the portfolio value :

$$
\nu_0:=\sup_{\theta\in\mathcal{A}}\mathbb{E}\left[-\exp\left(-\eta X^{\theta}_{\mathcal{T}}\right)\right].
$$

Interpolation and function [representation](#page-0-0) with grids in stochastic control

The two dimensional case $(r = 0)$

Asset dynamic (Heston model)

$$
dS_t = \mu S_t dt + \sqrt{Y_t} S_t dW_t^{(1)}
$$

$$
dY_t = k(m - Y_t)dt + c\sqrt{Y_t} \left(\rho dW_t^{(1)} + \sqrt{1 - \rho^2} dW_t^{(2)}\right),
$$

HJB equation :

Xavier Warin

Sparse grids for [Semi Lagrangian](#page-36-0) schemes

$$
v(T, x, y) = -e^{-\eta x}
$$

\n
$$
0 = -v_t - k(m - y)v_y - \frac{1}{2}c^2 yv_{yy} -
$$

\n
$$
\sup_{\theta \in \mathbb{R}} \left(\frac{1}{2} \theta^2 yv_{xx} + \theta(\mu v_x + \rho cyv_{xy}) \right)
$$

Quasi explicit solution (Zariphopoulou)

$$
v(t, x, y) = -e^{-\eta x} \left\| \exp \left(-\frac{1}{2} \int_t^T \frac{\mu^2}{\tilde{Y}_s} ds \right) \right\|_{\mathbf{L}^1 - \rho^2}
$$

where the process \tilde{Y} is defined by

$$
\tilde{Y}_t = y
$$
 and $d\tilde{Y}_t = (k(m - \tilde{Y}_t) - \mu c\rho)dt + c\sqrt{\tilde{Y}_t}dW_t.$

Two dimensional case : no adaptation , exact boundary treatment

Interpolation and function [representation](#page-0-0) with grids in stochastic control

Xavier Warin

Sparse grids for [Semi Lagrangian](#page-36-0) schemes

Parameters :
$$
\eta = 1
$$
, $\mu = 0.15$, $c = 0.2$, $k = 0.1$, $m = 0.3$,
 $Y_0 = m$, $\rho = 0$, $T = 1$, $X_0 = 1$, reference -0.3534.

Table: Portfolio optimization in dimension 2, no adaptation

Two dimensional case : extrapolated boundary

Interpolation and function [representation](#page-0-0) with grids in stochastic control

Xavier Warin

Sparse grids for [Semi Lagrangian](#page-36-0) schemes

Nearly same results but less expensive in computing time.

Table: Portfolio optimization in dimension 2, no adaptation , extrapolated boundary treatment

two dimensional case : extrapolated boundary and adaptation

Interpolation and function [representation](#page-0-0) with grids in stochastic control

Xavier Warin

Sparse grids for [Semi Lagrangian](#page-36-0) schemes

Table: Adaptation , extrapolated boundary , initial level 5

Figure: Example of adapted meshes in dimension 2

A 5 dimensional problem

Interpolation and function [representation](#page-0-0) with grids in stochastic control

Xavier Warin

[Examples](#page-32-0)

Sparse grids for [Semi Lagrangian](#page-36-0) schemes

• OU process for the rate

$$
dr_t = \kappa (b - r_t) dt + \zeta dW_t^{(0)}.
$$

Heston model for the second security , CEV-SV model for the first security

$$
dS_t^{(i)} = \mu_i S_t^{(i)} dt + \sigma_i \sqrt{Y_t^{(i)}} S_t^{(i)\beta_i} dW_t^{(i,1)}, \quad \beta_2 = 1,
$$

$$
dY_t^{(i)} = k_i \left(m_i - Y_t^{(i)} \right) dt + c_i \sqrt{Y_t^{(i)}} dW_t^{(i,2)}
$$

State $(t, X_t, r_t, S_t^{(1)})$ $Y_t^{(1)}\;, \,Y_t^{(1)}$ $Y_t^{(1)},\,Y_t^{(2)}$ $t^{(2)}$), value function $v(t, x, r, y)$ s_1, y_1, y_2) solution of an HJB equation

Results in 5D

Space grids discretization for the commands (2 dimensional)

Interpolation and function [representation](#page-0-0) with grids in stochastic control

Xavier Warin

Sparse grids for [Semi Lagrangian](#page-36-0) schemes

Table: No adaptation , extrapolated boundary treatment

Table: adaptation , extrapolated boundary treatment, initial level equal to 7

References

Interpolation and function [representation](#page-0-0) with grids in stochastic control

Xavier Warin

Sparse grids for [Semi Lagrangian](#page-36-0) schemes

- H.J. BUNGED, M. GRIEBEL, Sparse Grids, Acta Numerica, volume 13, (2004), pp 147-269
- D PFLÜGER, Spatially Adaptive Sparse Grids for High-Dimension problems, Dissertation, für Informatik, Technische Universität München, München (2010).
	- H.-J. BUNGARTZ., Dünne Gitter und deren Anwendung bei der adaptiven Lösung der dreidimensionalen Poisson-Gleichung. Dissertation, Fakultät für Informatik, Technische Universität München, November 1992.

T. GERSTNER, M. GRIEBEL, Dimension-Adaptive Tensor-Product Quadrature, Computing 71, (2003) 89-114.

H.-J. BUNGARTZ., Concepts for higher order finite elements on sparse grids, Proceedings of the 3.Int. Conf. on Spectral and High Order Methods, pp. 159-170 , (1996)