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Volatility models

Introduced for financial series which, after differentiation, look
like this:
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with empirical autocorrelations close to zero (white noise).

But the empirical autocorrelations of the squares are generally
statistically significant.

+ volatility clustering, leptokurticity of the marginal distribution
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Standard GARCH(1,1) Model


εt = σtηt, (ηt) iid, Eηt = 0, Var(ηt) = 1

σ2
t = ω + αε2

t−1 + βσ2
t−1, ω > 0, α, β ≥ 0
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Coefficients must be constrained to produce strictly stationary
solutions:

E log(αη2
0 + β) < 0

or second-order stationary solution:

α+ β < 1
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Advantages and limits

These models are able to capture

the leptokurticity of the distributions
volatility clustering
dependence without correlation

but not

seasonal behaviors
dependence with respect to exogenous variables (ex:
temperature for the energy prices)
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A GARCH(1,1) driven by an exogenous process


εt = σtηt, (ηt) iid (0, 1)

σ2
t = ω(st) + α(st)ε2

t−1 + β(st)σ2
t−1,

where
- ω(·) > 0, α(·), β(·) ≥ 0
- (st) is a sequence of numbers st ∈ E = {1, . . . , d} (realizations
of a process (St)).

For energy prices, st could be an integer giving information
about : the day in the week (e.g. week-end or not), the level of
temperature...
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Example: 2 regimes


εt = σtηt, (ηt) iid (0, 1)

σ2
t =


ω(1) + α(1)ε2

t−1 + β(1)σ2
t−1 si st = 1

ω(2) + α(2)ε2
t−1 + β(2)σ2

t−1 si st = 2

ω(2), ω(2) > 0, α(1) ≥ 0, β(1) ≥ 0, α(2) ≥ 0, β(2) ≥ 0.
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Example : (st) periodic

Time t
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(a) Simulation of εt=σtηt with (ηt) iid N(0,1)
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Example : (st) realization of a Markov chain
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(c) Simulation of a Markov chain (st): p(1,1)=p(2,2)=0.95 
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TS models with time-dependent coefficients

Non stationary processes: Priestley (1965), Whittle
(1965), Hallin (1986)
Locally stationary processes: Dalhaus (1997)
Periodic models: Periodic ARMA (Anderson and Vecchia
(1983), Lund and Basawa (2000)); Periodic GARCH
(Bollerslev and Ghysels (1996))
ARMA with time-varying coefficients: Kwoun and
Yajima (1986), Bibi and Francq (2003), Francq and Gautier
(2004), Azrak and Mélard (2006)
Non stationary volatility models: Engle and Rangel
(2005), Dalhaus and Subba Rao (2006), Amado and
Teräsvirta (2008)
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Existence of non explosive solutions

σ2
t = ω(st) + α(st)ε2

t−1 + β(st)σ2
t−1

Proposition

For j = 1, . . . d assume that for all t,

lim
n→∞

Frequency of j among {st, st−1, . . . , st−n} := πj.

Then, the stability condition is

γ0 :=
d∑

j=1

πjE{logα(j)η2
0 + β(j)} < 0.



Model and properties of solutions
Estimation

Application to gas prices

Remarks

A sufficient condition for stability: stationarity of each
regime.

E{logα(j)η2
0 + β(j)} < 0, j = 1, . . . , d.

A necessary condition:
∏d

j=1 β
πj(j) < 1.

In the ARCH(1) case (no coefficients β), the condition is
more explicit:

d∏
j=1

απj(j) < e−E log η2
0 .

If γ0 > 0, for any initial value σ2
0

σ2
t → +∞, a.s. t→∞.
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Remarks

If for some regime α(j) = β(j) = 0 and πj > 0, the model is
stable.
Conditional and unconditional variances are
time-dependent: under existence conditions

var(εt) = ω(st) +
∞∑

n=1

(
n−1∏
i=0

(α+ β)(st−i)

)
ω(st−n).



Model and properties of solutions
Estimation

Application to gas prices

Remarks

If for some regime α(j) = β(j) = 0 and πj > 0, the model is
stable.
Conditional and unconditional variances are
time-dependent: under existence conditions

var(εt) = ω(st) +
∞∑

n=1

(
n−1∏
i=0

(α+ β)(st−i)

)
ω(st−n).



Model and properties of solutions
Estimation

Application to gas prices

Existence of moments

Proposition

If, for some positive integer m,

γm =
d∏

j=1

[
E{α(j)η2

0 + β(j)}m]πj
< 1,

the model is stable and the solution (εt) is such that Eε2m
t <∞.
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Comparison with the Markov-Switching models


εt = σtηt, (ηt) iid (0, 1)

σ2
t = ω(St) + α(St)ε2

t−1 + β(St)σ2
t−1

where (St) is a stationary, irreducible and aperiodic Markov
chain on {1, . . . , d}.

- Existence of a strictly stationary solution under the same
condition γ0 < 0 (where the πj are the stationary probabilities)

- But the moment conditions are different (depend on the
transition probabilities)

From a statistical point of view, (St) is not observed which
makes the likelihood generally intractable.
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Estimation

Model:

εt =
√

htηt, ht = ω0(st) + α0(st)ε2
t−1 + β0(st)ht−1.

Parameters:

θ = (ω(1), . . . , ω(d), α(1), . . . , α(d), β(1), . . . , β(d))′

Parameter space: Θ ⊂]0,+∞[d×[0,∞[2d.

The sequence (st) is known.
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Gaussian Quasi-likelihood

Observations: (ε1, . . . , εn) [and (s1, . . . , sn)].

Ln(θ; ε1, . . . , εn) =
n∏

t=1

1√
2πσ2

t

exp
(
− ε2

t

2σ2
t

)
,

where for t ≥ 2, with initial values,

σ2
t = σ2

t (θ) = ω(st) + α(st)ε2
t−1 + β(st)σ2

t−1.

θ̂n: QML estimator of θ0
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Use of the process (St)

A0: (st) is the realization of a process (St) which is stationary,
ergodic, and independent of (ηt).

If

γ0 =
d∑

j=1

πjE{log{α0(j)η2
0+β0(j)}} = E{log{α0(St)η2

0+β0(St)}} < 0,

there exists a strictly stationary solution (εS,t) to

εS,t = σS,tηt, σ2
S,t = ω0(St) + α0(St)ε2

S,t−1 + β0(St)σ2
S,t−1.
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Assumptions

A1: θ0 ∈ Θ and Θ is compact

A2:
∑d

j=1 πjE{log a0(j, η0)} < 0 (a0(j, η0) = α0(j)η2
0 + β0(j))

∀θ ∈ Θ,
∏d

j=1 β
πj(j) < 1.

A3: There exist r, ρ ∈ (0, 1) and C > 0 such that

∀i > 0, E {ar
0(St, ηt−1) . . . ar

0(St−i, ηt−i−1)} < Cρi+1.

A4: η2
t has a non degenerate distribution and Eη2

t = 1.

A5: For all i, α0(ei) + β0(ei) 6= 0 and there exist ` ∈ {1, . . . , d} and
k > 0 such that α0(e`)P(St−k = e`, St = ei) > 0.
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Remarks on Assumption A3:

Vanishes for an independent process (St): under A2,

Ear
0(St, ηt) < 1, for some r > 0

(Berkes, Horváth and Kokoszka (2003)).
If (St) is a stationary, irreducible, and aperiodic Markov
chain A3 is satisfied if ρ(Pr) < 1, where

Pr =

 p(1, 1)E{ar
0(1, ηt)} · · · p(d, 1)E{ar

0(1, ηt)}
...

...
p(1, d)E{ar

0(d, ηt)} · · · p(d, d)E{ar
0(d, ηt)}

 .
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Asymptotic distribution

Proposition

Under A0-A5, for almost all sequence (st),

θ̂n → θ0, a.s. as n→∞.

If, in addition, θ0 is in the interior of Θ and κη = Eη4
t <∞,

√
n(θ̂n − θ)

d
; N (0, (κη − 1)J−1)

where

J = ES,η

(
1

σ4
S,t(θ0)

∂σ2
S,t(θ0)
∂θ

∂σ2
S,t(θ0)
∂θ′

)
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Estimation of the asymptotic covariance matrix

A consistent estimator of J is

1
n

n∑
t=1

1

σ4
t (θ̂n)

∂σ2
t (θ̂n)
∂θ

∂σ2
t (θ̂n)
∂θ′

,

where

σ2
t (θ̂n) = ω̂n(st) + α̂n(st)ε2

t−1 + β̂n(st)σ2
t−1(θ̂n)



Model and properties of solutions
Estimation

Application to gas prices

1 Model and properties of solutions

2 Estimation

3 Application to gas prices



Model and properties of solutions
Estimation

Application to gas prices

Application to the modeling of gas volatility

Series of the gas spot price (Zeebrugge market) filtered from
level effects (trends, cointegration with the Brent)

→ series εt of log returns

−0.
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−0.
3

−0.
2

−0.
1

0.0
0.1

0.2
0.3

Time

2001 2002 2003 2004 2005

st: classes of temperature levels
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Estimated models

1 regime (standard GARCH)

ht = 0.0003 + 0.13 ε2
t−1 + 0.79 ht−1

(0.0000) (0.0006) (0.0011)

3 regimes

ht =


0.0003 + 0.13 ε2

t−1 + 0.80 ht−1 when Tt < 9,
(0.0002) (0.05) (0.06)

0.0011 + 0.37 ε2
t−1 + 0.36 ht−1 when 9 ≤ Tt ≤ 14,

(0.0004) (0.10) (0.16)

0.0004 + 0.14 ε2
t−1 + 0.76 ht−1 when Tt > 14.

(0.0001) (0.06) (0.10)

π1 = 0.35, π2 = 0.32, π3 = 0.33.
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Estimated models

5 regimes

ht =



0.0008 + 0.15 ε2
t−1 + 0.80 ht−1 when Tt < 6,

(0.0004) (0.08) (0.11)

0.0010 + 0.00 ε2
t−1 + 0.80 ht−1 when 6 ≤ Tt ≤ 9,

(0.0003) (0.04) (0.09)

0.0015 + 0.46 ε2
t−1 + 0.21 ht−1 when 9 < Tt ≤ 14,

(0.0004) (0.12) (0.17)

0.0007 + 0.32 ε2
t−1 + 0.62 ht−1 when 14 < Tt ≤ 16,

(0.0005) (0.12) (0.17)

0.0003 + 0.04 ε2
t−1 + 0.81 ht−1 when Tt > 16.

(0.0003) (0.05) (0.13)

π1 = 0.16, π2 = 0.19, π3 = 0.32, π4 = 0.15, π5 = 0.18.
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Estimated models

Periodic model (no temperature)

ht =



0.0001 + 0.20 ε2
t−1 + 0.77 σ2

t−1 when t ∈ Q1,
(0.0001) (0.1) (0.07)

0.0023 + 0.09 ε2
t−1 + 0.000 σ2

t−1 when t ∈ Q2,
(0.0018) (0.09) (0.74)

0.000 + 0.01 ε2
t−1 + 0.99 σ2

t−1 when t ∈ Q3,
(0.004) (0.03) (0.14)

0.0004 + 0.25 ε2
t−1 + 0.69 σ2

t−1 when t ∈ Q4.
(0.0003) (0.10) (0.12)

π1 = 0.25, π2 = 0.25, π3 = 0.25, π4 = 0.25.



Model and properties of solutions
Estimation

Application to gas prices

Comparison of estimated models

Table: Likelihoods of the estimated models and Kurtosis of the
standardized returns

GARCH 3 regimes 5 regimes 7 regimes Periodic
(d = 1) (d = 3) (d = 5) (d = 7) (d = 4)

log Ln 5173 5179 5210 5223 5217

Wald and LR tests (5% level):

GARCH(1,1) not rejected against the 3 regimes model

GARCH(1,1) rejected against the models with d > 3

Rejection of the model with 3 regimes against the 5 and 7 regimes
models

Rejection of the model with 5 regimes against the 7 regimes model
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Comparison of estimated models

MSE : mean square error of prediction of ε2

Table: MSE (×10−5) of predictions (last 500 observations)

GARCH 5 regimes 7 regimes Periodic
(d = 1) (d = 5) (d = 7) (d = 4)
9.319 9.014 9.051 9.259



Model and properties of solutions
Estimation

Application to gas prices

Summary and conclusions

Standard GARCH models are not appropriate for series displaying non
stationarities.

The proposed model is conditional to an exogenous process. More
flexible than purely periodic models.

Solutions, when existing, are non stationary. The existence conditions
depend on the GARCH coefficients and the frequencies of occurence of
the different regimes.

QML estimation requires additional assumptions on the exogenous
process. Numerical implementation is not more difficult than with
standard GARCH models.

Taking into account the temperature allows to better model the volatility
of gas prices. A 7 regimes model seems to be the most satisfactory.
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