
Actor critic learning algorithms for mean-field control
with moment neural networks ∗

Huyên Pham† Xavier Warin ‡

September 11, 2023

Abstract

We develop a new policy gradient and actor-critic algorithm for solving mean-field control
problems within a continuous time reinforcement learning setting. Our approach leverages a
gradient-based representation of the value function, employing parametrized randomized policies.
The learning for both the actor (policy) and critic (value function) is facilitated by a class of
moment neural network functions on the Wasserstein space of probability measures, and the key
feature is to sample directly trajectories of distributions. A central challenge addressed in this study
pertains to the computational treatment of an operator specific to the mean-field framework. To
illustrate the effectiveness of our methods, we provide a comprehensive set of numerical results.
These encompass diverse examples, including multi-dimensional settings and nonlinear quadratic
mean-field control problems with controlled volatility.

Keywords: Mean-field control, reinforcement learning, policy gradient, moment neural network,
actor-critic algorithms.

1 Introduction
This paper is concerned with the numerical resolution of mean-field (a.k.a. McKean Vlasov) control
in continuous time in a partially model-free reinforcement learning setting. The dynamics of the
controlled mean field stochastic differential equation on Rd is in the form

dXt = b(t,Xt,PXt , αt)dt+ σ(t,Xt,PXt , αt)dWt, 0 ≤ t ≤ T, X0 ∼ µ0,

where W is a standard d-dimensional Brownian motion on a filtered probability space (Ω,F ,F =
(Ft)t,P), µ0 ∈ P2(Rd), the Wasserstein space of square integrable probability measures, PXt

denotes
the marginal distribution of Xt at time t, and the control process α is valued in A ⊂ Rp. The coefficients
b, σ are in the separable form:

(SC) b(t, x, µ, a) = β(t, x, µ) + C(t, a), σσ⊺(t, x, µ, a) = Σ(t, x, µ) + ϑ(t, a),

for (t, x, µ, a) ∈ [0, T ]×Rd×P2(Rd)×Rp, where β, Σ depending on the state variable and its probability
distribution are unknown functions, while the coefficients C, ϑ on the control are known functions on
[0, T ]× Rp.

The expected total cost associated to a control α is given by

E
[ ∫ T

0

f(Xt,PXt
, αt)dt+ g(XT ,PXT

)
]
, (1.1)
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and we denote by (t, x, µ) 7→ V (t, x, µ) the associated value function defined on [0, T ]×Rd×P2(Rd). The
analytical forms of f , g are unknown, but it is assumed that given an input (x, µ, a) ∈ Rd×P2(Rd)×A,
we obtain (by observation or from a blackbox) the realized output costs f(x, µ, a) and g(x, µ). Such
setting is partially model-free, as the model coefficients β, Σ, f , and g are unknown, and we only
assume that the action functions C, ϑ on the control are known.

The theory and applications of mean-field control (MFC) problems have generated a vast literature
in the last decade, and we refer to the monographs [2], [3] for a comprehensive treatment of this topic.
From a numerical aspect, the main challenging issue is the infinite dimensional feature of MFC coming
from the distribution law state variable. In a model-based setting, i.e., when all the coefficients b,
σ, f and g are known, several recent works have proposed deep learning schemes for MFC, based
on neural network approximations of the feedback control and/or the value function solution to the
Hamilton-Jacobi-Bellman equation from the dynamic programming or backward stochastic differential
equations (BSDEs) from the maximum principle, see [5], [8], [9], [11], [17], [16], [14].

The approximation of solutions to MFC in a (partially) model-free setting is the purpose of rein-
forcement learning (RL) where one learns in an unknown environment the optimal control (and the
value function) by repeatedly trying policies, observing state, receiving and evaluating rewards, and
improving policies. RL is a very active branch of machine learning, see the seminal reference mono-
graph [18], and has recently attracted attention in the context of mean-field control in discrete-time,
and mostly by Q-learning methods, see [6], [1], [10].

In this paper, we consider a partially model-free continuous time setting as described above, and
adopt a policy gradient approach as in [7]. This relies on a gradient representation of the cost functional
associated to randomized policies, which makes appear an additional operator term H compared to the
classical diffusion setting of [12], and specific to the mean-field setting. The computational treatment
of this operator H on functions defined on the Wasserstein space is the crucial issue, and has been
handled in [7] only for one-dimensional linear quadratic (LQ) models, hence with a very particular
dependence of the value function and optimal control on the law of the state. Here, we address the
general dependence of the coefficients on the distribution state, and deal with the operator H by
means of the class of moment neural networks. This class of neural networks consists of functions that
depend on the measure via its first L moments, and satisfies some universal approximation theorem
for functions defined on the Wasserstein space, see [15], [20]. We then design an actor-critic algorithm
for learning alternately the optimal policy (actor) and value function (critic) with moment neural
networks, which provides an effective resolution of MFC control problems in a (partially) model-free
setting beyond the LQ setting for multivariate dynamics with control on the drift and the volatility.
Our actor-critic algorithm has the structure of general actor-critic algorithms but during gradient
iterations, instead of following a single state trajectory by sampling, we follow the evolution of an
entire distribution that is initially randomly chosen and described by its empirical measure obtained
with a large fixed number of particles. Then, the batch version of the algorithm consists in sampling
and following N distributions together to estimate the gradients.

The outline of the paper is organized as follows. We recall in Section 2 the gradient representation
of the functional cost with randomized policies and formulate notably the expression of the operator H.
In Section 3, we consider the class of moment neural networks, and show how it acts on the operator
H. We present in Section 4 the actor-critic algorithm, and Section 5 is devoted to numerical results
for illustrating the accuracy and efficiency of our algorithm. We present various examples with control
on the drift and on the volatility, and non LQ examples in a multi-dimensional setting.
Notations. The scalar product between two vectors x and y is denoted by x · y, and | · | is the
Euclidian norm. Let Q = (Qi1...iq ) ∈ Rd1×...×dq be a tensor of order q, and P = (Pi1...ip) ∈ Rd1×...×dp

be a tensor of order p ≤ q. We denote by Q ◦ P the circ product defined as the tensor in Rdp+1×...×dq

with components:

[Q ◦ P ]ip+1...iq =
∑

i1,...,ip

Qi1...ipip+1...iqPi1...ip .

When q = p = 1, ◦ is the scalar product in Rd1 . When q = 2, p = 1, Q ◦ P = Q⊺P ∈ Rd2 where ⊺ is
the transpose matrice operator. When q = p = 2, ◦ is the inner product Q ◦ P = tr(Q⊺P ) where tr is
the trace operator. When q = 3, Q ◦ P is a vector in Rd3 for p = 2, and a matrix in Rd2×d3 for p = 1.
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2 Preliminaries
We adopt a policy gradient approach by searching optimal control among parametrized randomized
policies, i.e., family of probability transition kernels πθ from [0, T ]×Rd×P2(Rd) into Rp, with densities
pθ(t, x, µ, .) w.r.t. some measure on Rp, and thus by minimizing over the parameters θ ∈ RD the
functional

J(θ) = Eα∼πθ

[ ∫ T

0

f(Xt,PXt , αt)dt+ g(XT ,PXT
)
]
. (2.1)

Here α ∼ πθ means that at each time t, the action αt is sampled (independently from W ) from the
probability distribution πθ(.|t,Xt,PXt

).

Remark 2.1. We may include a entropy (e.g. Shannon) regularizer term in the functional cost (2.1)
as proposed in [19] for encouraging exploration of randomized policies. This can slightly help the
convergence of the policy gradient algorithms by permitting the use of higher learning rates, but it
turns out that it does not really improve the accuracy of the results. Here, we only consider exploration
through the randomization of policies.

We have the gradient representation of J as derived in [7]:

G(θ) := ∇θJ(θ)

= Eα∼πθ

[ ∫ T

0

∇θ log pθ(t,Xt,PXt
, αt)

[
dJθ(t,Xt,PXt

) + f(Xt,PXt
, αt)dt

]
+

∫ T

0

Hθ[Jθ](t,Xt,PXt
)dt

]
, (2.2)

where Jθ : [0, T ]×Rd×P2(Rd)→ R is the dynamic value function associated to (2.1), hence satisfying
the property that

(MJ) {Jθ(t,Xt,PXt
) +

∫ t

0

f(Xs,PXs
, αs)ds, 0 ≤ t ≤ T} is a martingale,

and Hθ is the operator specific to the mean-field framework, defined by

Hθ[φ](t, x, µ) = ∇θEξ∼µ

[
bθ(t, ξ, µ) · ∂µφ(t, x, µ)(ξ) +

1

2
Σθ(t, ξ, µ) ◦ ∂ξ∂µφ(t, x, µ)(ξ)

]
∈ RD

with bθ(t, x, µ) =
∫
A
b(t, x, µ, a)πθ(da|t, x, µ), Σθ(t, x, µ) =

∫
A
σσ⊺(t, x, µ, a)πθ(da|t, x, µ). Here ∂µφ(t, x, µ)(.)

is the Lions-derivative with respect to µ ∈ P2(Rd), and it is a function from Rd into Rd, and Eξ∼µ[.]
means that the expectation is taken with respect to the random variable ξ distributed according to µ.

Notice that under the structure condition (SC), we have

bθ(t, x, µ) = β(t, x, µ) + Cθ(t, x, µ), Σθ(t, x, µ) = Σ(t, x, µ) + ϑθ(t, x, µ)

where Cθ(t, x, µ) :=
∫
A
C(t, a)πθ(da|t, x, µ), ϑθ(t, x, µ) :=

∫
A
ϑ(t, a)πθ(da|t, x, µ) are known functions,

and thus

Hθ[φ](t, x, µ) = ∇θEξ∼µ

[
Cθ(t, ξ, µ) · ∂µφ(t, x, µ)(ξ) +

1

2
ϑθ(t, ξ, µ) ◦ ∂ξ∂µφ(t, x, µ)(ξ)

]
.

3 Parametrization of actor/critic functions with moment neural
networks

A moment neural network function on [0, T ]× Rd × P2(Rd) of order L ∈ N∗ is a parametric function
in the form

ϕη(t, x, µ) = Ψη(t, x, µ̄L),
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where µ̄L = (µ̄ℓ)ℓ∈L, with µ̄ℓ = Eξ∼µ[
∏d

i=1 ξ
ℓi
i ] for ℓ = (ℓi)i∈J1,dK ∈ L = {ℓ = (ℓ1, . . . , ℓd) ∈ Nd :∑d

i=1 ℓi ≤ L} of cardinality Ld, and (t, x, y) ∈ [0, T ] × Rd × RLd 7→ Ψη(t, x, y) is a classical finite-
dimensional feedforward neural network with parameters η. Moment neural networks have been con-
sidered in [20] as a special case of cylindrical mean-field neural networks, and satisfy a universal
approximation theorem for continuous functions on [0, T ]×Rd×P2(Rd), see [15]. By abuse of notation
and language, we identify ϕη and Ψη, and call them indifferently moment neural networks.

We shall parametrize the randomized policy (actor) by a Gaussian probability transition kernel in
the form

πθ(.|t, x, µ) = N (mθ(t, x, µ̄L), λIp),

where mθ is a moment neural network, hence with log density:

log pθ(t, x, µ, a) = −1

2
log(2πλ)− |a−mθ(t, x, µ̄L)|2

2λ
,

and λ > 0 is a parameter for exploration. Notice that in this case, the known functions Cθ, ϑθ depend
on µ only though its L moments µ̄L, and by misuse of notation we also write: Cθ(t, x, µ̄L), ϑθ(t, x, µ̄L).

The value function (critic) is parametrized by a moment neural network Jη(t, x, µ) = Jη(t, x, µ̄L),
and we notice that

∂µJη(t, x, µ)(ξ) = D1(ξ) ◦ ∇yJη(t, x, µ̄L)

∂ξ∂µJη(t, x, µ)(ξ) = D2(ξ) ◦ ∇yJη(t, x, µ̄L),

where D1(ξ) is the matrix in RLd×d, and D2(ξ) is the tensor in RLd×d×d with components

[D1(ξ)]ℓi = ℓiξ
ℓi−1
i

∏
k ̸=i

ξℓkk , for ξ = (ξi)i∈J1,dK, ℓ = (ℓi)i∈J1,dK,

[D2(ξ)]ℓij =

{
ℓi(ℓi − 1)ξℓi−2

i

∏
k ̸=i ξ

ℓk
k , i = j

ℓiℓjξ
ℓi−1
i ξ

ℓj−1
j

∏
k ̸=i,j ξ

ℓk
k , i ̸= j.

The expression of the operator Hθ applied to the moment neural network critic function is then
given by

Hθ[Jη](t, x, µ) = ∇θ

[
Eξ∼µ

[
D1(ξ)Cθ(t, ξ, µ̄L) +

1

2
D⊺

2(ξ) ◦ ϑθ(t, ξ, µ̄L)
]
· ∇yJη(t, x, µ̄L)

]
. (3.1)

Here D⊺

2(ξ) is the tensor in Rd×d×Ld with components [D⊺

2(ξ)]ijℓ = [D2(ξ)]ℓij .
In the algorithm, we shall use the expectation of Hθ, which is given from (3.1) by

Hθ[Jη](t, µ) := Eξ∼µ

[
Hθ[Jη](t, ξ, µ)

]
= ∇θ

[
Eξ∼µ

[
D1(ξ)Cθ(t, ξ, µ̄L) +

1

2
D⊺

2(ξ) ◦ ϑθ(t, ξ, µ̄L)
]
· ∇yEξ∼µ

[
Jη(t, ξ, µ̄L)

]]
.

Remark 3.1. 1. For complexity argument, it is crucial to rely on the above expression of the operator
Hθ where the differentiation is taken on the expectation Eξ∼µ[.], and not the reversal: expectation of
the differentiation. Indeed, in the latter case, after empirical approximation of the expectation with M
samples ξj ∼ µ, j = 1, . . . ,M , one should compute by automatic differentiation

∇θ

[
D1(ξ

j)Cθ(t, ξ
j , µ̄L) +

1

2
D⊺

2(ξ
j) ◦ ϑθ(t, ξ

j , µ̄L)
]
, ∇yJη(t, ξj , µ̄L), j = 1, . . . ,M,

which is very costly as M is of order 104. In the former case, Hθ[Jη](t, µ) is approximated by automatic
differentiation via

ĤM
θ [Jη](t, µ) := ∇θ

[
1
M

∑M
j=1 D1(ξ

j)Cθ(t, ξ
j , µ̄L) +

1
2D

⊺

2(ξ
j) ◦ ϑθ(t, ξ

j , µ̄L) · ∇y
1
M

∑M
j=1 Jη(t, ξj , µ̄L)

]
.
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hence saving an order M for the complexity cost. In theory, it is also possible to choose other networks
for taking into account the dependency on the distribution µ: the cylindrical network proposed in [15]
could be used but some automatic differentiation are then requested to calculate ∂µJη(t, x, µ)(ξ) and
∂ξ∂µJη(t, x, µ)(ξ) for each sample of ξ leading to an explosion in the computation time.
2. In order to calculate the term ∇yJη, it is necessary to explore different initial distributions, other-
wise Jη only depends on t and x at convergence and the gradient is impossible to estimate.

4 Algorithm
The actor-critic method consists in two optimization stages that are performed alternately:

(1) Policy evaluation: given an actor policy πθ, evaluate its cost functional with the critic func-
tion Jη that minimizes the loss function arising from the martingale property (MJ) after time
discretization of the interval [0, T ] with the time grid {tk = k∆t, k = 0, . . . , n}:

LPE(η) = Eα∼πθ

[ n−1∑
k=0

∣∣gtn +

n−1∑
l=k

ftl∆t− Jη(tk, Xtk , µtk)
∣∣2∆t

]
,

where we set µtl = PXtl
for the law of Xtl , and ftl = f(Xtl , µtl , αtl) as the output cost at time

tl for input state Xtl , law µtl , action αtl ∼ πθ(.|tl, Xtl , µtl), and gtn = g(Xtn , µtn) the terminal
output cost for input Xtn , µtn .

(2) Policy gradient: given a critic cost function Jη, update the parameter θ of the actor by stochastic
gradient descent by using the gradient, which is given from (2.2) and after time discretization by

G(θ) = Eα∼πθ

[ n−1∑
k=0

∇θ log pθ(tk, Xtk , µtk , αtk)
[
Jη(tk+1, Xtk+1

, µtk+1
)− Jη(tk, Xtk , µtk)

+ ftk∆t
]
+Hθ[Jη](tk, Xtk , µtk)

]
.

In the practical implementation, we proceed as follows for each epoch e (gradient iteration descent)
with a given exploration parameter λ(e) decreasing to 0:

• We start with a batch N (of order 10) of initial distributions µi
0, i = 1, . . . , N , e.g. Gaussian

distributions by varying the mean and std deviations parameters, and sample Xi,j
0 ∼ µi

0, j
= 1, . . . ,M with M of order 104. If our ultimate goal is to learn the optimal control and
function value for other families of initial distributions, the initial distributions should be sampled
accordingly.

• We then run by forward induction in time: for k = 0, . . . , n− 1:

- Empirical estimate of µi
tk

from (Xi,j
tk

)j∈J1,MK, for i = 1, . . . , N .

- Sample αi,j
tk
∼ πθ(.|tk, Xi,j

tk
, µi

tk
), i ∈ J1, NK, j ∈ J1,MK using the exploration parameter

λ(e)

- Observe running cost f i,j
tk

= f(Xi,j
tk

, µi
tk
, αi,j

tk
), and next state Xi,j

tk+1
, i ∈ J1, NK, j ∈ J1,MK

• Observe final cost gi,jtn = g(Xi,j
tn , µi

tn), i ∈ J1, NK, j ∈ J1,MK

• Compute the empirical mean approximation of LPE(η) on all initial distributions µi
0, i ∈ J1, NK:

L̃PE
M (η) =

1

MN

N∑
i=1

M∑
j=1

n−1∑
k=0

∣∣gi,jtn +

n−1∑
l=k

f i,j
tl

∆t− Jη(tk, Xi,j
tk

, µi
tk
)
∣∣2∆t,

and update the critic parameter by

η ←− η − ρC∇ηL̃
PE
M (η),

where ρC is a learning rate. Notice that the gradient is calculated by automatic differentiation.
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• Compute the empirical mean approximation of G(θ) on all initial distributions µi
0, i ∈ J1, NK:

G̃M (θ) = ∇θ
1

MN

N∑
i=1

M∑
j=1

{ n−1∑
k=0

log pθ(tk, X
i,j
tk

, µi
tk
, αi,j

tk
)
[
Jη(tk+1, X

i,j
tk+1

, µi
tk+1

)− Jη(tk, Xi,j
tk

, µi
tk
)

+ f i,j
tk

∆t
]}

+ H̃M
θ [Jη]

where

H̃M
θ [Jη] = ∇θ

( 1

N

N∑
i=1

[ n−1∑
k=0

( 1

M

M∑
j=1

D1(X
i,j
tk

)Cθ(tk, X
i,j
tk

, µi
tk
) +

1

2
D⊺

2(X
i,j
tk

) ◦ ϑθ(tk, X
i,j
tk

, µi
tk
)
)
·

∇y

( 1

M

M∑
j=1

Jη(tk, Xi,j
tk

, µi
tk
)
)])

and update the actor parameter by

θ ←− θ − ρAG̃M (θ),

where ρA is a learning rate. Again for efficiency, it is crucial to compute by automatic differen-
tiation the gradient after computing all the different expectations as in Remark 3.1.

The output (θ∗, η∗) are the optimal parameters obtained at convergence of the algorithm.

Remark 4.1. Compared to classical actor critic algorithm where one samples a trajectory for a given
distribution, here the batch version of the algorithm consists in sampling and following N distributions
together to estimate the gradients.

Remark 4.2. In order to check that the algorithm has effectively converged to the solution, we can
use the calculated control mθ∗(t, x, µ) and apply it from different initial distributions µ0 sampled as
(Xj

0)j∈J1,MK in a time discretized version of (1.1). Taking discrete expectation, we can compare the re-
sult obtained to 1

M

∑M
j=1 Jη∗(0, Xj

0 , µ0). When results are very close, we can suppose that the algorithm
has effectively converged to the right solution.

Remark 4.3. In the case where we know a priori that the running cost and terminal cost functions
depend on the probability distribution µ only via its moments µ̄L, then we only need to estimate the
moments of µi

tk
from (Xi,j

tk
)j∈J1,MK, since all the other coefficients in the algorithm depend upon the

measure via its moments.

Remark 4.4. When Cθ(t, x, µ) :=
∫
A
C(t, a)πθ(da|t, x, µ), ϑθ(t, x, µ) :=

∫
A
ϑ(t, a)πθ(da|t, x, µ) are not

analytically explicit, it is always possible to estimate them numerically for example using a numerical
quadrature or a quasi Monte carlo/Monte-Carlo method but with some non negligible extra costs.

5 Numerical results
Throughout this section, we use moment neural networks with 3 hidden layers and 20 neurons on
each layer, and choose the activation function tanh. The exploration parameter λ is a function of the
number of gradient descent iterations (epoch number e ≤ N̂):

λ(e) = (λ̄− λ)
(
1− S

(20e− 10N̂

N̂

))
+ λ,

where λ = 0.0001 and λ̄ = 0.1 and S is the sigmoid function: S(x) = 1
1+exp(−x) . In other words, it is

chosen so that the exploration period with λ close to 0.1 is long enough, then λ slowly decreases to
0.0001 and stays close to that value long enough. This fonction is plotted on Figure 1.
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Figure 1: Exploration function λ for a number of epochs N̂ = 6000.

At a gradient descent iteration e, we sample the control as:

πθ(.|t, x, µ) ∼ N (mθ(t, x, µ), λ(e)Ip).

During the gradient descent algorithm, we use the ADAM optimizer [13]. We point out that it is
crucial to use two timescales approach (see [1]), for the learning rates ρC , ρA of the critic and actor
updates: ρC should be at least one order of magnitude higher than ρA to get good convergence, hence
the approximate critic function should evolve faster. We take a batch size N = 10 while the number
of samples to estimate distributions is taken equal to M = 10000 or M = 20000 depending on the
examples.

In the tables and figures below, we give the average analytic solution "Anal" at t = 0, i.e.
EX0∼µ0

[V (0, X0, µ0)], and the average calculated value function "Calc": EX0∼µ0
[Jη∗(0, X0, µ0)] ob-

tained by the algorithm at t = 0, by varying the initial distributions µ0. The MSE is the mean
square error between the analytic and the critic value computed at t = 0, i.e. EX0∼µ0

∣∣Jη∗(0, X0, µ0)−
V (0, X0, µ0)

∣∣2, and the relative error is

RelError =
EX0∼µ0

[
Jη∗(0, X0, µ0)− V (0, X0, µ0)

]
EX0∼µ0 [V (0, X0, µ0)]

We shall also plot in the one-dimensional case d = 1, and A = R, the trajectories of the optimal control
t 7→ α∗

t vs the ones obtained from moment neural networks, i.e., t 7→ mθ∗(t,Xt, (E[Xℓ
t ])ℓ∈J1,LK).

All training times are calculated on a on GPU NVidia V100 32Go graphic card.
We consider four examples with control on the drift, including multidimensional setting and nonlin-

ear quadratic mean-field control, and one example with controlled volatility, for which we have analytic
solutions to be compared with the approximations calculated from our actor critic algorithm.

5.1 Examples with controlled drift
In the four examples of this paragraph, we take ϑ(t, a) ≡ 0, C(t, a) = a and so ϑθ ≡ 0, Cθ = mθ.

5.1.1 Systemic risk model in one dimension

We consider the model in [4]:{
b(x, µ, a) = κ(µ̄− x) + a, σ positive constant
f(x, µ, a) = 1

2a
2 − qa(µ̄− x) + p

2 (µ̄− x)2, g(x, µ) = c
2 (x− µ̄)2,

for (x, µ, a) ∈ R×P2(R)× R, with some positive constants κ, q, p, c > 0, q2 ≤ p. Here we denote by
µ̄ := Eξ∼µ[ξ].

In this linear quadratic (LQ) model, the value function is explicitly given by

V (t, x, µ) = K(t)(x− µ̄)2 + σ2R(t), (5.1)
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where

K(t) = −1

2

[
κ+ q −

√
∆

√
∆sinh(

√
∆(T − t)) + (κ+ q + c) cosh(

√
∆(T − t))√

∆cosh(
√
∆(T − t)) + (κ+ q + c) sinh(

√
∆(T − t))

]
,

with
√
∆ =

√
(κ+ q)2 + p− q2, and

R(t) =
σ2

2
ln
[
cosh(

√
∆(T − t)) +

κ+ q + c√
∆

sinh(
√
∆(T − t))

]
− σ2

2
(κ+ q)(T − t),

while the optimal control is given by

α∗
t = (2K(t) + q)(E[Xt]−Xt), 0 ≤ t ≤ T.

The parameters of the model are fixed to the following values: κ = 0.6 , σ = 1, p = c = 2, q = 0.8,
T = 1. We take a number of time steps n = 100, M = 10000. At each gradient iteration, the initial
distribution is sampled with

X0 ∼ µ0 = υ0 N (0, 1),

where υ2
0 is sampled at each iteration according to the uniform distribution on [0, 1] for each element

of the batch. In the table, we give the results obtained in simulation with υ2
0 ∈ {0, 1

10 , . . . , 1} after
training with L = 2 moments, using N̂ = 6000 gradient iterations.

υ2
0 0. 0.1 0.2 0.3 0.4

Anal 0.3870 0.4095 0.4321 0.4546 0.4772
Calc 0.3958 0.4198 0.4421 0.4642 0.4875
MSE 0.0001 0.0001 0.0002 0.0002 0.0004
υ2
0 0.5 0.6 0.7 0.8 0.9

Anal 0.4997 0.5223 0.5448 0.5674 0.5900
Calc 0.5112 0.5341 0.5593 0.5858 0.6082
MSE 0.0005 0.0005 0.0006 0.0005 0.0007

Table 1: Results for the systemic model using L = 2, ρA = 0.0005, ρC = 0.01. Training time is 106863s.

On Figure 2, we plot 3 trajectories of the optimal control and the ones calculated with moment
neural networks, and we observe that the control is very well estimated.

Trajectory 1 Trajectory 2 Trajectory 3

Figure 2: Trajectories of control with υ2
0 = 0.9

In this LQ example, we know that the suitable number of moments to take is L = 2. In the real
test case, we do not know which L to take. In Table 2, we give the results with L = 4, which shows
that the results are also very accurate and do not depend on L being small.
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υ2
0 0. 0.1 0.2 0.3 0.4

Anal 0.3869 0.4095 0.4320 0.4546 0.4771
Calc 0.3917 0.4159 0.4376 0.4588 0.4801
MSE 0.0000 0.0000 0.0001 0.0001 0.0001
υ2
0 0.5 0.6 0.7 0.8 0.9

Anal 0.4997 0.5222 0.5448 0.5674 0.5899
Calc 0.5023 0.5249 0.5471 0.5688 0.5891
MSE 0.0000 0.0001 0.0001 0.0002 0.0003

Table 2: Results for the systemic case using L = 4, ρA = 0.0005, ρC = 0.01. Training time is 115183s.

5.1.2 An optimal trading example

We consider an optimal trading model taken from [7]:{
b(x, µ, a) = a, σ positive constant
f(x, µ, a) = a2 + 2Pa, g(x, µ) = γ(x− µ̄)2,

for (x, µ, a) ∈ R × P2(R) × R, with P > 0 the constant transaction price per trading, and γ > 0 the
risk aversion parameter.

In this LQ framework, the value function has the form as in (5.1) with

K(t) =
γ

1 + γ(T − t)
, R(t) = σ2 log(1 + γ(T − t))− P 2(T − t),

while the optimal control is given by

α∗
t = −K(t)(Xt − E[Xt])− P, 0 ≤ t ≤ T.

We take the following parameters : P = 3, γ = 3, σ = 1, T = 0.5, and n = 100, M = 10000. At
each gradient iteration, the initial distribution is sampled with

X0 ∼ µ0 = µ̄0 + υ0N (0, 1),

where (µ̄0, υ
2
0) are sampled from (0.4U([0, 1]), 0.5U([0, 1])) for each element of the batch.

The relative error is plotted on Figure 3 by varying (µ̄0, υ0), while the trajectories of the control
(optimal vs moment neural netwok) are plotted on Figure 4. Again, in this LQ example, the suitable
number of moments to take is L = 2, and when we increase L, convergence is more difficult to
achieve and results become more instable and may depend on the run with the same hyper-parameters.
Nevertheless we manage to obtain very good results with L = 4 as shown on Figure 3.

L = 2, training time is 110900s L = 4, Training time is 120000s

Figure 3: Relative error with ρA = 0.0005, ρC = 0.01, N̂ = 9000.
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Trajectory 1 Trajectory 2 Trajectory 3

Figure 4: Controlled trajectories for µ̄0 = 0.16, υ2
0 = 0.1, ρA = 0.0005, ρC = 0.01, L = 2.

5.1.3 A non linear quadratic mean-field control

We construct an ad-hoc mean-field control model with{
b(t, x, µ, a) = β(t, x, µ) + a, σ positive constant
f(x, µ, a) = F (t, x, µ) + 1

2 |a|
2, g(x, µ) = Eξ∼µ[w(x− ξ)]

for some smooth C2 even function w on R, e.g. w(x) = cos(x), and F is a function to be chosen later.
In this case, the optimal feedback control valued in A = R is given by

a⋆(t, x, µ) = â(t, x,U(t, x, µ)) = −U(t, x, µ) = −∂µv(t, µ)(x)
with v(t, µ) = Eξ∼µ[V (t, ξ, µ)],

and V is solution to the Master Bellman equation (see section 6.5.2 in [2]):

∂tV (t, x, µ) +
(
β(t, x, µ)− U(t, x, µ)

)
∂xV (t, x, µ) +

σ2

2
∂2
xxV (t, x, µ)

+ Eξ∼µ

[(
β(t, ξ, µ)− U(t, ξ, µ)

)
∂µV (t, x, µ)(ξ) +

σ2

2
∂x′∂µV (t, x, µ)(ξ)

]
+ F (t, x, µ) +

1

2
|U(t, x, µ)|2 = 0, (5.2)

with the terminal condition V (T, x, µ) = g(x, µ).
We look for a solution to the Master equation in the form: V (t, x, µ) = eT−tEξ∼µ[w(x − ξ)]. For

such function V , we have ∂tV (t, x, µ) = −V ,

∂xV (t, x, µ) = eT−tEξ∼µ[w
′(x− ξ)], ∂2

xxV (t, x, µ) = eT−tEξ∼µ[w
′′(x− ξ)]

∂µV (t, x, µ)(ξ) = −eT−tw′(x− ξ), ∂x′∂µV (t, x, µ)(ξ) = eT−tw′′(x− ξ),

and

U(t, x, µ) = eT−tEξ∼µ[w
′(x− ξ)− w′(ξ − x)] = 2eT−tEξ∼µ[w

′(x− ξ)] = 2∂xV (t, x, µ).

since w is even. By plugging these derivatives expressions of V into the l.h.s. of (5.4), we then see that
by choosing F equal to

F (t, x, µ) = eT−tEξ∼µ

[
(w − σ2w′′)(x− ξ) + (β(t, ξ, µ)− β(t, x, µ))w′(x− ξ)

]
− 2e2(T−t)E(ξ,ξ′)∼µ⊗µ

[
w′(x− ξ)w′(ξ − ξ′)

]
,

the function V satisfies the Master Bellman equation, hence is the value function to the mean-field
control problem.
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Actually, with the choice of w(x) = cos(x), and using trigonometric relations, we have

F (t, x, µ) = cos(x)
[
eT−t

(
(1 + σ2)Eξ∼µ[cos(ξ)] + Eξ∼µ[sin(ξ)β(t, ξ, µ)]− β(t, x, µ)Eξ∼µ[sin(ξ)]

)
− 2e2(T−t)

(
Eξ∼µ[sin(ξ) cos(ξ)]Eξ∼µ[sin(ξ)]− Eξ∼µ[sin

2(ξ)]Eξ∼µ[cos(ξ)]
) ]

+ sin(x)
[
eT−t

(
(1 + σ2)Eξ∼µ[sin(ξ)]− Eξ∼µ[β(t, ξ, µ) cos(ξ)] + β(t, x, µ)Eξ∼µ[cos(ξ)]

)
− 2e2(T−t)

(
Eξ∼µ[sin(ξ) cos(ξ)]Eξ∼µ[cos(ξ)]− Eξ∼µ[cos

2(ξ)]Eξ∼µ[sin(ξ)]
) ]

.

For the test case, we take

β(t, x, µ) = κ(µ̄− x), (5.3)

with the parameters κ = σ = 1, T = 0.4, n = 40, M = 20000. At each gradient iteration, the initial
distribution is sampled with

X0 ∼ µ0 = µ̄0 + υ0N (0, 1)

where (µ̄0, υ
2
0) is sampled from (0.2U([0, 1]), 0.5U([0, 1])) for each element of the batch. On Figure 5,

we give the analytic solution depending on (µ̄0, υ
2
0) and the relative error obtained by the algorithm.

We observe that the results are quite accurate.

Analytic value Relative error

Figure 5: Non LQ model using N̂ = 9000 gradient iterations, L = 3, ρA = 0.0005, ρC = 0.02. Training time is 45200s.

We plot in Figure 6 the trajectories of the optimal control vs the moment neural network, and
observe that they are very close.

Trajectory 1 Trajectory 2 Trajectory 3

Figure 6: Control trajectories in a non LQ model using N̂ = 9000 gradient iterations, L = 3, ρA = 0.0005, ρC = 0.02,
for (µ̄0, υ2

0) = (0.16, 0.1).
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Figure 7 shows that using L = 2 or 3 is optimal in terms of relative error, while the convergence is
more difficult to achieve for high values of L.

L = 2 L = 4

L = 5 L = 6

Figure 7: Relative error in a non LQ model for different values of L. N̂ = 9000 gradient iterations, ρA = 0.0005,
ρC = 0.02.

5.1.4 A multi-dimensional LQ example

We consider a multi-dimensional extension of the LQ systemic risk model in Section 5.1.1, by supposing
that on each dimension, the dynamics satisfies the same equation with independent Brownian motions,
and that the cost functions are the sum over each component of the cost function in the univariate case.
In this case, the value function is given by V (t, x, µ) =

∑d
i=1 V1(t, xi, µi), for t ∈ [0, T ], x = (xi)i∈J1,dK

∈ Rd, µi is the i-th marginal law of µ ∈ P2(Rd), and V1 is the value function in the univariate model
given by (5.1).

We keep the same parameters as in Section 5.1.1, with a number of time steps n = 50, M = 10000,
L = 2, and test in dimension d = 2 and 3. At each gradient iteration, the initial distribution is sampled
from

X0 ∼ µ0 = N (0, υ0),

where υ0 is the diagonal d × d-matrix with diagonal elements υ0,i sampled from uiU([0, 1]), with
constants ui ∈ [0, 1], i = 1, . . . , d, for each element of the batch.

We plot in Figure 8 the relative error in dimension d = 2 by varying (υ0,1, υ0,2), and for L = 2 and
L = 4. In Figure 9, we plot the relative error in dimension d = 3 by varying (υ0,1, υ0,2), and for υ0,3
= 0.
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L = 2, N̂ = 6000 , ρA = 0.001 L = 4, N̂ = 9000 , ρA = 0.0005

Figure 8: Relative error in dimension d = 2, with ρC = 0.01.

Figure 9: Relative error for L = 2 in dimension d = 3, with N̂ = 9000 gradient iterations, ρA = 0.0005, ρC = 0.01.
Training time is 144000s.

5.2 A non LQ example with controlled volatility
We consider a one-dimensional model with{

b(t, x, µ, a) = β(t, x, µ), σ(t, x, µ, a) = a,

f(x, µ, a) = F (t, x, µ) + 1
2P |a|

2 − a, g(x, µ) = Eξ∼µ[w(x− ξ)],

where P is a positive constant, w is a smooth C2 even function on R, e.g. w(x) = cos(x), and F is a
function to be chosen later. Notice that Cθ ≡ 0, and

ϑθ(t, x, µ) = mθ(t, x, µ)
2 + λ,

where λ= λ(e) (depending on the epoch e) is the exploration parameter of πθ(.|t, x, µ) =N (mθ(t, x, µ), λ).
In this model, the optimal feedback control valued in A = R is given by

a⋆(t, x, µ) = â(t, x, ∂xU(t, x, µ)) =
1

P + ∂xU(t, x, µ)
,

with U(t, x, µ) = ∂µv(t, µ)(x), v(t, µ) = Eξ∼µ[V (t, ξ, µ)],
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and V is solution to the Master Bellman equation:

∂tV (t, x, µ) + β(t, x, µ)∂xV (t, x, µ) +
1

2

1

(P + ∂xU(t, x, µ))2
∂2
xxV (t, x, µ)

+ Eξ∼µ

[
β(t, ξ, µ)∂µV (t, x, µ)(ξ) +

1

2

1

(P + ∂xU(t, ξ, µ))2
∂x′∂µV (t, x, µ)(ξ)

]
+ F (t, x, µ) +

1

2

P

(P + ∂xU(t, x, µ))2
− 1

P + ∂xU(t, x, µ)
= 0, (5.4)

with the terminal condition V (T, x, µ) = g(x, µ).
We look for a solution to the Master equation in the form: V (t, x, µ) = eT−tEξ∼µ[w(x− ξ)], and by

similar calculations as in Section 5.1.3, we would have U(t, x, µ) = 2∂xV (t, x, µ) = 2eT−tEξ∼µ[w
′(x−ξ)].

Therefore, with w(x) = cos(x), and by choosing F equal to

F (t, x, µ) =− P

2(P − 2eT−tEξ∼µ[cos(x− ξ)])2
+

1

P − 2eT−tEξ∼µ[cos(x− ξ)]
+

Eξ∼µ[cos(x− ξ)]eT−t(1 +
1

2

1

(P − 2eT−tEξ∼µ[cos(x− ξ)])2
)+

eT−tEξ∼µ[(β(t, x, µ)− β(t, ξ, µ)) sin(x− ξ)]+

eT−tEξ∼µ[cos(x− ξ)
1

2

1

(P − 2eT−tEξ′∼µ[cos(ξ − ξ′)])2
],

the function V satisfies the Master Bellman equation, hence is the value function to the mean-field
control problem.

To be easily computable, the function F can be rewritten using trigonometric relations as

F (t, x, µ) =− P

2

1

(P − 2eT−t[cos(x)cosµ + sin(x)sinµ])2
+

1

P − 2eT−t[cos(x)cosµ + sin(x)sinµ]

+ eT−t[cos(x)cosµ + sin(x)sinµ](1 +
1

2

1

(P − 2eT−t[cos(x)cosµ + sin(x)sinµ])2
)

+ eT−t[β(t, x, µ) sin(x)cosµ − β(t, x, µ) cos(x)sinµ

− Eξ∼µ[β(t, ξ, µ) cos(ξ)] sin(x) + Eξ∼µ[β(t, ξ, µ) sin(ξ)] cos(x)]

+
eT−t

2
cos(x)Eξ∼µ[

cos(ξ)

2[P − 2eT−t(cos(ξ)cosµ + sin(ξ)sinµ)]2
]

+
eT−t

2
sin(x)Eξ∼µ[

sin(ξ)

2[P − 2eT−t(cos(ξ)cosµ + sin(ξ)sinµ)]2
]

with the notations: cosµ := Eξ∼µ[cos(ξ)], sinµ := Eξ∼µ[sin(ξ)].
We take P = 2.2eT so that the control is bounded, the same trend β as in (5.3), and parameters

as in section 5.1.3: κ = σ = 1, T = 0.4, n = 40, M = 20000. At each gradient iteration, the initial
distribution is sampled with

x0 ∼ µ0 = µ̄0 + υ0N (0, 1)

where (µ̄0, υ
2
0) is sampled from (0.2U([0, 1]), 0.5U([0, 1])). Controlling the volatility is more difficult

than controlling the trend, and it is crucial for the method that ρA is very small. We take N̂ = 9000
gradient iterations. Training time with L = 3 is 67228s, while it takes 69073s for L = 4.

On Figure 10, we give the relative error obtained with L = 3 and L = 4. Notice that with L = 3,
ρA is small and that we have to take ρA even smaller with L = 4. The relative error is small, but the
control is not as well approximated as in the controlled drift example, as shown in Figure 11.
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L = 3, ρA = 0.0005, ρC = 0.025 L = 4, ρA = 0.0002 and ρC = 0.01

Figure 10: Relative error in a non LQ model with controlled volatility.

Trajectory 1 Trajectory 2 Trajectory 3

Figure 11: Control trajectories in a non LQ model with controlled volatility, using L = 3, with (µ̄0, υ2
0) = (0.04, 0.4).

6 Conclusion
In this study, we have presented a robust effective resolution to the challenging problem of mean-
field control within a partially model-free continuous-time framework. Leveraging policy gradient
techniques and actor-critic algorithms, our approach has demonstrated the valuable role of moment
neural networks in the sampling of distributions. We have illustrated the significance of maintaining
a low number of moments (typically two or three) while underscoring the critical role played by fine-
tuning learning rates for actor and critic updates.

Subsequent developments could encompass the extension to non-separable forms within the state
and control components of drift and diffusion coefficients. Furthermore, a compelling direction for
further investigation could involve mean-field dynamics governed by jump diffusion processes, where
the intensities of the jumps remain unknown.
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