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Abstract

We consider a deterministic optimal control problem, focusing on a finite horizon scenario.
Our proposal involves employing deep neural network approximations to capture Bellman’s
dynamic programming principle. This also corresponds to solving first-order Hamilton-Jacobi-
Bellman equations. Our work builds upon the research conducted by Huré et al. (SIAM J.
Numer. Anal., vol. 59 (1), 2021, pp. 525-557), which primarily focused on stochastic contexts.
However, our objective is to develop a completely novel approach specifically designed to ad-
dress error propagation in the absence of diffusion in the dynamics of the system. Our analysis
provides precise error estimates in terms of an average norm. Furthermore, we provide several
academic numerical examples that pertain to front propagation models incorporating obsta-
cle constraints, demonstrating the effectiveness of our approach for systems with moderate
dimensions (e.g., ranging from 2 to 8) and for nonsmooth value functions.
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1 Introduction

In this work, we are interested by the approximation of a deterministic optimal control problem
with finite horizon involving a maximum running cost, defined as

v(t, x) = inf
a(·)∈A[t,T ]

max

(
max
θ∈[t,T ]

g(yax(θ)), ϕ(yax(T ))

)
, (1)

where the state x belongs to Rd and t ∈ [0, T ] for some T ≥ 0. Here the trajectory y(s) = yax(s)
obeys the following dynamics

ẏ(s) = f(y(s), a(s)), a.e. s ∈ [t, T ], (2)

with initial condition y(t) = x, and control a ∈ A[t,T ] := L∞ ([t, T ], A). It is assumed that A is
a non-empty convex and compact subset of Rκ (κ ≥ 1) and (f , ϕ, g) are Lipschitz continuous.
The value v is the solution of the following Hamilton-Jacobi-Bellman (HJB) partial differential
equation, in the viscosity sense (see for instance [14])

min

(
− vt + max

a∈A
(−∇xv · f(x, a)), v − g(x)

)
= 0, t ∈ [0, T ] (3a)

v(T, x) = max(ϕ(x), g(x)). (3b)
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Tremendous numerical efforts have been made to propose efficient algorithms for solving prob-
lems related to equation (1) or the corresponding HJB equation (3). Precise numerical methods
have been developed using various grid-based approximations, including Markov Chains approxi-
mations [33], finite difference schemes (such as monotone schemes [17]), semi-Lagrangian schemes
(see e.g., [18, 20]), ENO or WENO higher-order schemes [37, 39], finite element methods [31],
discontinuous Galerkin methods [28, 35], and specifically [12, 13] for the HJB equation (3) (see
also [41]), as well as max-plus approaches [2].

However, grid-based methods have limitations in high dimensions due to the curse of dimension-
ality. To address this challenge, various alternative approaches have been studied, such as sparse
grid methods [16, 21], tree structure approximation algorithms (see e.g., [3]), tensor decomposition
methods [19], and max-plus approaches [36].

In the deterministic context, problem (1) is motivated by deterministic optimal control with
state constraints (see e.g. [14] and [4]). In [42], the HJB equation (3) is approximated by deep
neural networks (DNN) for solving state constrained reachability control problems of dimension
up to d = 10. In [15] or in [6], formulation (1) is used to solve an abort landing problem (using
different numerical approaches); in [11], equations such as (3) are used to solve an aircraft payload
optimization problem; a multi-vehicle safe trajectory planning is considered in [8].

On the other hand, for stochastic control, DNN approximations were already used for gas
storage optimization in [9], where the control approximated by a neural network was the amount
of gas injected or withdrawn in the storage. This approach has been adapted and popularized
recently for the resolution of BSDE in [26] (deep BSDE algorithm). For a convergence study of
such algorithms in a more general context, see [27].

In this work, we study some neural network approximations for (1). We are particularly inter-
ested for the obtention of a rigorous error analysis of such approximations. We follow the approach
of [29] and its companion paper [7], combining neural networks approximations and Bellman’s
dynamic programming principle. We obtain accurate error estimates in an average norm.

Note that the work of [29] is developed in the stochastic context, where an error analysis is
given. However this error analysis somehow relies strongly on a diffusion assumption of the model,
(transition probabilities with densities are assumed to exists). In our case, we would need to
assume that the deterministic process admits a density, which is overly restrictive (see remark 6.5).
Therefore the proof of [29] does not apply to the deterministic context. Here we propose a new
approach for the convergence analysis, leading to new error estimates. We chose to present the
algorithm on a running cost optimal control problem, but the approach can be generalized to Bolza
or Mayer problems (see e.g. [4, 6]).

For sake of completeness, let us notice that the ideas of [29] are related to methods already
proposed in [23] and [10] for the resolution of Backward Stochastic Differential Equations (BSDE),
where the control function is calculated by regression on a space of some basis functions (the
Hybrid-Now algorithm is related to [23], and the performance iteration algorithm is related to an
improved algorithm in [10]). For recent developments, see [24] using classical linear regressions,
and [30] and [22] for BSDE approximations using neural networks.

From the numerical point of view, we illustrate our algorithms on some academic front-propagation
problems with or without obstacles. We focus on a ”Lagrangian scheme” (a deterministic equiv-
alent of the performance iteration scheme of [29]), and also compare with other algorithms: a
”semi-Lagrangian algorithm” (similar to the Hybrid-Now algorithm of [29]) and an hybrid algo-
rithm combining the two previous, involving successive projections of the value function on neural
network spaces.

The plan of the paper is the following. In Section 2 we define a semi-discrete value approxima-
tion for (1), with controlled error with respect to the continuous value, using piecewise constant
controls. In Section 3, equivalent reformulations of the problem are given using feedback controls
and dynamic programming. In Section 4, an approximation result of the discrete value function
using Lipschitz continuous feedback controls is given. In Section 5 we present three numerical
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schemes using neural networks approximations (for the approximation of feedback controls and/or
for the value), using general Runge Kutta schemes for the approximation of the controlled dy-
namics. Section 6 contains our main convergence result for one of the proposed scheme, the
”Lagrangian” scheme, which involves only approximations of the feedback controls, and Section 7
focuses on the proof of our main result. Section 8 is devoted to some numerical academic examples
of front-propagation problems with or without an obstacle term (state constraints), for average
dimensions, showing the potential of the proposed algorithms in this context, and also giving
comparisons between the different algorithms introduced. An Appendix contains some details for
computing reference solutions for some of the considered examples.

Notations. Unless otherwise stated, the norm |.| on Rq (q ≥ 1) is the max norm |x| = ‖x‖∞ =
max1≤i≤q |xi|. The notation Jp, qK = {p, p+ 1, . . . , q} is used, for any natural numbers p ≤ q. For

any function α : Rp → Rq for some p, q ≥ 1, [α] := supy 6=x
|α(y)−α(x)|
|y−x| denotes the corresponding

Lipschitz constant. We also denote a ∨ b := max(a, b) for any a, b ∈ R. The set of ”feedback”
controls is defined as A := {a : Rd → A, a(·) measurable}.

Note. All data generated or analysed during this study are included in this article.

2 Semi-discrete approximation with piecewise constant con-
trols

In this section, we first aim to define a semi-discrete approximation of the Dynamic Programming
Principle (1) in time. Let the following assumptions hold on the set A and functions f, g, ϕ.

(H0) A is a non-empty, convex and compact subset of Rκ.

(H1) f : Rd ×A→ Rd is Lipschitz continuous and there exists constants [f ]1, [f ]2 ≥ 0 such that,
for any (x, x′) ∈ (Rd)2 and (a, a′) ∈ A2:

|f(x, a)− f(x′, a′)| ≤ [f ]1|x− x′|+ [f ]2|a− a′|.

(H2) g : Rd → R is Lipschitz continuous.

(H3) ϕ : Rd → R is Lipschitz continuous.

Let T > 0 be the horizon, N ∈ N∗ be a number of iterations, and (tk)k∈J0,NK ⊂ [0, T ] be a time
mesh with t0 = 0 and tN = T . To simplify the presentation, we restrict ourselves to the uniform
mesh tk = k∆t with ∆t = T

N , but the arguments would carry over unchanged with a non-uniform
time mesh.

For a given h > 0, let us consider Fh : Rd × A → Rd corresponding to some one time step
approximation of yax(h) starting from yax(0) = x. For instance, we may consider the Euler scheme
Fh(x, a) = x+ hf(x, a), or the Heun scheme Fh(x, a) = x+ h

2 (f(x, a) + f(x+ hf(x, a), a)), and so
on. General Runge Kutta schemes are considered later on in Section 5.2. Assumptions on Fh will
be made precise when needed.

Given n ∈ J0, N − 1K, a sequence a := (an, an+1, . . . , aN−1) ∈ AN−n which corresponds to a
piecewise constant control approximation, and an integer p ≥ 1, we define two levels of approxi-
mation for the trajectories.

The fine approximation, for a fixed control ak and 0 ≤ j ≤ p is denoted Y akj,x . It involves a time

step h = ∆t
p , and is defined recursively by

Y ak0,x = x (4a)

Y akj+1,x = Fh(Y akj,x , ak), j = 0, . . . , p− 1, (4b)
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which also corresponds to j iterates of y → Fh(y, ak), starting from y = x, with the same control
ak. This fine level is designed to obtain approximation of the trajectory at intermediate time steps
tk + jh which lie into [tk, tk+1].

The coarse approximation with time step ∆t is denoted (Xa
k,x)n≤k≤N and is defined recursively

by

Xa
n,x := x (5a)

Xa
k+1,x = Y akp,Xak,x

, k = n, . . . , N − 1. (5b)

Notations. Given a ∈ A, we denote F (·, a) ≡ F a(·) := Y ap,. , such that (5b) can also be written

Xa
k+1,x = F (Xa

k,x, ak), k = n, . . . , N − 1.

We can now define the following cost functional, for x ∈ Rd, a ∈ AN−n and n ∈ J0, NK

Jn(x, a) := max
n≤k<N

max
0≤j<p

g(Y akj,Xak,x
)
∨

(g ∨ ϕ)(Xa
N,x), x ∈ Rd, a ∈ AN−n, (6)

and the following semi-discrete version of (1), for x ∈ Rd and n ∈ J0, NK

Vn(x) := min
a∈AN−n

Jn(x, a). (7)

We also denote, for a ∈ A and x ∈ Rd,

Ga(x) := max
0≤j<p

g(Y aj,x). (8)

The values (Vn)0≤n≤N satisfy therefore VN (x) = g(x) ∨ ϕ(x), and the following dynamic
programming principle (DPP) for n = 0, . . . , N − 1:

Vn(x) = inf
a∈A

Ga(x) ∨ Vn+1(F (x, a)), x ∈ Rd. (9)

Let us notice that the case p = 1 leads to the following simplifications: h = ∆t, F (x, a) =
F∆t(x, a), Ga(x) = g(x), Jn(x) = maxn≤k≤N g(Xa

k,x) ∨ ϕ(Xa
N,x), as well as VN (x) = g(x) ∨ ϕ(x)

and the DPP Vn(x) = inf
a∈A

g(x) ∨ Vn+1(F∆t(x, a)) for all 0 ≤ n ≤ N − 1.

The motivation behind the introduction of the finer level of approximation (Y akj,x )0≤j≤p is first
numerical. It enables a better evaluation of the running cost term g(·) along the trajectory, without
the computational cost of more intermediate controls. The numerical improvement is illustrated
in the examples of Section 8.1. Furthermore, from the theoretical point of view, the convergence
analysis in our main result strongly uses the fact that x → Fh(x, a) is a change of variable for h
sufficiently small (i.e., p sufficiently large).

We start by showing some uniform Lipschitz bounds.

Lemma 2.1. Assume (H0)-(H3), and the Lipschitz bound supa∈A[Fh(·, a)] ≤ 1 + ch for some
constant c ≥ 0 , where we recall that [Fh(·, a)] stands for the Lipschitz constant of x 7→ Fh(x, a).

(i) The function Jn(·, a) is Lipschitz for all a ∈ AN−n, with uniform bound [Jn(·, a)] ≤ [g] ∨
[ϕ]ecT .

(ii) In particular, the uniform bound max0≤n≤N [Vn] ≤ [g] ∨ [ϕ]ecT holds.

Proof. (i) Notice that 1+ch ≤ ech. Then for a ∈ A and for the j-th iterate F
(j)
h (·, a) of Fh, we obtain

|Y aj,x − Y aj,y| = |F
(j)
h (x, a)−F (j)

h (y, a)| ≤ ejch|x− y| ≤ ec∆t|x− y| for any 0 ≤ j ≤ p (by recursion).

In particular with j = p and from the definitions, we obtain also |F (x, a)−F (y, a)| ≤ ec∆t|x−y|, for
any a ∈ A. From this last inequality, we deduce, by recursion, for any a = (an, . . . , aN−1) ∈ AN−n
and n ≤ k ≤ N , |Xa

k,x −Xa
k,y| ≤ ec(k−n)∆t|x− y| ≤ ecT |x− y|. The desired result follows from the

definition of Jn and repeated use of max(a, b)−max(c, d) ≤ max(a− c, b− d).
(ii) As a direct consequence of (i) and the definition of Vn.
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The following result shows that Vn(x) is a first order approximation of v(tn, x) in time.

Theorem 2.2. Assume (H0)-(H3), and that there exists h0 > 0 such that

- Fh is consistent with the dynamics f in the following sense: there exists C ≥ 0, for all
(x, a, h) ∈ Rd ×A× (0, h0)

|Fh(x, a)− (x+ hf(x, a))| ≤ Ch2(1 + |x|) (10)

- for all h ∈]0, h0], supa∈A[Fh(·, a)] ≤ 1 + ch for some constant c ≥ 0 that may depend on [f ]

- for all x ∈ Rd, f(x,A) is a convex set.

Let h = ∆t
p ≤ h0, with p ≥ 1. Then there exists a constant C̃ ≥ 0, independent of x,∆t, p and N ,

such that for all x ∈ Rd:

max
0≤n≤N

|Vn(x)− v(tn, x)| ≤ C̃∆t(1 + |x|). (11)

Proof. This follows from the arguments of Theorem B.1. in [15].

Corollary 2.3. In particular, if Fh is a consistent RK scheme as in Definition 5.2 and f(x,A)
is convex for all x, then by Lemma 5.6, (10) holds and therefore the error estimate (11) also holds.

Our aim is now to propose numerical schemes for the approximation of Vn(·).

3 Reformulation with feedback controls

In this section, equivalent definitions for Vn are given using feedback controls in A (the set of
measurable functions a : Rd → A). These formulations lead to the numerical schemes detailed in
Section 5.

First, for a given ak ∈ A, the fine approximation Y akx,j with time step h = ∆t
p is defined by

Y akx,j := Y
ak(x)
x,j using Definition (4). This corresponds also to

Y ak0,x = x (12)

Y akj+1,x = Fh(Y akj,x , ak(x)), j = 0, . . . , p− 1 (13)

that is, j iterates of y → Fh(y, ak(x)), starting from y = x, with the fixed control ak(x). Let us
also introduce the following notation, for any a ∈ A and x ∈ Rd:

F a(x) := F (x, a(x)).

Then, for a given sequence a := (an, . . . , aN−1) ∈ AN−n, the coarse approximation is defined by

Xa
n,x = x (14a)

Xa
k+1 = F ak(Xa

k,x) ≡ F
(
Xa
k,x, ak(Xa

k,x)
)
, k = n, . . . , N − 1. (14b)

We also extend the definition of Jn in the case of feedback controls, for x ∈ Rd and a ∈ AN−n, as

Jn(x, a) :=
(

max
n≤k≤N

Gak(Xa
k,x)
)∨

ϕ(Xa
N,x) (15)

where now, for a given control a ∈ A, we extend the definition of (8) by

Ga(x) := max
0≤j<p

g(Y
a(x)
j,x ). (16)

Note that this also corresponds to define Ga(x) as Ga(x)(x). With this definitions, we have the
following results.
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Proposition 3.1. Assume (H0)-(H3), and let Vn be defined as in (7).
(i) Vn(x) is the minimum of Jn(x, ·) over feedback controls:

Vn(x) = min
a∈AN−n

Jn(x, a), x ∈ Rd.

(ii) For all 0 ≤ n ≤ N − 1, Vn satisfies the following dynamic programming principle over
feedback controls

Vn(x) = min
a∈A

Ga(x)
∨
Vn+1(F a(x)), x ∈ Rd, n = 0, . . . , N − 1 (17)

and in particular, the infimum is reached by some some ān ∈ A.

Proof. The problem is to show the existence of a measurable feedback control. Considering the
equivalent formulation (9) of (17), that (x, a)→ Ga(x) and (x, a)→ F a(x) are continuous fonctions
on Rd×A, and that Vn+1 is also continous on Rd, by using a measurable selection procedure as in
[34, Lemmas 2A, 3A p. 161], and since A is compact we may choose ān measurable in (17).

The following well-known result links pointwise minimization over open-loop controls a ∈ A
and minimization of an averaged value over feedback controls a ∈ A.

Lemma 3.2. Let X be a random variable with values in Rd which admits a density ρ, and such that
E[|X|] <∞. Then for any measurable Ω ⊂ Rd such that ρ(x) > 0 a.e. x ∈ Ω, and n ∈ J0, N − 1J,

ān(·) ∈ argmin
a∈A

E
[
1IΩ(X) Ga(X) ∨ Vn+1(F a(X))

]
⇐⇒

(
āh(x) ∈ argmin

a∈A

(
Ga(x) ∨ Vn+1(F a(x))

)
, a.e. x ∈ Ω

)
.

We now introduce a new assumption on a sequence of sets Ωn, densities ρn supported in Ω̄n,
and random variables Xn with associated probability densities ρn. More precisely:

(H4) for all k = 0, . . . , N , ρk ∈ L1(Rd), Ωk is an open set of Rd, and it holds:

for all k = 0, . . . , N : ρk(x) > 0 on Ωk, and supp(ρk) ⊂ Ωk (18a)

for all a ∈ A and k = 0, . . . , N − 1: F (Ωk, a) ⊂ Ωk+1 (18b)

for all k = 0, . . . , N − 1: Ck,∆t := supx∈Ωk
supa∈A

ρk(x)
ρk+1(F (x,a)) <∞. (18c)

Furthermore, we consider random variables (Xk)0≤k≤N on some probability space, with values in
Rd, absolutely continuous with respect to Lebesgue’s measure and admitting (ρk)0≤k≤N as associated
densities.

From the definitions we have E[φ(Xk)] =
∫

Ωk
φ(x)ρk(x)dx for any measurable bounded func-

tion φ.

The technical assumption (18c) is not important in this section but will be needed for the main
result later on. Before going on, we give some examples where (H4) holds.

• In the case Ω0 is a bounded subset of Rd, we may consider Ωk = Ω0 + B(0, ck∆t‖f‖∞),
where B(0, r) denotes the ball of radius r, ‖f‖∞ is a bound for |f | on ΩN × A, assuming
|Fh(x)| ≤ |x| + ch‖f‖∞ for some constant c ≥ 0 (such a bound holds in the case of a RK
scheme as in Definition (5.2)), furthermore where (ρk(·))k are bounded functions such that
there exists η > 0, for all 0 ≤ k ≤ N − 1 and x ∈ Ωk+1, ρk(x) ≥ η.
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A useful example is the case of Ωk := B(0, L0+ck∆t‖f‖∞), ∀k ≥ 0, with uniform densities ρk

compactly supported on Ωk. In that case we notice that Ck,∆t = |Ωk+1|
|Ωk| =

(L0+c(k+1)∆t‖f‖∞
L0+ck∆t‖f‖∞

)d
and also the following uniform estimate holds:

max
0≤k<N

N−1∏
k=n

Ck,∆t ≤
(
L0 + cT‖f‖∞

L0

)d
. (19)

• We may consider the case of Ωk = Rd and ρk(x)
|x|→∞∼ e−qk|x| with qk > 0, for all k.

• We can consider the case when Ωk = Ω (∀k) and ρk = ρ (∀k), where Ω is a bounded set,
assuming furthermore that Ω is invariant by the dynamics, i.e., F ah (Ω) ⊂ Ω for all a ∈ A and
h ≥ 0.

We can now give the following equivalent properties for Vn.

Proposition 3.3. Let n ∈ J0, N − 1K and (Ωn, ρn) as in (H4), with associated random variables
Xn. Then Vn satisfies the following dynamic programming principle

Vn(x) = Gān(x)
∨
Vn+1(F ān(x)), ∀x ∈ Ωn (20)

for any

ān(·) ∈ argmin
a∈A

E
[
Ga(Xn) ∨ Vn+1(F a(Xn))

]
. (21)

In particular, we have

E[Vn(Xn)] = E
[
Gān(Xn)

∨
Vn+1(F ān(Xn))

]
= inf
a∈A

E
[
Ga(Xn) ∨ Vn+1(F a(Xn))

]
. (22)

Proof. The proof follows from Lemma 3.2 and the dynamic programming principle of Proposi-
tion 3.1.

The above reformulation with an averaging criteria is motivated by numerical aspects: the
problem can then be relaxed with an approximation Â of the control space A, for instance neural
networks. However, in general, ān is no more than measurable. To circumvent this difficulty, we
first approximate problem (22) by more regular feedback controls.

4 Approximation by Lipschitz continuous feedback controls

We aim to approximate (22) by using by Lipschitz continuous feedback controls. Note that in
Krylov [32], some approximations using feedback controls are given, yet in a different context with
stochastic differential equations and for non-degenerate diffusions.

Let ρ ∈ C1
(
Rd,R

)
be a smooth function such that supp(ρ) ⊂ B(0, 1), and

∫
Rd ρ(x)dx = 1.

Let (ρτ )τ>0 be the mollifying sequence such that ρτ (x) := 1
τd
ρ(xτ ). For any sequence a :=

(a0, . . . , aN−1) ∈ AN , we associate the regularization by convolution

aτk := ρτ ∗ ak. (23)

By using classical arguments, aτk is Lipschitz continuous, with the bounds ‖∇aτk‖L∞ = ‖(∇ρτ ) ∗
ak‖L∞ ≤ 1

τ ‖∇ρ‖L1‖ak‖L∞ . By classical arguments, limτ→0 a
τ (x) = a(x) a.e x ∈ Rd.

In this section the following assumptions on Fh are needed.

(H5) The function Fh satisfies the following two conditions:
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• there exists a constant C > 0 and h0 > 0 such that, for all 0 < h ≤ h0:

∀x ∈ Rd, ∀a ∈ A, |Fh(x, a)| ≤ |x|+ Ch(1 + |x|) (24)

• Fh satisfies a continuity property, for all 0 < h ≤ h0:

∀x ∈ Rd, a ∈ A→ Fh(x, a) ∈ Rd is continuous. (25)

Such assumptions are naturally satisfied by Euler or Heun schemes already mentioned, and also
by more general RK schemes presented later on.

The following result will be used later on in order to obtain a regularized sequence of controls
for the approximation of the dynamic programming principle, which becomes more and more
precise as k varies from k = n to k = N − 1.

Proposition 4.1. Let k ∈ J0, NK. Assume (H0)-(H4) and (H5). Then

lim
τ→0+

∣∣∣∣E[Vk(Xk)]− E[Gā
τ
k (Xk)

∨
Vk+1(F (Xk, ā

τ
k))]

∣∣∣∣ = 0 (26)

with āk as in (21) and āτk as in (23).

Lemma 4.2. Assume (24). There exists constants α, β independent of p ≥ 1, such that

∀(x, a) ∈ Rd ×A, |F (x, a)| ≤ α|x|+ β.

Proof. By using the bound |Fh(x, a)| ≤ |x|+Ch(1+ |x|) ≤ eCh|x|+Ch, by recursion and a discrete

Gronwall estimate, we obtain |F (x, a)| = |F (p)
h (·, a)| ≤ eChp(|x|+ pCh) ≤ eC∆t(|x|+ C∆t).

Proof of Proposition 4.1. In order to simplify the presentation, we consider the case of p = 1
(Ga(x) = g(x)), the proof being similar in the general case p ≥ 1. The optimal control ān(·) satisfies
Vn(x) = g(x)∨Vn+1(F (x, ān(x))) a.e. x ∈ Ωn, hence E[Vn(Xn)] = E[g(Xn)∨Vn+1(F (Xn, ān))]. By
assumption (25) of (H5), and the pointwise convergence of āτn(x), we deduce that limτ→0 F (x, āτn(x)) =
F (x, ān(x)) a.e. x. On the other hand, by using Lemma 4.2 and the fact that g is Lipschitz
continuous, there exists constants α′, β′ such that |g(x) ∨ F (x, āτn(x))| ≤ α′|x| + β′ ∀x ∈ Rd.
Therefore, the result is obtained by Lebesgue’s dominated convergence theorem, the continuity of
(x, y)→ g(x) ∨ Vn+1(y) and the integrability assumption on Xn.

We give also an other approximation result of Vn by Jn.

Proposition 4.3. Let N ≥ 1 be given, assume (H0)-(H4), and (H5). Then

lim
τ→0

max
0≤n≤N−1

E
[
|Jn
(
Xn, (ā

τ
n, . . . , ā

τ
N−1)

)
− Vn(Xn)|

]
= 0.

Proof. It suffices to prove the result for a given n. Let a ∈ AN−n be an arbitrary sequence. By
Lemma 4.2 we have, for all k = n, . . . , N − 1

|Xa
k+1,x| ≤ eC∆t(|Xa

k,x|+ C∆t).

By similar estimates, we obtain

|Xa
n,x| ≤ eCn∆t(|x|+ Cn∆t) ≤ eCT (|x|+ CT ).

Hence

|Jn(x, a)| ≤ max
n≤k≤N

[
|g(0)|+ [g]

∣∣Xa
k,x

∣∣]∨[
|ϕ(0)|+ [ϕ]

∣∣Xa
N,x

∣∣] ≤ K0 +K1(|x|+ CT )
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where K0 := |g(0)|∨ |ϕ(0)| and K1 := ([g]∨ [ϕ])eCT . In particular E (|Jn(X, a)|) <∞. In the same
way, we can also obtain, for any k ≤ n ∈ [0, N ], a Lipschitz bound of the form

|Ga(x) ∨Ga(Xa
k+1,x) ∨ · · · ∨Ga(Xa

n,x) ∨ Vn+1(Xa
n+1,x))| ≤ α′|x|+ β′

for some constant α′, β′.
In order to simplify the presentation, we consider again the case of p = 1, corresponding to

Ga(x) = g(x), the proof being similar in the general case p ≥ 1. Let η > 0. Consider the optimal
control sequence ā and its regularization āτ . Let n ∈ [0, . . . , N − 1]. By using the optimality of ān,
we have Vn(x) = g(x) ∨ Vn+1(F ān(x)), and as in Proposition 4.1, for τ > 0 small enough,∣∣E[Vn(Xn)]− E[g(Xn) ∨ Vn+1(F ā

τ
n(Xn)]

∣∣ ≤ η

N
.

Then we remark that Vn+1(F ā
τ
n(x)) = g(F ā

τ
n(x)) ∨ Vn+2(F ān+1(F ā

τ
n(x))). Hence by the same

argument as before, for τ > 0 small enough,∣∣∣∣E[Vn(Xn)]− E[g(Xn) ∨ g(F ā
τ
n(Xn)) ∨ Vn+2(F ā

τ
n+1(F ā

τ
n(Xn)))]

∣∣∣∣ ≤ 2
η

N
.

Iterating this argument we deduce the existence of Lipschitz continuous controls
āτ := (āτn, . . . , ā

τ
N−1) such that∣∣∣∣E[Vn(Xn)]− E[Jn(Xn, ā

τ )]

∣∣∣∣ ≤ (N − n)
η

N
≤ η. (27)

This concludes the proof.

5 Numerical schemes

5.1 Dynamic programming schemes

It is natural to consider approximation schemes that mimic the dynamic programming principle
(20)-(21). We see that (9) or its equivalent formulation (17) has been relaxed by (21) where we
minimize a certain expectation over a set of feedback controls.

We consider three schemes. Two of them may be seen as deterministic counterparts of the ”value
iteration” scheme (Huré et al. [29] or the BSDE scheme of [23]) and the ”performance iteration”
scheme (Huré et al. [29] or the BSDE scheme of [10]), hereafter denoted the ”SL-scheme” and the
”L-scheme”, respectively.

The third one is an hybrid combination of both paradigm, and is hereafter denoted the ”H-
scheme”.

The set of measurable functions A is approximated by finite dimensional spaces (Ân)n, with
Ân typically a neural network space. When needed, neural networks are also used in order to
approximate value functions: in this case, we denote by V̂n ⊂ C (Ω,R) a finite-dimensional space
for the approximation of V̂n.

Let (ρn)0≤n≤N be a sequence of densities supported in domains (Ωn)0≤n≤N , as in (H4), with
associated random variables (Xn)0≤n≤N . Recall that, for feedback controls a ∈ A, F a(x) and
Ga(x) are defined at the beginning of Section 3 in terms of the approximate dynamics Fh(·, ·),
F a(x) corresponds to p iterates of y → Fh(y, a(x)) starting from y = x, and Ga(x) corresponds to
the maximum of g(·) taken at the first previous p iterates.
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Semi-Lagrangian scheme (or ”SL-scheme”) Let (Ân)n∈J0,N−1K and (V̂n)n∈J0,N−1K be two

given sequences of finite-dimensional spaces. Set V̂N := g ∨ ϕ. Then, for n = N − 1, . . . , 0:
- compute a feedback control ân according to

ân ∈ argmin
a∈Ân

E
[
Ga(Xn)

∨
V̂n+1(F a(Xn))

]
(28a)

- set

V̂n := argmin
V ∈V̂n

E
[ ∣∣∣V (Xn)−Gân(Xn)

∨
V̂n+1

(
F ân(Xn)

)∣∣∣2 ]. (28b)

The approximations (V̂n)n∈J0,N−1K are stored, and only V̂n+1 is used at iteration n. This
explains the ”semi-Lagrangian” terminology. Owing to these projections, the computational cost
is in O(N), where N is the number of time steps.

Lagrangian scheme (or ”L-scheme”) Let (Ân)n∈J0,N−1K be a given sequence of finite-dimensional

spaces. Set V̂N := g ∨ ϕ. Then, for n = N − 1, . . . , 0:
- compute a feedback control ân according to

ân ∈ argmin
a∈Ân

E
[
Ga(Xn)

∨
V̂n+1(F a(Xn))

]
(29a)

- set

V̂n(x) := Gân(x)
∨
V̂n+1

(
F ân(x)

)
≡ Jn(x, (ân, . . . , âN−1)). (29b)

In this algorithm, only the feedback controls (âk) are stored ( the V̂n are not stored). Each
evaluation of the value V̂n+1(x) uses the previous controls (ân+1, . . . , âN−1) to compute the ap-
proximated characteristic, in a fully Lagrangian philosophy. Therefore the overall computational
cost is then of order O(N2). This scheme completely avoids projections of the value on functional
subspaces.

Remark 5.1. From a computational point of view, an approximation of the minimum (29a) is
obtained by using a stochastic gradient algorithm, see numerical Section for details. Hence the
optimality of âk in (29a) should therefore be replaced by some approximation âk such that

E
[
Gâk(Xk)

∨
V̂n+1(F âk(Xk))

]
≤ min
a∈Âk

E
[
Ga(Xk)

∨
V̂n+1(F a(Xk))

]
+ γk (30)

for some γk ≥ 0 which takes into account some error on the optimal feedback control. Then an
error analysis still holds, see Corollary 6.8, showing some robustness of the approach.

Hybrid scheme (or ”H-scheme”) Let (Ân)n∈J0,N−1K and (V̂n)n∈J0,N−1K be two given se-

quences of finite-dimensional spaces. Set V̂N := g ∨ ϕ as well as V̂
[tmp]
N := g ∨ ϕ. Then, for

n = N − 1, . . . , 0:
- compute a feedback control ân according to

ân ∈ argmin
a∈Ân

E
[
Ga(Xn)

∨
V̂

[tmp]
n+1 (F a(Xn))

]
(31a)
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- if n ≥ 1, compute V̂
[tmp]
n ∈ V̂n (in prevision of the computation of ân−1), such that

V̂ [tmp]
n := argmin

V ∈V̂n
E
[ (
V (Xn)− V̂n(Xn)

)2 ]
, (31b)

where V̂n is such that

V̂n(x) := Gân(x)
∨
V̂n+1

(
F ân(x)

)
≡ Jn(x, (ân, . . . , âN−1)). (31c)

The sequence of controls (â0, . . . , âN−1) is the output of the algorithm, and V̂n(x) can be
recovered using (31c). At each iteration 1 ≤ n ≤ N , V̂n is projected on the space V̂n, and its

projection V̂
[tmp]
n is used to compute ân−1. In this hybrid method, we still avoid some of the

projection errors, by computing V̂n from the feedback controls in (31c). Each evaluation of V̂n
costs N − n evaluations of the control mappings, leading to an overall quadratic cost in O(N2).

However, in the minimization procedure for (31a), we can directly access to the values of V̂
[tmp]
n (·),

which is less costly than computing V̂n(·).
In the present work, only the convergence of the L-scheme is analyzed. However, the three

proposed schemes are compared on several examples in the numerical Section, see in particular
Sec. 8.1.

5.2 Runge Kutta schemes

In this section, we consider a particular class of Runge-Kutta (RK) schemes for the definition of
Fh(x, a) which corresponds to some approximation of the characteristics for a given control a.

For given c = (ci)1≤j≤q, B ∈ Rq×q, let us denote

|c|1 :=

q∑
j=1

|ci|, ‖B‖∞ := max
i

∑
j

|bij |

and let also
Cf := |f(0, A)| := max

a∈A
|f(0, a)|.

Definition 5.2 (Runge-Kutta scheme). 1. For a given a ∈ A, we say that x → Fh(x, a) is a
Runge-Kutta scheme for ẏ = f(y, a) with time step h > 0, if there exists q ∈ N∗, (bij)i,j ∈
Rq×q and (ci)i ∈ Rq such that

∀i ∈ J1, qK, yi(x) = x+ h

q∑
j=1

bijf(yj(x), a)

and

Fh(x, a) = x+ h

q∑
i=1

cif(yi(x), a).

2. The scheme is said to be consistent if
∑q
i=1 ci = 1.

3. The scheme is said to be explicit if bij = 0 for all j ≥ i.

Remark 5.3. (a) Note that a consistent RK scheme satisfies Fh(x, a) = x+ hf(x, a) +O(h2) for
h sufficiently small. This is made precise in Lemma 5.6.

(b) Also, for any given value a ∈ A, yi := x+ h
∑q
i=1 bijf(yj , a) can be solved by a fixed point

argument in (Rd)q, as soon as h‖B‖∞[f ]1 < 1. Hence for h small enough such that h‖B‖∞[f ]1 < 1,
the RK scheme is well defined. Explicit RK schemes are always well defined.
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(c) Note that in the above definition, the value of the control a0 = a(x) is frozen at the foot
of the characteristic. Hence we consider a RK approximation of ẏ(t) = f(y(t), a(x)) on [tn, tn+1]
with y(tn) = x and fixed a(x), rather than an approximation of ẏ(t) = f(y(t), a(y(t))).

We now give some estimates for later use.
The following lemma gives an estimate between two trajectories led by different controls.

Lemma 5.4. We assume (H0) and (H1). Let Fh be a Runge-Kutta scheme, with h > 0 small
enough such that h‖B‖∞[f ]1 ≤ 1

2 . Let (a, ā) ∈ A2 be any two given feedback controls. Then,
(i) For any x, y ∈ Rd × Rd,

|Fh(x, a(x))− Fh(y, ā(y))| ≤ e2h|c|1[f ]1 |x− y|+ 2h|c|1[f ]2|a(x)− ā(y)|. (32)

(ii) For all 0 ≤ j ≤ p and x ∈ Rd,

|(F ah )(j)(x)− (F āh )(j)(x)| ≤ CF∆t|a(x)− ā(x)|, (33)

where CF is a constant independent of ∆t and such that

2|c|1[f ]2e
2∆t|c|1[f ]1 ≤ CF . (34)

We recall here that (F ah )(j)(x) corresponds to j iterates of y → Fh(y, a(x)) starting from y = x. In
particular, denoting F a(x) = F (x, a(x)), we have F a(x) = (F ah )(p)(x) and therefore also

|F a(x)− F ā(x)| ≤ CF∆t|a(x)− ā(x)|. (35)

(iii) More generally,

|F a(x)− F ā(y)| ≤ eC1∆t(|x− y|+ C2∆t|a(x)− ā(y)|) (36)

with constants C1 := 2|c|1[f ]1 and C2 := 2|c|1[f ]2.

Proof. (i) From the definitions, denoting a0 = a(x) and ā0 = ā(y), we have∣∣Fh(x, a0)− Fh(y, ā0)
∣∣ ≤ |x− y|+ h

∑
1≤j≤q

|cj ||f(yaj (x), a0)− f(yāj (y), ā0)|

≤ |x− y|+ h|c|1[f ]1‖Y a − Y ā‖∞ + h|c|1[f ]2|a0 − ā0| (37)

where the intermediate values of the RK schemes are denoted Y a = (yaj (x))1≤j≤q and Y ā =
(yāj (y))1≤j≤q, and satisfy Y a = X+hBf(Y a, a0) and Y ā = Y +hBf(Y ā, ā0), where X := (x, . . . , x)
and Y := (y, . . . , y). Hence we also have

‖Y a − Y ā‖∞ ≤ |x− y|+ h‖B‖∞[f ]1‖Y a − Y ā‖∞ + h‖B‖∞[f ]2|a0 − ā0|,

from which we deduce, using the assumption of the present Lemma,

‖Y a − Y ā‖∞ ≤ 2
(
|x− y|+ h‖B‖∞[f ]2|a0 − ā0|

)
.

Combining with (37), we obtain∣∣Fh(x, a0)− Fh(y, ā0)
∣∣ ≤ e2h|c|1[f ]1 |x− y|+ 2h|c|1[f ]2|a0 − ā0|.

(ii) From the previous bound, denoting ej :=
∣∣(F a0

h )(j)(x) − (F ā0

h )(j)(y)
∣∣ ≡ ∣∣Y a0

j,x − Y
ā0
j,y

∣∣, we
have

ej+1 ≤ e2h|c|1[f ]1ej + 2h|c|1[f ]2|a0 − ā0|,

and, by recursion,

ej ≤ e2jh|c|1[f ]1(e0 + 2jh|c|1[f ]2|a0 − ā0|), 0 ≤ j ≤ p. (38)

This concludes to (ii) by using y = x, j = p and hence jh = ∆t.
The proof of (iii) is obtained from (38) with j = p.
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Lemma 5.5. Assume (H0), (H1). Let Fh be a RK scheme with h > 0 such that h‖B‖∞[f ]1 ≤ 1
2 .

(i) For a ∈ A and x ∈ Rd:

|Fh(x, a)| ≤ |x|+ 2h|c|1(Cf ∨ [f ]1)(|x|+ 1).

(ii) Let a in A and denote F ah (x) := Fh(x, a(x)), then it holds

[F ah − id] ≤ 2|c|1([f ]1 + [f ]2[a])h. (39)

Proof. We start by proving (ii). As in the proof of Lemma 5.4(ii), with ā = a, we obtain

|(F a(x, a(x))−F a(y, a(y)))−(x−y)| ≤ h|c|1[f ]1(2|x−y|+2h‖B‖∞[f ]2[a]|x−y|)+h|c|1[f ]2[a]|x−y|.

Combining with the assumption that 2h‖B‖∞[f ]1 ≤ 1
2 , we obtain the desired bound.

For the proof of (i), for any a in A we have [f ]a = [f ]1 and |F ah (x)| ≤ |F ah (0)| + [F ah ]|x| ≤
|F ah (0)| + (1 + 2h|c|1[f ]1])|x|. By direct bounds we have also |F ah (0)| ≤ 2h|c|1Cf , from which we
deduce the desired bound.

Lemma 5.6. Assume (H0), (H1), and that F ah be a consistent RK scheme with h|B|∞[f ]1 ≤ 1
2 .

Then Fh is consistent with f in the following sense:

∃C ≥ 0, ∃h0 > 0,∀(x, a, h) ∈ Rd ×A× (0, h0), |Fh(x, a)− (x+ hf(x, a))| ≤ Ch2(1 + |x|)
(40)

Proof. We use |f(yj , a)| ≤ [f ]1|yj |+ Cf where Cf = maxa∈A |f(0, a)| to obtain in the RK scheme
|yi − x| ≤ h

∑
j |bij |([f ]1|yj |+ Cf ), hence

max
i
|yi − x| ≤ h‖B‖∞[f ]1(max

i
|yi|) + h‖B‖∞Cf . (41)

By using the assumption we then get maxi |yi| ≤ 2|x| + 2h‖B‖∞Cf . Let h ∈]0, h0] with h0 such
that h0‖B‖∞[f ]1 = 1

2 . Using (41), and the fact that h‖B‖∞[f ]1 ≤ 1
2 , we obtain

max
i
|yi − x| ≤ h‖B‖∞[f ]1|x|+ 2h‖B‖∞Cf = Ch(1 + |x|) (42)

for some constant C ≥ 0. Then

Fh(x, a) = x+ h

q∑
j=1

cjf(yj , a) = x+ h

q∑
j=1

cjf(x+O(h(1 + |x|)), a)

= x+ h

q∑
j=1

cj
(
f(x, a) +O(h(1 + |x|))

)
= x+ hf(x, a) +O(h2(1 + |x|))

which is the desired result.

5.3 Neural network spaces

Neural networks are functions build by compositions of other ”simple” functions. They are widely
used for their approximating capabilities, and are known to be dense in the class of continuous
multivariate functions under mild hypotheses, see for instance Lemma 16.1 of [25]. We restrict
ourselves to so-called feedforward neural networks, in the following sense.
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Definition 5.7 (Feedforward neural network). Let L ∈ N∗ (the number of layers), and
(dk)k∈J0,LK ⊂ N∗ be a sequence of dimensions. A neural network is a function R : Rd0 7→ RdL of
the form

R(x) = σL ◦ LL ◦ · · · ◦ σ1 ◦ L1(x)

where Lk : Rdk−1 7→ Rdk is an affine transformation, σk : Rdk 7→ Rdk is a nonlinear activation
function which acts coordinate by coordinate:

σk(x) = (σ̄k(x1), σ̄k(x2), . . . , σ̄k(xdk))

for x ∈ Rdk and for a certain σ̄k : R 7→ R.

Each affine transformation is represented by a weight matrix ωk ∈ Rdk×(dk−1+1), with Lk(x) =

ωk

(
x
1

)
. Classical examples of activation functions include the sigmoid function σ̄(x) = 1

1+e−x or

the rectified linear unit (ReLU) σ̄(x) = max(0, x). The last activation function, σ̄L, may be set to
the identity function, or σL may be a more complex function, so that σL(·) ∈ A for the control
approximation, depending on the example.

We may now define the sets Â and V̂ as (recall that A ⊂ Rκ)

Â := {feedforward neural networks with d0 = d and dL = κ} ,
V̂ := {feedforward neural networks with d0 = d and dL = 1} .

In our numerical examples, we always choose ReLU for the inner layer activation functions. The
last activation function σL may vary to fit the definition of A for the given problem (see the
numerical section). We also choose to set d1 = · · · = dL−1 =: Ne, i.e., the same number of neurons
for each layer, to simplify the set of parameters.

6 Main result

In this section, we focus on proving the convergence of the Lagrangian scheme (29). This algorithm
only uses approximations of feedback controls.

Since our estimates are valid on Lipschitz continuous controls, and since the exact optimal
solution in general does not involve such regular controls, we first introduce η-weak approximations
as follows.

Definition 6.1. For a given sequence η = (ηn, ηn+1, . . . , ηN−1) ∈ (R∗+)N−n, we say â = (ân, . . . , âN−1) ∈
AN−n is an η-weak approximation of (Vk)n≤k≤N if
(i) (ân, . . . , âN−1) are Lipschitz continuous controls,

(ii)

∣∣∣∣E[Vk(Xk)]− E[Gâk(Xk) ∨ Vk+1(F âk(Xk))]

∣∣∣∣ ≤ ηk, for all k ∈ Jn,N − 1K.

Notice that by using Prop. 4.1, it is possible to construct η-weak approximations. By recursion,
it is furthermore possible to construct the controls such that, for all k ∈ Jn,N − 1K∣∣∣∣E[Vk(Xk)]− E[Gâk(Xk) ∨ Vk+1(F âk(Xk))]

∣∣∣∣ ≤ ηk([āτnn ], [ā
τn+1

n+1 ], . . . , [ā
τk−1

k−1 ]), (43)

for given strictly positive functions ηk (i.e., ηk > 0, ηk+1(xk) > 0, . . . , ηN−1(xk, . . . , xN−2) > 0).
We now state our last assumption that is needed on the approximate dynamics Fh.

(H6) There exist a constant c > 0, for any Lipschitz continuous function a(·) ∈ A, for h > 0 small
enough, the map x→ Fh(x, a(x)) is Lipschitz continuous, with Lipschitz bound

[Fh(·, a(·))− id] ≤ c ([f ]1 + [f ]2[a])h (44)
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(where id(x) := x).
Hereafter we also use the notation, for any Lipschitz continuous control a ∈ A:

[f ]a := [f ]1 + [f ]2[a].

In particular it is easy to see that [fa], the Lipschitz constant of fa(x) = f(x, a(x)), is bounded
by [f ]a.

Note also that if maxa∈A |F (0, a)| ≤ Ch for some constant C, then (H6) implies the bound (24)
of (H5).

Assumption (H6) is needed in order to use a change of variables formula for y = F a(x),
corresponding to p iterates of y → Fh(y, a(x)) starting from y = x.

Remark 6.2. Lemma 5.5 shows that (H5)-(H6) are satisfied for Runge Kutta schemes as defined
in 5.2. For instance, dynamics Fh such as the Euler scheme Fh(x, a) = x+ hf(x, a), or the Heun
scheme Fh(x, a) = x+ h

2 (f(x, a) + f(x+ hf(x, a), a)) satisfy (H5)-(H6). Higher order schemes, or
implicit schemes, could be used as well.

Remark 6.3. Assumption (H6) is satisfied by the exact characteristics. Indeed, for any regular
control a ∈ A, the map x → F ah (x) := yax(h) (where y(s) = yax(s) is the solution of ẏ(s) =
fa(y(s)) with y(0) = x) is one-to-one and onto on Rd and satisfies DF ah (x) = expBh with Bh =∫ h

0
Dfa(yax(s))ds. Then denoting ‖DF ah ‖∞ = supx∈Rd ‖DF ah (x)‖∞, we have [F ah − id] = ‖DF ah −

I‖∞ ≤ e‖Bh‖∞−1 ≤ 2‖Bh‖∞ as soon as for instance ‖Bh‖∞ ≤ 1
2 , with also ‖Bh‖∞ ≤ h‖Dfa‖∞ ≤

h[fa] ≤ h[f ]a, hence (44) holds true with c = 2 and h > 0. When a is only Lipschitz regular, the
same bound is obtained by a regularization argument.

Lemma 6.4. Assumption (44) implies the following bound:

‖DF ah (x)‖∞ ≤ [F ah ] ≤ 1 + c[f ]ah ≤ ec[f ]ah, a.e. x ∈ Rd. (45)

From this estimate we can deduce

|det(DF ah (x))| ≤ edc[f ]ah, a.e. x ∈ Rd. (46)

Furthermore, if c[f ]ah ≤ 1
2 then x → Fha (x) is a change of variable, i.e., it is one-to-one and

onto on Rd, it inverse mapping Gah := (Fha )−1 is well defined, Lipschitz continous and satisfies the
following estimates

‖DGah(x)‖∞ ≤ 1 + 2c[f ]ah ≤ e2c[f ]ah, a.e. x ∈ Rd (47)

and

|det(DGah(x))| ≤ e2dc[f ]ah, a.e. x ∈ Rd. (48)

Proof of Lemma 6.4. Estimates (45) and (46) are straightforward. In order to show that x→ y =
F ah (x) is invertible, notice that F ah (x) = x + Φ(x) where, from the assumptions, [Φ] ≤ c[f ]ah. As
soon as [Φ] < 1 we can see that the map x→ y−Φ(x) is contractant on Rd, and by the fixed-point
theorem we obtain that F ah is invertible. Furthermore, if c[f ]ah < 1, then from the fact that
|(F ah (x) − F ah (y)) − (x − y)| ≤ c[f ]ah|x − y|, we get |x − y| ≤ |F ah (x) − F ah (y)| 1

1−c[f ]ah
hence the

inverse Gah = (F ah )−1 satisfies the bound [Gah] ≤ 1
1−c[f ]ah

. If 0 ≤ x ≤ 1
2 then we use the (rough)

bound 1
1−x ≤ 1 + 3

2x ≤ 1 + 2x which leads to [Gah] ≤ 1 + 2c[f ]ah ≤ e2c[f ]ah.
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Remark 6.5. In [29], the discrete dynamic takes the form of a stochastic process (Xk)k whose
evolution is given by a transition kernel P a(x, dx′), in the sense that PXak+1

(·) =
∫
P a(x, ·)dPXk(x).

It is assumed that the transition kernel admits a density with respect to a fixed measure µ, called the
training measure, i.e. P a(x, dx′) = r(x, a;x′)dµ(x′). In the deterministic setting, such a training
distribution µ would be a combination of Dirac masses. But then, enforcing the same assumption
would lead to unrealistic situations, where the discrete dynamic x+ ∆tf(x, a)→ x′ would only be
allowed to explore the support of µ. Instead, assumption (H6) is used in the change of variable
formula (Lemma 7.1) in order to get a recursive error bound estimate.

In the following, we recall that (V̂k)0≤k≤N corresponds to the Lagrangian scheme (29). Also

we have V̂k(x) ≥ Vk(x), and therefore we look for an upper bound of V̂k(x)− Vk(x).
We introduce a notation for neural network sets that have a given Lipschitz constant bound:

Âk,L := {a ∈ Âk, [a] ≤ L}. (49)

Remark 6.6. Notice that Group Sort neural networks satisfies, for any ā Lipschitz continuous
and Ωn bounded set (see [5, 43]):

lim
Θ→∞

inf
a∈ÂΘ

n,[ā]

E[|a(Xn)− ā(Xn)|] = 0. (50)

Theorem 6.7. Assume (H0)-(H6), N ≥ 1, and let n ∈ J0, NK. For k = n, . . . , N − 1, let
ηk : Rn−k → R∗+ be given functions (ηn > 0 is a constant, ηn+1 > 0 is a function of one variable,
and so on). Let ā = (ā0, . . . , āN−1) be an η-weak approximation in the sense of (43), and
L := max([ā0], . . . , [āN−1]). Assume also that p ≥ 1 is large enough such that

sup
k

sup
a∈Âk,[āk]

c[f ]a
∆t

p
≤ 1

2
(51)

and c ≥ 0 is as in (H6). Then

E
[
(V̂n − Vn)(Xn)

]
≤ inf

(an...,aN−1)∈
⊗N−1
k=n Âk,[āk]

∑
k=n,...,N−1

( ∏
i=n,...,k−1

Caii
)
(εakk + ηk([ān, . . . , āk−1]))

where Cak := Ck,∆te
2dc[f ]a∆t with Ck,∆t is as in (H4),

εak := CF ([g] + [Vk+1]) ∆tEk
[
|a(Xk)− āk(Xk)|

]
, (52)

[Vk+1] is bounded as in Lemma 2.1, CF satisfies (34).

Note that the consistency of the scheme (with respect to the dynamics f , as in (10)) is not
needed in the previous Theorem, because the result only focuses on the error between the semi-
discrete problem and its approximation by a Lagrangian scheme.

Note also that for condition (51) to hold it is sufficient to have c([f ]1 + L[f ]2)∆t
p ≤

1
2 .

Corollary 6.8. In the same way, for the perturbed algorithm (30) the same error bound holds
where each term (εakk + ηk) is replaced by (εakk + ηk + γk).

The proof of Theorem 6.7 is postponed to Section 7 (the proof of Corollary 6.8 follows exactly
the same lines). We now give two corollaries of the previous theorem.
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Corollary 6.9. Assume (H0)-(H6), and N ≥ 1. Let ÂΘ
n,L denote the control approximation space

at time tn, with explicit dependency over the size Θ and the Lipschitz bound L. We denote by
Θ → ∞ the limit when some parameters go to infinity (for instance the number of neurons of a
neural network). We assume that for any n = 0, . . . , N − 1, any Lipschitz continuous function
ā ∈ A can be approximated by some function of a ∈ ÂΘ

n,[ā] up to any arbitrary precision, which we
write as

lim
Θ→∞

inf
a∈ÂΘ

n,[ā]

E[|a(Xn)− ā(Xn)|] = 0. (53)

Let (V̂ Θ
n ) be the corresponding L-scheme values associated with sets (AΘn

n,[ān],A
Θn+1

n+1,[ān+1], . . . ,A
ΘN−1

N−1,[āN−1]).

Then
lim

Θ→∞
max

0≤n≤N
E[V̂ Θ

n (Xn)− Vn(Xn)] = 0.

(where Θ→∞ means here that Θk →∞ for all k = n, . . . , N − 1).

Proof of Corollary 6.9. Let ε > 0. Let ηn := ε/(2N), ηn+1([ān]) := ε/(2NC ānn ), . . . , and
ηN−1([ān], . . . , [āN−2]) := ε/(2NC ānn C

ān+1

n+1 · · ·C
āN−2

N−2 ). Let L := max([ān], . . . , [āN−1]).
By assumption (53),

∀k = n, . . . , N − 1, lim
Θ→∞

inf
ak∈ÂΘ

k,L

Ek+1[|ak − âk|] = 0

and therefore lim
Θ→∞

inf
ak∈ÂΘ

k,L

ε
ak,[āk]
k = 0, where εak is defined in (52). Hence we can find an ∈ ÂΘn

n,[ān]

(for Θn, the size of Ân, large enough) such that εann ≤ ε
2N , and we have

εann + ηn ≤
ε

N
.

Then there exists an+1 ∈ ÂΘn+1

n+1,[ān+1] (for Θn+1 large enough) such that

Cann (ε
an+1

n+1 + ηn+1([ān])) ≤ ε

N
,

and so on, until we choose aN−1 ∈ ÂΘN−1

N−1,[āN−1] such that

Cann C
an+1

n+1 · · ·C
aN−2

N−2

(
ε
aN−1

N−1 + ηN−1([ān], . . . , [āN−2])
)
≤ ε

N

(we have N − n such bounds). By using the bound of Theorem 6.7, the sum of all error terms is
bounded by (N − n) εN , and therefore

E[V̂n(Xn)− Vn(Xn)] ≤ ε.

This shows that lim
Θ→∞

E[V̂ Θ
n (Xn) − Vn(Xn)] = 0. The desired result follows since we have only a

finite number N of such terms.

Notice that in the previous result N ≥ 1 is given. This does not give in general a convergence
result as N → ∞, because of the uncontrolled Lipschitz constants that appear in the bounds of
Theorem 6.7.

However, in the case the optimal controls (ān)n can be shown to be Lipschitz continuous with
a uniform Lipschitz constant, we may improve the result. We suppose that the numerical feedback
space Â can be restricted to Lipschitz functions with a controlled Lipschitz constant. For instance,
if Â is a neural network space, one could choose the GroupSort activation function and bound the
weights to obtain this estimate (see [5, 43]).
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Corollary 6.10. Assume (H0)-(H6), and that there exists a sequence of optimal feedback control
(denoted ā) which are Lipschitz continuous: there exists L ≥ 0 such that for any N ≥ 1 and
0 ≤ k ≤ N − 1, [āk] ≤ L. Assume also N ≥ 1, ∆t = T

N and p large enough such that

c([f ]1 + L[f ]2)∆t
p ≤

1
2 . Then it holds

max
0≤n<N

E[V̂n(Xn)− Vn(Xn)]

≤ KN inf
(a0...,aN−1)∈

⊗N−1
k=0 Âk,[āk]

(
∆t

N−1∑
k=0

Ek
[
|ak(Xk)− āk(Xk)|

])
where

KN := 2CF ([g] ∨ [ϕ])e(d+1)c([f ]1+L[f ]2)T max
0≤n<N

N−1∏
k=n

Ck,∆t. (54)

Furthermore, in the case of uniform densities, we can use the estimate (19) to deduce a bound for
KN which is independent of N (other situations could also lead to a uniform bound for KN ).

Proof of Corollary 6.10. We make use of the bound of Theorem 6.7 with ηk = 0, ∀k. Notice that
[f āk ] ≤ [f ]1 + L[f ]2, and also, with [ak] ≤ [āk] ≤ L, we have [fak ] ≤ [f ]1 + L[f ]2. Then∏

n≤k≤N−1

C āk ≤
( ∏
n≤k≤N−1

Ck,∆t
)
edc

∑N−1
k=n [f āk ]∆t ≤

( ∏
n≤k≤N−1

Ck,∆t
)
edc([f ]1+L[f ]2)T

as well as [Vk+1] ≤ ([g] ∨ [ϕ])ec([f ]1+L[f ]2)T and therefore (using also [g] ≤ [g] ∨ [ϕ])

εakk ≤ 2CF ([g] ∨ [ϕ])ec([f ]1+L[f ]2)T∆t Ek
[
|ak(Xk)− āk(Xk)|

]
.

The desired result follows.

7 Proof of Theorem 6.7

We first state a change of variable Lemma, giving a statement for either an exact characteristic
(x → yat,x) or for an approximate one (x → F a(x)). Only the second statement is used in the
convergence analysis.

Lemma 7.1 (Change of variable). Let a : Rd → Rκ be a given Lipschitz continuous function.

1. Let t → yat,x denotes the characteristic associated with dynamics x → fa(x) and such that
ya0,x = x. We assume the following analogue of (H4) in the continuous case:

ya∆t,Ωk ⊂ Ωk+1, ∀k = 0, . . . , N − 1,

and

C̃k,∆t := max
0≤k≤N−1

sup
x∈Ωk

ρk(x)

ρk+1(ya∆t,x)
<∞.

Then for any non-negative measurable function Φ : Ωk+1 → R,

Ek[Φ(ya∆t,Xk)] ≤ C̃k,∆t ed[f ]a∆t Ek+1[Φ(Xk+1)]. (55)

2. Suppose (H4), (H5) and (H6). Assume p ≥ 1 is such that ch[f ]a ≤ 1
2 , where h = ∆t

p and

c ≥ 0 is as in (H6). Then for any non-negative measurable function Φ : Ωk+1 → R,

Ek[Φ(F a(Xk))] ≤ Ck,∆t e2dc[f ]a∆t Ek+1[Φ(Xk+1)] (56)

with Ck,∆t is as in (H4).
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Proof of Lemma 7.1. (i) Let yt,x be the solution at time t of the differential equation ẏt,x = fa(yt,x)
for t ∈ R, with y0,x = x. Then for any function Φ ≥ 0 and t ≥ 0, using the change of variable
x→ x′ = yt,x on Ωk (with inverse function x = y−t,x′):

Ek[Φ(yt,Xk)] =

∫
Ωk

Φ(yt,x)ρk(x) dx =

∫
yt,Ωk

Φ(x′)
ρk(y−t,x′)

J(x)
dx′

where J(x) denotes the Jacobian of x → x′ = yt,x at point x = y−t,x′ . By Remark 6.3 we have
J(x) = det(DF at (x)) with DF at (x) = exp(Bt) and with the bounds ‖DF at (x)‖∞ ≤ exp(‖Bt‖∞) ≤
exp([f ]at). Hence J(x) ≤ ed[f ]at. Here also 1/J(x) is the Jacobian of the inverse mapping which
satisfies similar estimates, therefore 1/J(x) ≤ ed[f ]at and we have

Ek[Φ(yt,Xk)] ≤ ed[f ]at

∫
yt,Ωk

Φ(x′)
ρk(y−t,x′)

ρk+1(x′)
ρk+1(x′)dx′. (57)

Let t = ∆t, we have yat,Ωk ⊂ Ωk+1 by assumption (18b). Also, for any x′ = ya∆t,x ∈ ya∆t,Ωk , we

have ρk(ya−∆t,x′)/ρk+1(x′) = ρk(x)/ρk+1(ya∆t,x) ≤ C̃k,∆t by assumption (18c). Together with (57)
this allows to conclude to the desired bound.

(ii) The proof is similar to (i). We use the assumption c[f ]ah ≤ 1
2 in order to get that

x → F ah (x) is a change of variable, and, by Lemma 6.4, the bound 1/JFah (x) ≤ e2dc[f ]ah (where

JF (x) = det(DF (x))). Then F a := (F ah )(p) is also a change of variable and satisfies the bound
1/JFa(x) ≤ e2dc[f ]ahp = e2dc[f ]a∆t. We conclude as in (i).

We are now in position to prove the main result.

Proof of Theorem 6.7. Our aim is to bound recursively the quantity

en := E[V̂n(Xn)− Vn(Xn)].

Let ηn > 0. By Prop. 4.1, there exists ān ∈ An, Lipschitz continuous, such that∣∣E[Vn(Xn)]− E[Gān ∨ Vn+1(F ān(Xn))]
∣∣ ≤ ηn.

Recall that V̂n satisfies

E
[
V̂n(Xn)

]
= inf
a∈Ân

E
[
Ga(Xn)

∨
V̂n+1(F a(Xn))

]
,

which leads in particular to

E
[
V̂n(Xn)

]
≤ inf
a∈Ân,[ān]

E
[
Ga(Xn)

∨
V̂n+1(F a(Xn))

]
.

Hence

E
[
V̂n(Xn)− Vn(Xn)

]
≤ inf
a∈Ân,[ān]

E
[
Ga(Xn)

∨
V̂n+1(F a(Xn)) − Gān(Xn)

∨
Vn+1(F ān(Xn))

]
+ ηn. (58)

Using max(a, b)−max(c, d) ≤ max(a− c, b− d), we have

Ga(x)
∨
V̂n+1(F a(x))−Gān(x)

∨
Vn+1(F ān(x))

≤ max
0≤j<p

(g(Y aj,x)− g(Y ānj,x ))
∨(

V̂n+1(F a(x))− Vn+1(F ān(x))
)

≤
(

max
0≤j<p

[g]|Y aj,x − Y
ān
j,x |
)∨(

V̂n+1(F a(x))− Vn+1(F ān(x))
)
.
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In order to bound the r.h.s of this last equation, we first use the following bound:

V̂n+1(F a(x))− Vn+1(F ān(x))

=
(
V̂n+1(F a(x))− Vn+1(F a(x))

)
+
(
Vn+1(F a(x))− Vn+1(F ān(x))

)
≤

(
V̂n+1(F a(x))− Vn+1(F a(x))

)
+ [Vn+1]|F a(x)− F ān(x)|. (59)

By using estimates (58) and (59) we deduce

E
[
V̂n(Xn)− Vn(Xn)

]
≤ inf

a∈Ân,[ān]

(
[g] E

[
max

0≤j≤p

∣∣∣Y aj,Xn − Y ānj,Xn∣∣∣ ]
+ E

[
(V̂n+1 − Vn+1)(F a(Xn))

]
+ [Vn+1] E

[
|F a(Xn)− F ān(Xn)|

])
+ ηn

≤ inf
a∈Ân,[ān]

(
E
[
(V̂n+1 − Vn+1)(F a(Xn))

]
+ CF ([g] + [Vn+1])∆tE

[
|a(Xn)− ān(Xn)|

])
+ ηn

where the estimate of Lemma 5.4(ii) has been used for the last inequality.
Then by using the change of variable Lemma 7.1, we obtain

en ≤ inf
a∈Ân,[ān]

(
Cn,∆te

2dc[f ]a∆tE
[
(V̂n+1 − Vn+1)(Xn+1)

]
+ CF ([g] + [Vn+1])∆tE

[
|a(Xn)− ān(Xn)|

])
+ ηn

≤ inf
a∈Ân,[ān]

Canen+1 +
(
εan + ηn

)
where εan := CF ([g] + [Vn+1]) ∆tE

[
|a(Xn) − ān(Xn)|

]
and Can := Cn,∆te

2dc[f ]a∆t. By induction,

and using the fact that eN = 0 because V̂N = VN , we obtain (for given coefficients ηk > 0,
k = n, . . . , N − 1):

en ≤ inf
(an,...,aN−1)∈

⊗N−1
k=n Âk,[āk]

[
(εann + ηn) + Cann (ε

an+1

n+1 + ηn+1) + · · ·+ Cann · · ·C
aN−2

N−2 (ε
aN−1

N−1 + ηN−1)
]
.

However, we can improve this bound. We can chose a coefficient ηn+1 = ηn+1([ān]) > 0 (which may
have a dependency over [ān]), and proceed in the same way. By Prop. 4.1, there exists ān+1 ∈ A,
Lipschitz continuous, such that∣∣E[Vn+1(Xn)]− E[Gān+1 ∨ Vn+2(F ān+1(Xn+1))]

∣∣ ≤ ηn+1([ān]).

Then we obtain the bound

en ≤ inf
(an,an+1)∈Ân,[ān]×Ân+1,[ān+1]

((
εann + ηn

)
+ Cann

(
ε
an+1

n+1 + ηn+1([ān])
)

+ Cann C
an+1

n+1 en+2

)
.

At the next step, we can chose a coefficient ηn+2 = ηn+2([ān], [ān+1]), and so on. By induction,
we get the desired bound.

8 Numerical results

In the following d-dimensional examples (where d ≥ 2), two dimensional ”local” and ”global”
errors are computed in the following way. Depending on the example, a two-dimensional plane of

20



reference P = Span(w1, w2) is set, passing through the origin, where w1, w2 are chosen vectors of
Rd. A uniform grid mesh xk = aiw1 + bjw2, for k = (i, j), |ai|, |bj | ≤ Rmax for a given Rmax > 0, is
chosen in the plane P in order to compute the exact solution and to compare with the numerical
solution.

Given a threshold η > 0, the errors are computed at the last iteration by

eηL1
η

:=

∑
{xi∈Ωη}

|v(0, xi)− V̂0(xi)|∑
{xi∈Ωη}

1
and eηL∞loc

:= max
{xi∈Ωη}

|v(0, xi)− V̂0(xi)|

where v(0, ·) is the analytical solution at time t = 0, V̂0 is its approximation by the scheme used,
Ωη := {x ∈ Ω, |v(0, x)| ≤ η}, and Ω is the bounded computational domain. Notice that

eL1
η
'
‖v(0, .)‖L1(Ωη)

‖1‖L1(Ωη)
, eL∞η ' max

x∈Ωη
|v(0, x)|.

The global errors, corresponding to the case η = +∞, are denoted eL1 and eL∞ (i.e., Ωη = Ω).
Unless otherwise stated, the local errors are computed with η = 0.1, and denoted eL1

loc
and eL∞loc .

We use feedforward neural networks with ReLu activation function on the inner layers. Some
other activation functions were also tested, including the sigmoid and the tanh functions. We
found that ReLu was performing better on our examples, and we report only these results. If not
otherwise stated, the output activation function is the identity, and the Heun scheme is used for
F∆t, with p = 5 substeps, excepted for Example 1 where p = 1 and p = 5 are compared.

Implementation of neural networks uses python TensorFlow 2, with Adam optimizer (see [1]),
and the architecture is an Intel Xeon Gold 6140 Processor with 2 CPUs and a total of 36 cores.

8.1 Example 1 : Rotation with obstacle

This first problem is a two-dimensional example. We aim at computing the backward reachable set
of a target disk B(xA, r0) before time T , while avoiding the region B(xB , r1) with the following
parameters

xA = (1, 0), xB = (0, 1), r0 = 0.5, r1 = 0.25, and T = 0.4

(see Fig. 1). The dynamics f(x, a) with controls a ∈ [−1, 1] is given by

f((x1, x2), a) := 2πa(−x2, x1) with a ∈ A := [−1, 1]

and corresponds to a clockwise to counter-clockwise rotation. We set

ϕ(x) := ‖x− xA‖2 − r0 and g(x) := r1 − ‖x− xB‖2.

The value v(t, x) of this problem problem (as defined in (1), with t ∈ [0, T ] and x ∈ R2) is also
solution of the following HJB equation with an obstacle term

min
(
− vt + 2π|x2vx1

− x1vx2
|, v − g(x)

)
= 0, t ∈ [0, T ] (60)

v(T, x) = max(ϕ(x), g(x)) (61)

where vxi = ∂v
∂xi

.
Here, the control networks use the sigmoid output activation function, with value in [0, 1], and

is converted to [−1, 1] by a linear transformation.
In Fig 1, we compare the SL-scheme, the H-scheme and the L-scheme. Errors are given in

Table 1, using here (w1, w2) = (e1, e2), the canonical basis.
We first investigate the influence of the substeps (p ≥ 1). We choose Fh as the Heun scheme,

with N = 5 time steps (∆t = T/N), and compare the results using p = 1 or p = 5 (recall that p is
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the number of substeps in order to approximate the characteristic with a constant control a on a
given time interval [tk, tk + ∆t]).

The results, for all schemes, are clearly in favor of using p = 5 (better characteristic approx-
imation) which benefit from the regions of regularity of the control. Hence, for the forthcoming
examples, we always use the Heun scheme with p = 5.

Notice that for this low-dimensional example (d = 2), only a small number of stochastic gradient
iterations is enough to obtain reasonable results, and in particular to observe the contribution of p.

We also compare the three schemes for p = 5, looking at the relative errors. We observe that
the L-scheme gives the best results, the H-scheme gives intermediate results and the SL-scheme is
less precise. Here we observe that a local L1 relative error less or equal to 10−2 corresponds to an
almost perfect result to the eye.

Scheme
Parameters Global errors Local errors CPU time

(s.)N lay. neur. M S.G. it. L∞ L1 rel. L∞ L1 rel.

SL (p = 1) 5 3 40 1000 1000 2.23e-01 5.23e-02 1.07e-01 3.14e-02 133.00
SL (p = 5) 5 3 40 1000 1000 1.22e-01 1.72e-02 1.02e-01 1.19e-02 182.94

H (p = 1) 5 3 40 1000 1000 2.12e-01 5.39e-02 1.13e-01 2.58e-02 180.18
H (p = 5) 5 3 40 1000 1000 1.20e-01 7.96e-03 7.83e-02 7.93e-03 285.84

L (p = 1) 5 3 40 1000 1000 5.99e-01 4.74e-02 5.01e-01 2.55e-02 54.42
L (p = 5) 5 3 40 1000 1000 2.10e-01 3.22e-03 2.00e-01 4.08e-03 106.46

Table 1: Errors for example 1

Finally, on this example, we have also tested a direct method (the DGM approach of [40], see
also the PINN approach in [38]). A global space-time DNN is used in order to approximate the
value (t, x) → v(t, x) solution of the PDE (60). However, in our experiments, we found that the
DNN in general fails to see the obstacle part of the solution. A typical illustration is given in
Figure 2, where 3 simulations with increasing final time T are presented. We considered neural
networks with tanh activation function, both in the inner and output layers. In the presented
results, the network uses 3 inner layers of 40 neurons. At each iteration of the minimization, the
stochastic gradient draws 10,000 points in the space-time domain and 1000 points on the border
t = T (100, 000 iterations of stochastic gradient used).

8.2 Example 2 : eikonal equation

Next we consider a d-dimensional problem, with no obstacle term, for various dimensions d = 6, 7, 8.
More precisely the dynamics is f(x, a) := a with a ∈ A := B(0, 1), the closed unit ball of Rd

(for the Euclidean norm). The function ϕ is

ϕ(x) := min

(
‖x− xA‖2 − r0, ‖x− xB‖2 − r0

)
with xA = (1, 0, . . . , 0) and xB = (−1, 0, . . . , 0), and parameters T = 1.0 and r0 = 0.5. Hence the
value is defined as the solution of (1) (with g := −∞). The analytical solution is known and given
by v(t, x) = min

(
(‖x− xA‖2 − (T − t))+ − r0, (‖x− xB‖2 − (T − t))+ − r0

)
.

The corresponding HJB equation (for x ∈ Rd), using maxa∈A f(x, a) · ∇xv = ‖∇xv‖, is the
following eikonal equation

−vt + ‖∇xv‖ = 0, t ∈ [0, T ] (62)

v(T, x) = ϕ(x). (63)

Here, we choose the control networks to take their values in Rd. The results are then converted
from Rd to the unit ball B(0, 1) of Rd by using the map p 7→ p

max(1,‖p‖) . (Numerical tests showed
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that the choice of the map may affect the results, and the results may deteriorate in particular
when using an anisotropic map.) Errors are given in Table 2 for dimensions d = 6, 7, 8, and some
illustrations are given in Fig. 3 for dimension d = 8 (results for d ∈ {6, 7} are indistinguishable to
the eye from the case d = 8, and they are not included). Errors and figures are computed in the
plane P generated by the first two vectors e1, e2 of the canonical basis of Rd, which corresponds
to the choice (w1, w2) = (e1, e2) here.

In particular we observe that the L-scheme performs well (numerical and exact 0-level sets are
indistinguisable to the eye), as long as a sufficient number of SG iterations is used, and that the

Figure 1: (Example 1) The SL-scheme (left), the H-scheme (middle) and the L-scheme (right) are
tested with Euler scheme with p = 1 (top) and Heun scheme with p = 5 (middle/bottom). The
bottom figures corresponds to the surface plots of z = v(0, x, y) (blue), the plot of the obstacle
function (orange), and the 0-level set (red line). Networks uses 3 hidden layers, 40 neurons, with
N = 5 time steps.
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control map from Rd to B(0, 1) is well chosen.

Scheme
Parameters Global errors Local errors CPU

timed N layers neurons M S.G it. L∞ L1 rel. L∞ L1 rel.

L 6 4 3 40 1000 100000 2.16e-02 1.96e-03 4.06e-04 1.58e-04 1h26
L 7 4 3 40 1000 200000 5.00e-02 3.41e-03 1.51e-02 1.26e-04 3h55
L 8 4 3 40 1000 400000 1.99e-01 1.81e-02 4.39e-04 2.19e-04 10h31

Table 2: (Example 2) L-scheme, dimensions d = 6, 7, 8

Figure 3: (Example 2) Eikonal equation, L-scheme, dimension d = 8, at time t = T = 2.0 (left,
terminal condition), t = 1.0 (center), t = 0.0 (right). Networks of 3 hidden layers and 40 neurons;
N = 4 time steps.

8.3 Example 3: d-dimensional advection with obstacle

We now consider an elementary d-dimensional advection problem with an obstacle term, and
compare the SL-scheme, the H-scheme and the L-scheme. The problem is to reach the target
{ϕ(x) ≤ 0}, while avoiding an obstacle {g(x) ≤ 0}, with linear dynamics f(x, a) := −ae where
e ∈ Rd and the control a lies in A := [0, 1]. Since maxa∈[0,1](ae · ∇v) = max(0, e · ∇v), the

Figure 2: (Example 1) DGM direct method in dimension d = 2, the computation is done in
dimension d + 1 to include time. Results are given at t = 0. Final time is set to T = 0.1 (left),
T = 0.25 (middle) and T = 0.4 (right).
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corresponding HJB equation is

min

(
− vt + max(0, e · ∇v), v − g(x)

)
= 0, t ∈ [0, T ] (64)

v(T, x) = max(ϕ(x), g(x)). (65)

The reachable set at time t is given by {v(t, ·) ≤ 0} (corresponding to the set of points that can
reach the target before time t). The target function ϕ and the obstacle function g are defined by

ϕ(x) := ‖x−A0‖2 − r0 and g(x) := r1 − ‖x−A1‖2

so that {ϕ(x) ≤ 0} = B(A0, r0), and {g(x) ≥ 0} = B(A1, r1). The following parameters are
considered:

e = (1, 1, ..., 1)/
√
d, A0 = −(1, 1, ..., 1)/

√
d, A1 = (0, 0, . . . , 0), r0 = 0.5, r1 = 0.25.

Here, the exact solution can be computed as v(t, x) = ϕ(p(x, t)) ∨ g(q(x)), where

p(x, t) := x−max (0,min (〈x−A0, e〉 , T − t)) e and q(x) = x−max (〈x−A1, e〉 , 0) e.

For the control networks we use the sigmoid as the output activation function (output in
[0, 1]). For the figure and error computations, we have chosen a grid in the 2-dimensional plane
P = V ect(w1, w2) where

w1 = e ≡ (1, 1, . . . , 1)/
√
d, w2 = (1,−1, 0, . . . , 0)/

√
2.

Notice that for such parameters the exact 0-level set is the same independently of the dimension d.
In order to perform the SG iterations, the size of the random batch points is set to M = 2000 (as
well as for the value approximation by neural networks, step (ii) of SL-scheme). Results are given
in Table 3 and in Figure 4, for dimension d = 6. The difference between the schemes is clearer
when the dimension increases.

The CPU time reflects the computational cost of the projection of the value function that
is present in the SL-scheme and the H-scheme. Both the SL-scheme and the H-scheme need
to optimize two networks per time step: one for the control, and one for the value, whereas
the L-scheme needs only one for the control. Additionnally, the H-scheme computes the whole
characteristics, leading to a higher CPU time than the SL-scheme. However, if the number of time
steps N grows, the L-scheme may become more expensive than the SL-scheme.

Looking in particular at the figures in Figure 4, this example shows some kind of numerical
diffusion that we may encounter with the SL-scheme, as well as with the H-scheme, to a lesser
extent.

In this example, we have also numerically observed that an increasing number of stochastic
gradient iterations were needed as the dimension increases.

Scheme
Parameters Global errors Local errors CPU

timed N lay. neur. M S.G. it. L∞ L1 rel. L∞ L1 rel.

SL 6 5 3 40 2000 200000 9.08e-02 1.84e-02 5.77e-02 1.29e-02 6h41
H 6 5 3 40 2000 200000 9.47e-02 1.50e-02 6.42e-02 1.08e-02 8h31
L 6 5 3 40 2000 200000 2.14e-03 9.58e-05 1.79e-03 9.54e-05 4h59

Table 3: (Example 3) Advection with obstacle, comparison of schemes
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(a)

(b)

(c)

Figure 4: (Example 3) Results obtained with H-scheme (row (a)), SL-scheme (row (b)), and L-
scheme (row (c)) respectively. Dimension d = 6, N = 5 time steps, neural networks of 3 layers and
40 neurons.

8.4 Example 4: eikonal advection equation with obstacle, large drift

We consider now a mixed d-dimensional eikonal/advection equation with an obstacle term. More
precisely, the dynamics is defined by f(x, a) = −be1 + ca, where e1 = (1, 0, ..., 0)t ∈ Rd, the control
a belongs to A := Sd−1 the unit ball of Rd, b ∈ R is a coefficient corresponding to the ”drift”,
and c ≥ 0 is a speed coefficient for the eikonal part of the equation. Then the corresponding HJB
equation is:

min

(
− vt + b · vx1

+ c‖∇xv‖, v − g(x)

)
= 0, t ∈ [0, T ] (66)

v(T, x) = max(ϕ(x), g(x)). (67)

The obstacle term and terminal condition are defined as

g(x) := min (gmax − ce |x1 − gc| , cx |x⊥|+ gmin) , ϕ(x) := ‖x‖+ αmin,
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where ce, cx, gc, gmax gmin and αmin are coefficients, and, for a given x = (x1, . . . , xd)
t ∈ Rd,

x⊥ := (0, x2, . . . , xd)
t (the orthogonal projection of x on Vect(e2, . . . , ed)). Note that this obstacle

term correspond to a wall obstacle with a tube opening centered around the e1 axis (see for instance
the green dotted line in Fig. 6).

The exact solution can be computed. Details are given in Appendix A. In this example, more
precisely, the following parameters are considered

gmax = 2, gmin = −2, ce = 1, cx = 1.5, gc = 4, b = 1, c = 0.5, αmin = −1.

Here in particular |b| > c: the drift is dominant, which corresponds to a non-controllable situation.
Comparison of schemes in dimension d = 4. First, the SL-, H- and L-schemes are compared.

Neural networks with 3 layers of 60 neurons are chosen, and each simulation uses 100,000 stochastic
gradient step. Figure (5) displays the error |V̂0(x)− v(0, x)| in function of space, with N ∈ {8, 16}
number of time steps. Results are shown in Table 4. For this example as well as the next one,
the plane P for error computations and graphics is generated by (w1, w2) = (e1, e2), the first two
vectors of the canonical basis of Rd.

The SL-scheme approximates both the control and the value function by neural networks. The
projection of the latter is a source of errors, that accumulates during the simulation. This drawback
is avoided with the H-scheme and L-scheme, where the value function is computed as a composition
of the (exact) target function ϕ and the approximated controls. Again, for the error, the H-scheme
and L-scheme behave better than the SL-scheme.

Furthermore, for the H-scheme and the L-scheme, when N varies from 8 to 16, we observe very
roughly that the L1 (global and local) errors are divided by a factor two (this is less clear for the
L∞ errors). This is not the case for the SL-scheme, for which errors have a tendency to accumulate
more with the time iterations.

Figure 5: (Example 4) Comparison between SL-scheme (left), H-scheme (middle) and L-scheme
(right), for N = 8 (top) and N = 16 (bottom).
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Scheme
Parameters Global errors Local errors CPU

timed N lay. neur. M S.G. it. L∞ L1 rel. L∞ L1 rel.

SL 4 8 3 60 4000 100000 8.60e-01 4.91e-02 1.98e-01 7.48e-02 6h14
H 4 8 3 60 4000 100000 3.34e-01 1.58e-02 2.01e-01 4.61e-02 11h26
L 4 8 3 60 4000 100000 3.24e-01 6.68e-03 1.09e-01 2.56e-02 8h16

SL 4 16 3 60 4000 100000 1.07e+00 9.21e-02 2.92e-01 1.06e-01 12h29
H 4 16 3 60 4000 100000 3.32e-01 9.62e-03 1.54e-01 2.88e-02 34h26
L 4 16 3 60 4000 100000 1.85e-01 3.57e-03 8.85e-02 1.64e-02 28h08

Table 4: (Example 4) comparison between schemes

Test of the L-scheme for increasing dimensions. Next, the L-scheme is tested for several dimen-
sions d ∈ {2, 4, 6, 8}, and results are given in Table 5. The neural network size is kept constant,
with 3 layers of 60 neurons, as for the number of time iterations (N = 8). In order to reach
comparable precision, we have observed that the number of stochastic gradient iterations has to
grow with d. As the dimension increases, more iterations are needed to explore the whole region
of interest. Otherwise, the scheme is relatively robust with respect to the physical dimension of
the problem (see Fig. 6).

We observe for dimension d = 8 some defects in the numerical solution, and some oscillations
appears. Because of CPU time limitations, we did not attempt using more S.G. iterations, although
in principle, as observed for lower dimensions, this should enable a better optimization and solve
the problem.

Scheme
Parameters Global errors Local errors CPU

timed N lay. neur. M S.G. it. L∞ L1 rel. L∞ L1 rel.

L 2 8 3 60 4000 50000 2.66e-01 5.99e-03 1.19e-01 4.61e-02 3h02
L 4 8 3 60 4000 100000 3.90e-01 6.77e-03 1.16e-01 2.69e-02 8h13
L 6 8 3 60 4000 400000 9.69e-01 1.09e-02 1.78e-01 2.88e-02 35h20
L 8 8 3 60 4000 600000 1.05e+00 3.75e-02 1.71e-01 2.95e-02 45h27

Table 5: (Example 4) L-scheme, dimensions d = 2, 4, 6, 8

8.5 Example 5: eikonal advection equation with obstacle, small drift

We now turn on a similar example as in example 4, excepted for the coefficients which are now

c = 1, b = 0.5.

Results obtained with the L-scheme are given in Table 6 and Fig. 7. Here |b| < c, the drift is
small, and it corresponds to a controllable situation. We observe that the front has to negociate
a sharper angle near the boundary of the tube (see Fig. 7).

As in example 4, the results are rather robust with respect to dimension, provided the number
of stochastic gradient iterations is large enough.

Scheme
Parameters Global errors Local errors CPU

timed N lay. neur. M S.G it. L∞ L1 rel. L∞ L1 rel.

L 2 8 3 60 4000 50000 1.24e-01 2.94e-03 8.81e-02 5.21e-03 3h09
L 4 8 3 60 4000 100000 2.49e-01 4.70e-03 8.67e-02 5.45e-03 6h51
L 6 8 3 60 4000 400000 8.74e-01 3.70e-02 1.09e-01 1.01e-02 35h07

Table 6: Errors for example 5
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Figure 6: (Example 4) L-scheme, dimensions 2,4,6,8, N = 8 time steps, networks : 3 layers of 60
neurons.
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Figure 7: (Example 5) L-scheme, dimensions 2, 4 and 6. Networks with 3 layers of 60 neurons,
N = 8 time steps.

A Semi-analytical solution for examples 4 and 5

We briefly describe how to compute the exact values for examples 4 and 5, that is, in order to
compute v = v(t, x) for given values t and x. We consider the case of data ϕ(x) = ‖x‖+ αmin, for
αmin ∈ R.

For α ∈ [gmin, gmax], notice that the level set {g = α} corresponds to a wall pierced by a square
door (see figure 8).
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Figure 8: Initial condition (in blue) and obstacle function (in green). Illustration of parameters.
Exemple of a characteristics with obstacle in the case b = 0.

First, by using the symmetries of the problem around the e1 axis, and an orthogonal axis along
x− x1e1, it is possible to set back the problem into a 2-dimensional problem.

If no obstacle term is present (or if it does not modify the value v), for a given point x ∈ Rd,
and for a given level-set value v, it is possible to compute the minimal time to reach x from the
initial level set front, corresponding to some point on the level set {ϕ(x) = v}. More precisely, the
optimal trajectory is a straight segment and the value satisfies

v(t, x) = (‖x− be1t‖ − ct)+ + αmin,

and t is also the time for the front {ϕ(·) = v} to reach the point x.
In the more complex situation when the optimal trajectory from {ϕ(·) = v} to point x is not

a straight segment, it is composed of two segments: one starting from some point on {ϕ(·) = v}
to reach some point y on the level set {g(y) = v}, and the other one starting from y to x - as
depicted in Fig. 8-right). Then the minimal time t, associated to some value v = v(t, x), is the
sum of two minimal times t1, t2 such that

t = t1 + t2 (68a)

‖y − be1t1‖2 = (ct1 + v − αmin)2 (68b)

‖x− (y + be1t2)‖2 = (ct2)2. (68c)

Note that t1 is the time for the level set {ϕ(·) = v} to reach y on {g(·) = v}, t2 is the time to reach
x from y. Then, for a given value v, y = y(v) is known and it has an affine analytic expression
in term of v. Times t1 = t1(v) and t2 = t2(v) are obtained as root solutions of (68b) and (68c).
Finally, for given (t, x), the value v is obtained through a Newton algorithm for solving system (68).
Note that on regions not attained by the front, we consider the complex roots t1(v) or t2(v) in the
Newton algorithm (in order to always have well-defined and continuous reaching times).
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