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Abstract. In this paper, we propose a multidimensional statistical model of intraday electricity

prices at the scale of the trading session, which allows all products to be simulated simultaneously.
This model, based on Poisson measures and inspired by the Common Shock Poisson Model,

reproduces the Samuelson effect (intensity and volatility increases as time to maturity decreases).

It also reproduces the price correlation structure, highlighted here in the data, which decreases
as two maturities move apart. This model has only three parameters that can be estimated using

a moment method that we propose here. We demonstrate the usefulness of the model on a case

of storage valuation by dynamic programming over a trading session.
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1. Introduction

1.1. Motivation. The strong growth in renewable energy capacity in Europe is leading to in-
creased liquidity in the short-term markets, particularly in the intraday electricity market. This
market follows on from the spot market, which is an auction market where producers and suppli-
ers submit forecasts of supply and demand curves for the next 24 hours. The spot market, also
known as the day-ahead market, takes place at noon on the day before the delivery period and the
intraday market starts at 3 pm. The intraday market is an order book market where transactions
can take place continuously. It is possible to place bid or ask orders for any product up to at least
one hour before delivery (e.g. up to 5 minutes before delivery in Germany). The producers and
suppliers have positions in the physical day-ahead market (based on their offers previous day) and
use intraday markets to adjust positions according to updated forecasts. For example, if a wind
producer has bid too high on the spot market compared to his/her new forecast and that bid has
been accepted, he/she can buy on the intraday market for that hour. It should be noted that there
are 24 delivery hours and therefore 24 markets operating simultaneously; however, the intraday
market is used to refer to these 24 products. For more information on how the intraday electricity
market works, see [5].

With the development of renewable energy, storage devices such as batteries are developing very
rapidly [14], allowing, for example, a renewable energy producer to store or release electricity to
balance his/her commitment on the spot market, rather than buying or selling on the intraday
market. More generally, a market participant, whether a producer or a supplier, may acquire a
means of storage to facilitate the balancing of supply and demand, but also to capture a value
associated with market volatility. It is therefore important to quantify the value that can be
extracted from the market through storage. In addition, the battery makes it possible to link
different maturities: without storage, it is not possible for an actor to buy electricity for one
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delivery time and sell it at another delivery time without incurring a very large financial penalty.
The value of the battery then depends not only on the average price spreads during hours of the
day, but also on the level of volatility, correlations between products with different maturities.
Stochastic optimisation has been used for decades by energy producers to manage water and
gas reservoirs using the principle of dynamic programming but with low-dimensional models for
prices, see [33, Section 3.3]. The first methods were tree methods, and more recently the Longstaff-
Schwarz algorithm [32] has been adapted to this problem [39]. More recently, these methods have
been adapted to optimise batteries taking into account their yield (see the review of Machlev et
al. [33] on this topic). Optimising and valuing a storage at the trading session level requires a
multidimensional pricing model that captures the correlation structure of prices: in [20], Finnah et
al. optimise a battery on both the day-ahead and intraday markets using a simple high-dimensional
autoregressive model for price forecasts. Because of the very high dimensionality of the price
model, they use an approximate dynamic programming to correctly optimise the asset and show
that taking into account the high dimensionality of the prices is necessary to get good results.

To the best of our knowledge, the literature on stochastic modelling of intraday prices at the
session level is very scarce. Both Favetto [19] and Graf von Luckner and Kiesel [23] are interested in
modelling the arrival of order books using Hawkes processes. Blasberg et al. [8] follow the modelling
of Graf von Luckner and Kiesel [23] and are interested in the evolution of the parameters over time,
while Kramer and Kiesel [29] integrate covariates into the model (errors in the forecast of renewable
generation and the activated volume on the balancing market) on which the intensity depends.
This modelling is unidimensional, i.e. it only treats maturities independently. In addition, the
modelling of order arrivals is not sufficient for the valuation of storage assets. Deschatre and
Gruet [18] are interested in the modelling of prices : they use a marked bivariate Hawkes process
with an exponential baseline intensity which provides a good representation of prices. A mark
represents the price return associated with an event. The baseline intensity makes it possible
to represent the Samuelson effect, while the self-excitation makes it possible to represent the
microstructure noise and in particular the signature plot, which is classical in finance [3, 4]. Once
again, the price modelling is only one-dimensional and does not take into account the dependence
between the different maturities, which is essential for the valuation of assets with payoffs that
depend on several maturities. Narajewski and Ziel [34] and Hirsch and Ziel [25, 24] develop
simulation-based forecast models which are similar to econometric models [28, 30], that look at the
relationship between intraday price level and fundamental variables such as changes in solar and
wind generation forecasts and changes in demand forecasts, but which look at the distribution of
returns (variance, skewness, kurtosis) in addition to the price level. The model of Hirsch and Ziel
in [24] is a multidimensional version of their model in [25] and is to our knowledge the first model
to focus on the dependence structure of prices in a simulation framework.

1.2. Main results. In this paper, we propose a pure simulation model of multidimensional intra-
day electricity prices at the level of the trading session, allowing the valuation of assets such as
storage facilities. First, we carry out an empirical analysis of transaction prices on the French and
German intraday markets and highlight two particularly important stylised facts that we wish to
represent:

(i) the Samuelson effect, corresponding to the increase in the intensity and volatility of price
movements over time during the trading session and already identified and modelled by
Deschatre and Gruet [18] ;

(ii) the forward structure of the price correlation matrix, which is the main novelty: we observe
a decrease in correlation with the distance between several maturities; this relationship is
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known on commodity futures markets and can be called the Samuelson correlation effect
[37].

These empirical results constitute the Section 2.

Next, we propose a multidimensional price simulation model that allows the simultaneous rep-
resentation of (i) and (ii). Due to the nature of the data, which correspond to asynchronous
transactions, we choose a pure jump model with jump times corresponding to transaction times
and jump sizes corresponding to the sizes of the returns. The model, described in Section 3,
is constructed using three-dimensional Poisson measures. Marginally, each price is a compound
non-homogeneous Poisson process of intensity increasing with time, as in [18] if we neglect the
stochastic part of the intensity. A marked compound non-homogeneous Poisson process can be
constructed from a two-dimensional measure whose first dimension corresponds to the time aspect
and the second to the jump law. The third dimension in our model makes it possible to introduce
dependency between products of different maturities. The proposed model is strongly inspired
by the Common Shock Poisson Model [35, 31] and adapted to electricity markets. There are two
types of price movements: some are specific to each maturity and others will affect the different
maturities simultaneously, in the form of a common shock that may, for example, represent the
failure of an asset affecting several hours of delivery. To represent the Samuelson correlation effect,
the shocks can only affect successive maturities, starting with the nearest, and the probability of
affecting the next m successive maturities decreases with m. The model is parameterised by only
3 parameters in addition to the law of jumps, and each parameter has a simple interpretation:

- the first one is the rate of increase in volatility as a function of time and the rate of decrease
in correlation as a function of the distance to maturity ;

- the second corresponds to the intensity of transactions taking place independently on each
maturity ;

- the third one is the intensity of transactions that can take place simultaneously on several
maturities and which result from a common shock.

A very simple based moments estimation procedure is associated with the model and is given in
Section 4. Unlike [18], our model does not allow microstructure noise to be represented, although it
is taken into account in the estimation procedure. Since our objective is to optimise and make the
most of a storage asset, which we are not looking at at very high frequency, we have neglected this
aspect. It should be noted that the inclusion of these effects in the model, if it can be done with
a limited number of additional parameters, seems to be relevant at least from the point of view
of statistical inference: we could avoid filtering the data in the estimation procedure with a time
step that can be high and thus losing part of the statistical information, see also the discussion at
the end of Section 4.2. Although there are similarities with the simulation-based forecast model
of Hirsch and Ziel [24], our approach is quite different. The aim is to have a simulation model
of price trajectories, the objective of which is not to make forecasts as in [24] but to value assets
by stochastic optimisation. In a pure simulation context, we would need a simulation model for
each covariate used for forecasting if we wanted to simulate price trajectories every day with the
model of Hirsch and Ziel [24], which seems complicated in practice. Our model makes it very
easy to simulate multidimensional price trajectories for a given day, with a very limited number
of parameters compared to a forecasting model. On the other hand, our model is not suitable for
ensemble price forecasting. An interesting intermediate between our model and the one of Hirsch
and Ziel [24] would be to add a limited number of covariates that we can simulate to our model
to explain the intensity of price changes, as Kramer and Kiesel [29] do for order books. To our
knowledge, our model is therefore the first pure simulation multidimensional model of intraday
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electricity prices at the scale of a trading session. There are models for intraday prices, such as
in [20], but at a higher time scale, e.g. representing only the last transaction price or an index at
daily granularity, but not the continuous evolution of transaction prices during the trading session.

Finally, we propose a method for valuing a storage device in Section 5, in this case a battery, by
dynamic programming using our simulation model. The optimisation method is then back-tested
on the data using the controls learned from the simulation model, and provides battery values for
the French and German markets over the period from 2019 to 2022. The values obtained show
the relevance of the chosen statistical model and show that the model exhibits strategies far more
interesting than deterministic strategies derived from the day-ahead prices.

2. Empirical stylised facts

In this section, we highlight some of the stylised facts that led us to choose the model described
in Section 3. The two main ones are (i) the structure of intensity as a function of time to maturity,
and therefore of volatility, also known as the Samuelson effect, already identified by Deschatre
and Gruet [18], and since we focus on multidimensional price modelling, (ii) the very specific
correlation structure of the electricity intraday market highlighted for the first time in this paper
but already present in [24]. We also recall the presence of microstructure noise in our data, which
is important to take into account for the estimation, but which we will not model, unlike Deschatre
and Gruet [18], which do so in a one-dimensional case.

2.1. Dataset. The dataset provided by EPEX Spot consists of the German and French electricity
intraday transaction prices for products with a delivery period of one hour between December 1st,
2018 and December 31st, 2022 for Germany and France. For each day d, there are 24 products
corresponding to the 24 hours of the day. These 24 products correspond to 24 markets and for each
market, the trading session starts at 3 pm on the day before the delivery, i.e. d−1, and ends between
thirty and five minutes before the start of delivery, depending on the year and the country. These
markets are order book markets and the prices evolve continuously throughout the trading session.
Transaction prices consist of timestamps accurate to one minute (2019), one second (2020) or one
millisecond (2021 and 2022), and associated prices corresponding to a transaction taking place at
that time. If more than one price has the same timestamp, only the last one is taken into account.
The tick size is 0.01e/MWh. As one hour before delivery, it is no longer possible to trade across
countries, and thirty minutes before delivery, it is only possible to trade at a smaller zone level
within the country, we only consider data up to one hour before delivery as in [18]. For illustrative
purposes, German transaction prices are shown in Figure 1 for some maturities on March 18, 2022.
Depending on the time of day and the year, the average number of transactions recorded per day,
corresponding to the number of arrivals modelled in this article (excluding transactions with no
price change), varies between 1200 and 2400 for the German market, see Figure 2 (and between
200 and 800 for the French market). The number of transactions in both countries increases
every year. The volumes exchanged evolve in the same way as the number of transactions, with a
strong seasonality within the day, explained on the one hand by the seasonal nature of electricity
consumption, but also by the length of trading sessions, which depends on maturity (explaining,
for the first maturity, a very low number of transactions, as the session lasts only 9 hours). The
average daily volume traded in Germany between 2021 and 2022 decreases, while the number of
transactions increases: transactions are more frequent and involve smaller volumes.

Very large returns, sometimes greater than 100e/MWh (i.e. 10000 ticks), are identified and can
affect the different estimated quantities. These large returns, which often occur at the beginning of
the trading session, are often followed by a return of the same magnitude in the opposite direction.
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This seems to be analogous to bouncebacks mentioned in [26, Chapter 2, Section 4.2]. They can
be caused by a lack of liquidity in the order book: a significant portion of the volume on one
side of the order book is consumed by a market taker, followed by a return to equilibrium (limit
orders are placed at the same best bid/ask price as before the transaction). In an ideal case, these
bouncebacks should not be removed from the data, but it is difficult to model them in a simple
modelling framework because their statistical behaviour is very different from the rest of the data,
while they represent a very small part of the data: we then consider them as outliers. For each
delivery period in the following, we remove the returns that are greater in absolute value than 5
times the standard deviation of all the non-zero returns (the method consists in the first step of
the algorithm of Cartea and Figueroa [11] to detect spikes with 5 times the standard deviation
instead of 3, thus reducing the penalty.). The number of removed returns is less than 1% for
each period. Table 1 gives some statistics on the distribution of (non-zero) returns for German
intraday transaction prices (filtered using the previous method) in 2022 by maturity. The different
statistics are closed from one maturity to another, with mean very close to 0, except for maturity
1 where the standard deviation if much higher. This is explained by some remaining high returns
(only 0.01% of the data are filtered for maturity 1 against about 0.3% for the other maturities).
Moreover, according to the quantile values and the mean, the distribution of the returns seems to
be symmetrical: positive and negative returns may have the same law, as noted in [16]. Although
only presented for Germany, all the empirical results presented below also hold for France.

Figure 1. German transaction prices for the trading session on March 18, 2022.



6 THOMAS DESCHATRE AND XAVIER WARIN

Figure 2. Average number of transactions per day and average volume traded
per day in MW by maturity (left, computed as the average number/volume of
transactions over all trading sessions for a given maturity) and year (right, com-
puted as the average number/volume of transactions all maturities and trading
sessions of a given year) in Germany.

Maturity Mean Std Q1 Q25 Q75 Q99

0 -0.00 2.20 -6.80 -0.46 0.47 6.79
1 0.01 4.42 -6.61 -0.44 0.45 6.67
2 0.01 1.96 -6.00 -0.43 0.43 6.15
3 0.00 1.86 -5.82 -0.41 0.41 5.81
4 0.01 1.90 -5.94 -0.42 0.43 6.00
5 0.01 2.01 -6.20 -0.43 0.44 6.31
6 0.01 2.30 -7.12 -0.45 0.47 7.27
7 0.00 2.37 -7.34 -0.49 0.49 7.45
8 0.01 2.40 -7.42 -0.50 0.50 7.61
9 0.01 2.38 -7.39 -0.50 0.52 7.48
10 0.00 2.24 -7.00 -0.50 0.50 6.99
11 0.00 2.30 -7.03 -0.51 0.51 7.23
12 0.01 2.22 -6.90 -0.52 0.54 6.93
13 0.01 2.19 -6.89 -0.51 0.52 6.80
14 -0.00 2.22 -7.00 -0.52 0.51 7.00
15 -0.00 2.19 -7.00 -0.51 0.51 7.00
16 0.00 2.27 -7.21 -0.50 0.51 7.19
17 0.00 2.33 -7.54 -0.51 0.52 7.42
18 0.01 2.50 -7.84 -0.52 0.55 7.83
19 0.01 2.62 -8.27 -0.55 0.56 8.31
20 0.00 2.57 -8.01 -0.52 0.52 8.10
21 0.00 2.42 -7.61 -0.50 0.50 7.68
22 0.00 2.39 -7.61 -0.50 0.51 7.60
23 0.00 2.30 -7.47 -0.50 0.50 7.48

Table 1. Statistics on the distribution of returns for German intraday transaction
prices in 2022.
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2.2. Increasing intensity of price changes. Favetto [19] and Graf von Luckner and Kiesel [23]
identify an exponential increase in order book activity with trading time. Deschatre and Gruet [18]
also identify this phenomenon for the intensity of mid-price changes and considers a model where
the non-stochastic part of the intensity of mid-price moves is an exponential function of time. This
phenomenon is particularly important as it has direct implications for volatility modelling: in [18],
increasing intensity induces an exponential increase in volatility as time to maturity decreases,
corresponding to the so-called Samuelson effect, which is consistent with the data. Samuelson’s
effect is studied by Aı̈d et al. [2] for intraday markets; they develop an equilibrium price model
and show conditions under which this effect holds. Samuelson’s effect is also very common in
commodity futures markets and especially in electricity futures markets, see [27]. One explanation
for the increase in trading intensity as time to maturity decreases is that the intraday market for
fundamental actors is about to balance their obligations due to increasingly more precise forecasts.
Intensity curves for different maturities are shown in Figure 3 for German transaction prices in
2022. For a given maturity, the corresponding intensity curve has been calculated from the average
number of price changes over the different trading sessions of the year in 15-minute windows. This
exponential increase is observed for the other maturities and for the rest of the data set, for
Germany but also for France.

Figure 3. Intensity of German transaction price changes in 2022 for some deliv-
ery periods.

2.3. Microstructure noise. Here we address the issue of microstructure noise, already identified
by Deschatre and Gruet [18]. Unlike Deschatre and Gruet [18], the modelling of this noise is beyond
the scope of this paper, but we have to take it into account in the estimation procedure to avoid
overestimating the volatility or underestimating the correlation. Two major effects are identified
by Deschatre and Gruet [18], which are common in the modelling of high-frequency financial data
[3]:

(i) the signature plot of the price over a period [0, T ], T > 0, shown in Figure 4, is the function

(1) ∆ → Ĉ(∆, T ) =

⌊T/∆⌋∑
i=1

(
fi∆ − f(i−1)∆

)2
for the price (ft)t, which is the empirical quadratic variation of the price process as a
function of the sampling time step. In Figure 4, the curves correspond to the average of
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(1) over the different trading sessions, normalised by T−1, T being the maturity minus one
hour. For a semi-martingale, this curve should be constant and estimate the integrated
volatility. However, we observe an instability when the sampling time step becomes low
(frequency becomes high), caused by a mean reverting behaviour of the prices at a high
frequency scale. The signature plot then stabilises at lower frequencies, in our case around
30-40 minutes.

(ii) Epps effect is the equivalence of the signature plot in a multidimensional setting. For two
prices (fl,t)t and (fm,t)t with maturities Tl and Tm, we consider the quadratic covariation
estimator over the period [0, T ]

(2) ∆ → Ĉlm(∆, T ) =

⌊T/∆⌋∑
i=1

(
fl,i∆ − fl,(i−1)∆

) (
fm,i∆ − fm,(i−1)∆

)
as a function of the sampling time step. When ∆ is small, because prices almost-surely
never jump at exactly the same time, the covariance goes to zero. In Figure 4, we plot the
correlation estimator

(3)

∑D
d=1

(
Ĉd

lm(∆, Tl,m,e)− Ĉd
lm(∆, Tl,m,b)

)
√∑D

d=1

(
Ĉd

ll(∆, Tl,m,e)− Ĉd
ll(∆, Tl,m,b)

)∑D
d=1

(
Ĉd

mm(∆, Tl,m,e)− Ĉd
mm(∆, Tl,m,b)

) ,
for different maturity pairs Tl, Tm, where Ĉd

lm is the quantity (2) estimated for the trading
session with delivery date d ∈ {1, . . . , D} and [Tl,m,b, Tl,m,e] is the estimation period, i.e.
between 3 pm on the day before delivery and one hour before the minimum between the
two maturities. As the sampling time step increases, it increases before stabilising, here
around 30-40 minutes.

The use of Hawkes processes [4] allows these two behaviours to be modelled, but as stated, this is
beyond the scope of this paper and could be considered as part of future research.

Figure 4. Signature plot (1) over [0, T ] normalised by T−1 with T being the
maturity minus one hour (left) and Epps effect (3) (right) for German transaction
prices in 2022 for some delivery periods.

2.4. Correlation. The correlation between different maturities is particularly important for the
risk management of assets that are optimised over several delivery hours, such as storage, and is
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the main stylised fact that we focus on in this paper. The correlation matrix is shown in Figure 5
for German prices for the year 2022 and the correlation parameters are estimated pairwise using
the estimator (3) with a sampling time step of 30 minutes. The correlation between two maturities
seems to decrease with the distance between the maturities. This is confirmed by Figure 6, which
plots the correlations against the distance between maturities for the years 2019 to 2022. In each
year there is an exponential decay with time to maturity: the function x → a exp(−κ

2 x) is fitted to
the correlation curve using least squares minimisation. This correlation structure is of particular
interest and allows us to propose a sparse model with few parameters. The decrease in correlation
as the distance between maturities increases has been identified in future crude oil markets by
Schneider and Tavin [37]; they call this effect the Samuelson correlation effect.

The decrease in correlation and the increase in intensity as the time to maturity decreases can
be explained by a pure supply-demand equilibrium view. The price will move in the event of a
fortuitous event, assuming that traders only buy or sell to balance their position relative to the
spot market. For example, if there is a cold snap that was not anticipated at the time of the
spot market, consumption will increase and suppliers will have to buy on the market, causing the
price to rise. Conversely, if there is more wind than expected, wind producers will have to sell,
causing the price to fall. For a given maturity, the closer it is, the greater the probability that the
trader will have to buy or sell, or equivalently, the greater the intensity of the price change, as the
trader will have to react quickly. If the maturity is further away, the trader can wait for a new
forecast. In addition, the uncertainties usually affect several delivery dates at the same time. As
in the univariate case, the trader will prefer to buy or sell products with the closest maturities and
wait for new forecasts for the most distant maturities. According to this interpretation, the closer
the maturities are, the greater the probability that their prices will move simultaneously, and this
probability increases as the maturities get closer.
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Figure 5. Correlation matrix estimated using (3) with a sampling time step of
30 minutes for German transaction prices in 2022.
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2019 2020

2021 2022

Figure 6. Correlations as a function of distance between maturities estimated
using (3) with a sampling time step of 30 minutes for German transaction prices
in 2019, 2020, 2021 and 2022.

3. Electricity intraday price modelling

This section is the core of the paper and presents the price model, its properties and its interpre-
tation. As mentioned above, to the best of our knowledge, this model is the first multidimensional
intraday electricity price pure simulation model. We use a point process approach which is natu-
ral as we have high frequency asynchronous data, made up of event times associated with values
which are prices. In an equivalent and standard way, we associate upward or downward returns
with event times. One of the simplest possible models is to use a non-homogeneous compound
Poisson process for each maturity. Non-homogeneity is used to model the increase in intensity and
volatility as a function of time, and corresponds to the model of Deschatre and Gruet [18] without
the self-exciting part. However, taking these processes independent of each other does not allow
the correlation structure of prices to be modelled. In the following, we create dependence between
these non-homogeneous compound Poisson processes using Poisson measures (see Definition 1 and
[10, Section 1.1] for a general introduction on random and Poisson measures) on the 3-dimensional
space R+ ×R+ ×K, with K is the space of jump sizes, i.e. by adding a dimension with respect to
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a compound Poisson process which can be created from a Poisson measure on the 2-dimensional
space R+ ×K.

Definition 1 (Poisson random measure, from Definition 2.18 in [15]). Let (Ω,F ,P) be a probability
space, E ⊂ Rd and µ a given (positive) Radon measure on (E, E). A Poisson random measure on
E with intensity measure µ is an integer valued random measure:

π : Ω× E → N
(ω,A) 7→ π(ω,A),

such that

1. For (almost all) ω ∈ Ω, π(ω, ·) is an integer valued Radon measure on E ; for any bounded
measurable A ⊂ E, π(A) < ∞ is an integer valued random variable.

2. For each measurable set A ⊂ E, π(·, A) = π(A) is a Poisson random variable with param-
eter µ(A):

∀k ∈ N, P (π(A) = k) = e−µ(A) (µ(A))k

k!
.

3. For disjoint measurable sets A1, . . ., An ∈ E, the variables π(A1), . . ., π(An) are indepen-
dent.

3.1. Model. Consider M maturities, 0 < T1 < T2 < · · · < TM = T , with M ∈ N \ {0}. On a
probability space (Ω,F ,P), we consider 2 (M + 1) independent Poisson measures π+

1 (dt, dx, dy),
. . ., π+

M (dt, dx, dy), π−
1 (dt, dx, dy), . . ., π

−
M (dt, dx, dy), π+(dt, dx, dy), π−(dt, dx, dy) on (E, E) =

(R+ × R+ ×K, B(R+)⊗ B(R+)⊗K) with the same intensity measure dt⊗ dx⊗ ν(dy), where ν is
a probability measure on (K,K). K is the space of the price return sizes in absolute value and ν
corresponds to their probability distribution ; hence we assume K ⊂ R+ and ν({0}) = 0 (absolute
value of return sizes almost-surely positive). As we are interested in volatility and correlations
modelling, we also assume that

∫
K
y2ν(dy) < ∞. Note that these Poisson measures correspond to

Poisson measures with i.i.d. marks, see [10, Section 3.3]. We endow Ω with the filtration (Ft)t≥0

defined at time t by

∨
h∈{+,−}

(
σ
(
π
h
((0, s] × B) : 0 ≤ s ≤ t, B ∈ B(R+) ⊗ K

)∨(
M∨

m=1

σ
(
π
h
m ((0, s] × B) : 0 ≤ s ≤ t, B ∈ B(R+) ⊗ K

)))
.

The 2 (M + 1) Poisson measures are used to model the 2M processes (f+
m,t)t and (f−

m,t)t for
m = 1, . . . ,M which are respectively the sum of the absolute values of the upward and downward
price returns for the price with maturity Tm. The model is the following:

fh
m,t =

∫ t

0

∫
R+

∫
K

y1x≤µe−κ(Tm−s)1s≤Tm
πh
m(ds, dx, dy)

+

∫ t

0

∫
R+

∫
K

y1x≤µce−κ(Tm−s)1s≤Tm
πh(ds, dx, dy)

(4)

for h = +,−, m = 1, . . . ,M and 0 ≤ t ≤ T with µ, µc and κ ≥ 0. With fm,0 the initial price for
maturity Tm, the price is then given by

(5) fm,t = fm,0 + f+
m,t − f−

m,t, 0 ≤ t ≤ T.

Only three parameters, whose interpretation is given below, can be used to model all the prices,
in addition to the law of jumps.

Remark 1. The first term of the sum in (4) is just an non-homogeneous Poisson process with
i.i.d. marks and could simply be defined by a Poisson random measure on R+ ×K. We keep three
dimensional measures to ensure consistency of notation with the second part of the sum.
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Marginal properties. First, looking at each process marginally, that is for a given m ∈ {1, . . . ,M},
the processes (f+

m,t)t and (f−
m,t)t are non-homogeneous (Ft)t-compound Poisson processes with

same intensity at time 0 ≤ t ≤ T which is (µ+ µc) e
−κ(Tm−t)1t≤Tm and jump sizes with law ν(dy).

This result is a direct application of [10, Theorem 5.7.3]. From a martingale point of view, the
point processes

Nh
m,t =

∫ t

0

∫
R+

∫
K

1x≤µe−κ(Tm−s)1s≤Tm
πh
m(ds, dx, dy)

+

∫ t

0

∫
R+

∫
K

1x≤µce−κ(Tm−s)1s≤Tm
πh(ds, dx, dy)

(6)

for h = +,− have (Ft)t-compensator∫ t

0

∫
R+

∫
K

1x≤µe−κ(Tm−s)1s≤Tm
dsdxν(dy) +

∫ t

0

∫
R+

∫
K

1x≤µce−κ(Tm−s)1s≤Tm
dsdxν(dy)

=

∫ t

0

(µ+ µc) e
−κ(Tm−s)1s≤Tmds

which defines an non-homogeneous Poisson process with intensity (µ+ µc) e
−κ(Tm−s)1s≤Tm

. The
intensity that measures the number of price movements which is the intensity of N+

m,t + N−
m,t, is

then given by 2 (µ+ µc) e
−κ(Tm−s)1s≤Tm

: it increases with time to maturity which is consistent
with the empirical results in [18] and Figure 3. The parameter κ represents the rate at which the
intensity increases. The intensity becomes 0 after the maturity to represent the end of the trading
session for that maturity. Also, the price process (fm)m∈{1,...,M} is a square integrable martingale,
which is a direct consequence of Proposition 1 with proof given in Section 6.1.

Proposition 1. In the model (4)-(5), the two multivariate processes(
fh
m,t −

∫
R
yν(dy)

∫ t

0

(µ+ µc) e
−κ(Tm−s)ds

)
m=1,...,M

, t ≤ T, h = +,−,

are square (Ft)t-integrable martingales.

Dependence. The shared Poisson measures π+ and π− model the dependence through the processes

f c,h
m,t =

∫ t

0

∫
R+

∫
K

y1x≤µce−κ(Tm−s)1s≤Tm
πh(ds, dx, dy), 0 ≤ t ≤ T, m = 1, . . . ,M, h = +,−

that are integrals against these same measures. These processes represent the impact of a common
shock on the market, such as a power plant shutdown or a change in weather conditions, which
can affect the different maturities. The measure π+ models shocks that cause price increases (e.g.
power plant shutdown) and π− price decreases (e.g. increase in temperature, increase in wind
production). The modelling framework is closely related to the Common Poisson Shock Models
[35, 31], which allow to create dependence between Poisson processes. Indeed, considering our
model with time-homogeneous intensities (i.e. κ = 0) leads to

Nh
m,t = Ñh

m,t +N c,h
t , 0 ≤ t ≤ T, m = 1, . . . ,M, h = +,−,

where Ñh
m, m = 1, . . . ,M , h = +,− are independent Poisson processes with same intensity µ

and N c,h is a Poisson process with intensity µc which is the common shock. The dependence is
purely exogenous: joint price movements are induced by exogenous shocks. This approach is quite
different from the multivariate Hawkes approach used for prices modelling, where the dependence
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between prices is purely endogenous: the price of one asset moves because the price of another
asset has moved, see [3].

A shock affects the price m at time t with an intensity µce
−κ(Tm−t)1t≤Tm that increases with

the time to maturity at the rate κ: if the trader has information about an event, he is likely to
trade at the closest maturities and may not trade at maturities further away as the event can
be resolved. The shock does not affect only one maturity, but several at the same time. This
interpretation is consistent with the one given in section 2.4. Proposition 2 gives the probability
for a set of maturities to have at least one common positive or negative jump between two dates,
while another set of maturities does not. For two maturities Ti < Tj , if a shock induces a jump
for maturity Tj , it necessarily induces a jump for maturity Ti, while the absence of a jump from
a shock at maturity Ti induces the absence of a jump at maturity Tj . A shock then starts by
affecting the closest maturity and spreads to the maturities that follow. Considering the special
case M1 = {1, . . . , p} and M2 = {p + 1, . . . ,M} with p ∈ {1, . . . ,M} in Proposition 2, the
probability of having a jump only for the first p maturities is of the order of

µce
−κ(Tp−u)

(
1− e−κ(Tp+1−Tp)

)
du

on an interval [u, u+ du] with du ↓ 0. Assuming that Tp+1 − Tp does not depend on p, this
probability decreases with the number of maturities p. The shock causes traders to buy or sell
simultaneously at multiple maturities. Traders can trade at m successive maturities, starting
with the nearest one, with probability decreasing with m. The proof of Proposition 2 is given in
Section 6.2. Note that a common shock induces a jump of the same size for each maturity, which
is a strong assumption.

Proposition 2. With M1, M2 ⊂ {T1, . . . , TM} and 0 ≤ u ≤ t ≤ minM1 ∪ M2, we have for
h = +,−,

P

(∫ t

u

∫
R+

∫
K

1x≤µce−κ(Tm−s)πh(ds, dx, dy) ≥ 1 for every m ∈ M1 and

∫ t

u

∫
R+

∫
K

1x≤µce−κ(Tm−s)πh(ds, dx, dy) = 0 for every m ∈ M2

)
is equal to(

1− exp

(
−
∫ t

u

µc

(
e−κ(TmaxM1

−s) − e−κ(TminM2
−s)
)
ds

))
exp

(
−
∫ t

u

µce
−κ(TminM2

−s)ds

)
if maxM1 < minM2 and is null otherwise.

Remark 2. By considering the set of maturities as a continuous rather than a discrete set, with for
example T ∈ [T1, T2], T1, T2 > 0 (which is common in the literature devoted to modelling forward

prices in electricity markets [17]), and with N c,h
t (T ) =

∫ t

0

∫
R+

∫
K
1x≤e−κ(T−s)1s≤T

πh(ds, dx, dy) for

h = +,− and t ≤ T2, the common shock component (omitting the marks and normalising by µc),

the ‘spot’ process N c,h
T (T ), (taking the limit t → T is also common to obtain the spot price from the

forward price) is a Trawl process with Trawl {(x, s) : s ≤ 0, 0 ≤ x ≤ exp(κs)}. It is interesting to
note that these processes, introduced by Barndorff-Nielsen in [7], are used to model spot electricity
prices in [38].
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3.2. Covariance matrix. In this section, we focus on the moments of order 2 that correspond to
the quadratic covariation of the process. Its empirical counterpart is given by

(7) Ĉkl (∆, T ) =

⌊ T
∆ ⌋∑

i=1

(
fk,i∆ − fk,(i−1)∆

) (
fl,i∆ − fl,(i−1)∆

)
, k, l = 1, . . . ,M

for T > ∆ > 0, ∆ being the sampling time step. The expectation of (7) is given in Proposition 3.

Proposition 3. We have

E
(
Ĉkl(∆, T )

)
= 2

∫
K

y2ν(dy)

∫ ∆⌊ T
∆ ⌋

0

(µ+ µcδkl) e
−κ(max(Tk,Tl)−s)1s≤min(Tk,Tl)ds

for k, l = 1, . . . ,M , T > ∆ > 0 and Ĉkl (∆, T ) given by (7).

The proof follows from the computation of E
((
fk,i∆ − fk,(i−1)∆

) (
fl,i∆ − fl,(i−1)∆

))
which is

derived from [10, Theorem 3.2.1] and is equal to

2

∫
K

y2ν(dy)

∫ i∆

(i−1)∆

(µc + µδkl) e
−κ(max(Tk,Tl)−s)1s≤min(Tk,Tl)ds.

When T is a multiple of ∆, we get

E
(
Ĉkl(∆, T )

)
= 2

∫
K

y2f(dy)

∫ T

0

(µc + µδkl) e
−κ(max(Tk,Tl)−s)1s≤min(Tk,Tl)ds.

As this quantity does not depend on ∆, the model is unable to reproduce the signature plot and the
Epps effect identified in [18] or in Figure 4, i.e. quadratic covariation depending on the sampling
time step. This limitation of the model needs to be taken into account in the estimation procedure.
One way to account for these effects is to add self- and cross-excitation in the point processes as
in [18] for the univariate case, but this is beyond the scope of this paper.

A proxy for the integrated squared volatility of the price (fm,t)t, m ∈ {1, . . . ,M} between 0

and t is then E
(
Ĉmm(∆, t)

)
when ∆ → 0 equal to

(8) 2

∫
K

y2ν(dy)

∫ t

0

(µ+ µc) e
−κ(Tm−s)1s≤Tm

ds.

The instantaneous squared volatility at time t can then be considered as the derivative of (8) equal
to

(9) 2

∫
K

y2ν(dy) (µ+ µc) e
−κ(Tm−t)1t≤Tm

which is the instantaneous intensity of price changes times the order 2 moment of the jump sizes.
The notions of intensity and volatility are closely related, and the Samuelson effect applies to both,
as noted above.

The correlation between fk and fl for k ̸= l is given by

(10)
E
(
Ĉkl(∆, t)

)
√
E
(
Ĉkk(∆, t)

)
E
(
Ĉll(∆, t)

) =
µc

µ+ µc
e−

κ
2 |Tl−Tm|, t ≤ min(Tk, Tl).

The correlation decreases as the maturity distance increases, which is consistent with the empirical
results of Section 2. The rate of decrease in correlation, κ

2 , is half the rate of increase in intensity,
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i.e. κ, and equal to the rate of increase in volatility (not squared). The parameter κ in our
model represents both the Samuelson effect and the Samuelson correlation effect. Moreover, the
correlation in our model does not depend on the time t ; this property is in line with the results
of Hirsch and Ziel [24], who does not obtain an increase in forecast quality by implementing a
time-dependent dependency structure.

The model can represent both the Samuelson effect and the correlation structure with only three
parameters (without considering the law of the jumps), which is its main advantage.

3.3. Simulation method. It is possible to simulate processes of the form

(11) Nfi
t =

∫ t

0

∫
R+

1z≤fi(s)π(ds, dz), i = 1, . . . , I

that are present in the coupling part of the prices using [10, Theorem 3.1.1] in the following way:

(i) first simulate the number of jumps N of a homogeneous Poisson measure on

[0, t] ×
[
0,maxi=1,...,I sups∈[0,t] fi(s)

]
, which follows a Poisson law with parameter t ×

maxi=1,...,I sups∈[0,t] fi(s) ;

(ii) then simulate theN time jumps T1, . . . , TN with uniform law on [0, t] and theN coordinates

in x, X1, . . . , XN with uniform law on
[
0,maxi=1,...,I sups∈[0,t] fi(s)

]
;

(iii) for each i = 1, . . . , I, we have Nfi equal to the number of jumps such that Xn ≤ fi(Tn),
n = 1, . . . , N .

A simulation of a Poisson measure on R2
+ with the simulation of Nfi

t , i = 1, 2, is displayed in
Figure 7.

Figure 7. A simulation of a homogeneous Poisson measure with intensity dt ⊗
dx on [0, 1] ×

[
0,maxi=1,2 sups∈[0,t] fi(s)

]
with f1(t) = µ1 exp(κt) and f2(t) =

µ2 exp(κt), µ1 = 2, µ2 = 4 and κ = 1.5. For this realisation, Nf1
1 = 7 and

Nf2
1 = 12, where Nf is defined in (11).

Proposition 4 gives an alternative simulation method: the coupling part of the prices can be
written as a linear combination of compound Poisson processes. The proof is given in Section 6.3.
The idea of the proof is to divide the space into disjoint regions, the one below the blue curve and
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the one between the solid blue curve and the dashed orange curve in Figure 7, using the property
µce

−κ(Ti−s) > µce
−κ(Tj−s) for Ti > Tj .

Proposition 4. Assume µc > 0 and κ > 0. For h = +,−, we consider a vector of M indepen-

dent compound Poisson processes, P c,h, with intensities µce
−κ(T1−s) for P c,h

1 and µce
−κ(Tm−s) −

µce
−κ(Tm−1−s) for P c,h

m , m = 2, . . . ,M and with the jump law ν(dy). With

f c,h
t =

(∫ t

0

∫
R+

∫
K

y1x≤µce−κ(Tm−s)1s≤Tm
πh (ds, dx, dy)

)
m=1,...,M

, 0 ≤ t ≤ T,

we have

f c,h =
law

(∫ t

0

HsdP
c,h
s

)
t

with Hs the matrix of size M ×M such that Hij,s = 1j≤i1s≤Ti
for i, j = 1, . . . ,M .

Corollary 1 is a direct consequence of Proposition 4 and shows that we can simulate the price
process using 4M independent Poisson processes.

Corollary 1. Assume µ > 0, µc > 0, and κ > 0. We have

(ft)t =
law

(∫ t

0

Isd
(
P+ − P−)

s
+

∫ t

0

Hsd
(
P c,+ − P c,−)

s

)
t

where P+
1 , P−

1 , . . . , P+
M , P−

M , P c,+
1 , P c,−

1 , . . . , P c,+
M , P c,−

M are 4M independent compound Poisson
processes with intensities

- µe−κ(Tm−s) for P+
m and P−

m , m ≥ 1,

- µce
−κ(T1−s) for P c,+

1 and P c,−
1 ,

- µce
−κ(Tm−s) − µce

−κ(Tm−1−s) for P c,+
m and P c,−

m , m ≥ 2,

and jump law ν(dy), Hs and Is are the matrices of size M ×M such that Hij,s = 1j≤i1s≤Ti
and

Iij,s = δij1s≤Ti for i, j = 1, . . . ,M .

3.4. Limit theorems. In this section we consider an asymptotic setting on the intensity param-
eters µ and µc growing with some n ∈ N \ {0} while keeping T fixed, as in [21, 12, 13, 16]:

µ = µ(n) = nµ̃, µc = µ
(n)
c = nµ̃c, with µ̃, µ̃c > 0 fixed. This allows us to study the convergence

properties of the price process as n → ∞. The price process is now denoted by (f
(n)
t )t to indicate

the dependence on n. This asymptotic setting corresponds to three different statistical frameworks:

(i) the number of observed jumps is high: indeed, as n increases, the intensity of the different
point processes and then the number of jumps increases;

(ii) n is the number of i.i.d. observations (for instance the number of observed trading sessions)

of the price process (f̃)t with parameters κ, µ̃ and µ̃c, (f̃
i)t, i = 1, . . . , n and f (n) corre-

sponds to the superposition of the different price processes, that is (f
(n)
t )t = (

∑n
i=1 f̃

i
t )t;

(iii) f
(n)
t = f̃tn, t ∈ [0, T ] with (f̃t)t a process defined in the same way than (ft)t, observed

on [0, nT ] but with time dependent intensities µe−κ(Tm− t
n ) and µce

−κ(Tm− t
n ) for m =

1, . . . ,M : the asymptotic framework is the same one that a price process observed on a
large time horizon [0, nT ].

Remark 3. Since from Corollary 1, the price process (ft)t is a linear combination of independent
compound Poisson processes, the equivalence between (i), (ii), (iii) is immediate and is standard
for Poisson processes.
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Proposition 5 gives convergence results about the moments of order 1 when n → ∞. In particu-

lar, taking g(y) = y gives the convergence of (f
h,(n)
t )t, h = +,−. The proof is given in Section 6.4.

Proposition 5. With g(y) a measurable function on (K,K) such that
∫
K
g2(y)ν(dy) < ∞ and

f
g,h,(n)
t defined by (∫ t

0

∫
R+

∫
K

g(y)1x≤nµ̃e−κ(Tm−s)1s≤Tm
πh
m(ds, dx, dy)+

∫ t

0

∫
R+

∫
K

g(y)1x≤nµ̃ce−κ(Tm−s)1s≤Tm
πh(ds, dx, dy)

)
m=1,...,M

for t ≤ T and h = +,−, we have

sup
t∈[0,T ]

∥∥∥∥∥n−1f
g,h,(n)
t −

(∫
K

g(y)ν(dy)

∫ t

0

(µ̃+ µ̃c) e
−κ(Tm−s)1s≤Tm

ds

)
m=1,...,M

∥∥∥∥∥→ 0

in L2(P) as n → ∞.

Proposition 6 gives the limit of the scaled martingale ( 1√
n
f
(n)
t )t as n → ∞. The limit is

a process driven by a multivariate Brownian motion with correlation decreasing when distance
between maturities increases and with volatility increasing with time to maturity at the rate κ.
The instantaneous volatility in the limit diffusion is the same as in Equation (9) (to within one
normalisation). The proof is given in Section 6.5. The two quantities of interest highlighted in
Proposition 6 are

(12) σ =

√
2 (µ+ µc)

κ

∫
K

y2ν(dy)

≈

√
2 (µ+ µc)

∫
K

y2ν(dy)

∫ Tm

0

e−κ(Tm−s)ds


which is a proxy for the square root of the integrated volatility and

(13) ρ =
µc

µ+ µc
e−

κ
2 ∆T

with ∆T equal to 1 hour, which corresponds to the correlation between two products with consec-
utive maturities. To obtain the correlation between two products with maturities separated by r
hours, simply calculate ρe−

κ
2 (r−1)∆T .

Proposition 6. If
∫
K
y4ν(dy) < ∞, the process 1√

n
fn
t , t ∈ [0, T ] converges in law for the Skorokhod

topology to (∫ t

0

√∫
K

y2ν(dy)
√

2 (µ̃+ µ̃c)e
−κ

2 (Tm−s)1s≤TmdWm,s

)
m=1,...,M

, t ∈ [0, T ]

as n → ∞ where W = (W1, . . . ,WM )
⊤

is a multivariate Brownian motion with correlation matrix(
µ̃δkl+µ̃c

µ̃+µ̃c
e−

κ
2 |Tk−Tl|

)
k,l=1,...,M

.

4. Estimation and numerical results

Here, we present a moment-based procedure for estimating the parameters from the data, and
the numerical results that follow. This procedure is particularly simple and easy to implement.
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4.1. Estimation procedure. For each maturity Tm, m = 1, . . . ,M , we estimate the model only
on a portion of the trading session [Tb,m, Te,m] ⊂ [0, Tm] and we have a sample of D days, D ∈
N \ {0}.

Jump size law. Note that we observe the empirical distribution of the jump sizes because the price
processes are observed continuously. Assuming that the jump size law ν(dy) is discrete, which is
consistent with the fact that the price lives on a discrete grid and is proportional to the tick size
equal to 0.01e/MWh in our data, we estimate the different probabilities of this discrete law with
the empirical probabilities, taking into account both negative and positive jumps in absolute value
as well as all maturities. Let ν̂ the empirical distribution that estimates ν.

Estimation of κ. The parameter κ represents the rate at which the intensity of price changes
increases. To estimate this parameter, we use the least squares estimator that minimises the
contrast

(14) L̃m = −4 (µ+ µc)

∫ Te,m

Tb,m

e−κ(Tm−s)d
(
N+

m,s +N−
m,s

)
+ 4 (µ+ µc)

2
∫ Te,m

Tb,m

e−2κ(Tm−s)ds

with N+
m,s and N−

m,s defined by (6). This estimator has been used, for example, in the context
of non-homogeneous Poisson process intensity estimation by Reynaud-Bouret [36]. This contrast
allows one to estimate κ but also (µ+ µc). The intensity is strongly related to the volatility: for two
Poisson processes (N+

t )t and (N−
t )t, when the sampling time step is close to 0, the instantaneous

volatility of the price N+
t −N−

t is (dN+
s − dN−

s )
2 ≈ dN+

s +dN−
s , which is the intensity. Estimating

µ + µc from the contrast (14) leads to an overestimation of the volatility: µ + µc is fitted to
represent the intensity, which is the first point of the signature plot (down to the size of the
jumps) in Figure 4. In our model, the signature plot is flat and independent on the sampling time
step: the macroscopic volatility we are interested in (the battery is optimised with a time step
of one hour) is overestimated. This problem highlights a limitation of our model, which is that
it cannot model both intensity (equivalent to microscopic volatility) and volatility (macroscopic).
The introduction of self-excitation by Hawkes processes as in [18] could solve this problem, but
requires a more complex modelling framework. To address this issue here, we estimate κ by
parameterizing L̃m using

Λm =
E
(
N+

m,Te,m
+N−

m,Te,m
+N+

m,Tb,m
+N−

m,Tb,m

)
Te,m − Tb,m

= 2 (Te,m − Tb,m)
−1

(µ+ µc)

∫ Te,m

Tb,m

e−κ(Tm−s)ds

the average number of jumps per unit of time. This leads to :

L̃m =− 2 (Te,m − Tb,m) Λm

(∫ Te,m

Tb,m

e−κ(Tm−s)ds

)−1 ∫ Te,m

Tb,m

e−κ(Tm−s)d
(
N+

m,s +N−
m,s

)
+ (Te,m − Tb,m)

2
Λ2
m

(∫ Te,m

Tb,m

e−κ(Tm−s)ds

)−2 ∫ Te,m

Tb,m

e−2κ(Tm−s)ds

(15)
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and depends only on κ. The empirical counterpart of (15) is given by

L̂m(κ) =− 2 (Te,m − Tb,m) Λ̂m

(∫ Te,m

Tb,m

e−κ(Tm−s)ds

)−1

D−1
D∑

d=1

∫ Te,m

Tb,m

e−κ(Tm−s)d
(
Nd,+

m,s +Nd,−
m,s

)
+ (Te,m − Tb,m)

2
(
Λ̂m

)2(∫ Te,m

Tb,m

e−κ(Tm−s)ds

)−2 ∫ Te,m

Tb,m

e−2κ(Tm−s)ds

(16)

where Nd,+
m and Nd,−

m are the observations of N+
m and N−

m for trading session d, and Λ̂m an estimate
of Λm equal to the total number of jumps across all sessions between Tb,m and Te,m divided by
D×(Te,m−Tb,m). Since κ is the same for each maturity, we consider the estimator κ̂ that minimises

(17)

M∑
m=1

L̂m(κ).

Estimation of µ+ µc. µ+ µc is a proxy for the macroscopic variance and can be estimated using

the estimator D−1
∑D

d=1 Ĉ
d
mm(∆, Tm,e) − Ĉd

mm(∆, Tm,b), where Ĉd
mm(∆, Tm,e) is an estimate of

the empirical variance with a time step ∆ for the sample d given by (7). Considering ∆ large

enough to take into consideration microstructure noise, D−1
∑D

d=1 Ĉ
d
mm(∆, Tm,e)− Ĉd

mm(∆, Tm,b)
estimates

2

∫
K

y2ν(dy)

∫ ⌊Tm,e/∆⌋∆

⌊Tm,b/∆⌋∆
(µc + µ) e−κ(Tm−s)ds,

see Proposition 3. An estimator for µ+ µc is then given by µ̂S that minimizes

M∑
m=1

(
D−1

D∑
d=1

(
Ĉd

mm(∆, Tm,e)− Ĉd
mm(∆, Tm,b)

)
− 2µS

∫
K

y2ν̂(dy)

∫ ⌊Tm,e/∆⌋∆

⌊Tm,b/∆⌋∆
e−κ̂(Tm−s)ds

)2

and is equal to

µ̂S =

∑M
m=1 D

−1
∑D

d=1

(
Ĉd

mm(∆, Tm,e)− Ĉd
mm(∆, Tm,b)

) ∫ ⌊Tm,e/∆⌋∆
⌊Tm,b/∆⌋∆ e−κ̂(Tm−s)ds

2
∫
K
y2ν̂(dy)

∑M
m=1

(∫ ⌊Tm,e/∆⌋∆
⌊Tm,b/∆⌋∆ e−κ̂(Tm−s)ds

)2 .

Estimation of µc

µ+µc
. For two maturities Tl and Tm, we estimate every day the quadratic covariation

matrix (7) on the interval [Tb,l,m, Te,l,m] = [Tb,l, Te,l] ∩ [Tb,m, Te,m] (i.e. Tb,l,m = max(Tb,l, Tb,m)
and Te,l,m = min(Te,l, Te,m) if [Tb,l,m, Te,l,m] ̸= ∅) with a sampling time step ∆ large enough (to
account for microstructure noise). We only consider maturities such that Te,l,m − Tb,l,m ≥ δ. To
estimate

µc

µ+ µc
e−

κ
2 |Tl−Tm|,

we use the empirical correlation

(18) ρ̂lm =

∑D
d=1

(
Ĉd

lm(∆, Tl,m,e)− Ĉd
lm(∆, Tl,m,b)

)
√∑D

d=1

(
Ĉd

ll(∆, Tl,m,e)− Ĉd
ll(∆, Tl,m,b)

)∑D
d=1

(
Ĉd

mm(∆, Tl,m,e)− Ĉd
mm(∆, Tl,m,b)

) ,
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see (10). An estimator of µR = µc

µ+µc
, µ̂R, is then given by the minimiser of∑

l,m=1,...,M |Te,l,m−Tb,l,m≥δ

(
ρ̂lm − µRe

− κ̂
2 |Tl−Tm|

)2
,

under the constraint µR ≤ 1, hence

µ̂R = min

(∑
l,m=1,...,M |Te,l,m−Tb,l,m≥δ ρ̂lme−

κ̂
2 |Tl−Tm|∑

l,m=1,...,M |Te,l,m−Tb,l,m≥δ e
−κ̂|Tl−Tm| , 1

)
.

From µ̂S and µ̂R, we estimate µc by µ̂c = µ̂Sµ̂R and µ by µ̂ = µ̂S − µ̂c.

4.2. Numerical results. We now present the estimation results for France and Germany for the
years 2019 to 2022. We consider the 24 hourly products (M = 24), ∆ = 30 minutes, Tb,m = 0 and
Te,m = Tm − 1 hour for m = 1, . . . ,M and δ = 1 hour. In Figure 6, we show in solid green the
correlation curve resulting from the estimated parameters of the model for Germany, together with
the empirical correlations, as a function of the distance between maturities. The model manages
to reasonably represent correlation levels and their decay. If we compare the solid green curve with
the dashed orange curve, which is the least squares estimator between the empirical correlations
and the function x → a exp(−κ

2x), we get very similar results. In the model κ is estimated on
the evolution of the intensity over time with the least squares estimator (16)-(17) and this value,
estimated without taking into account the correlations between products, gives results relatively
close to the direct estimation on the correlation curve (dashed orange curve). This justifies the use
of a single κ parameter to model both the Samuelson effect and the Samuelson correlation effect.
Table 2 and Table 3 show the estimated model parameters for each year for Germany and France
respectively, as well as the first two moments of the jump sizes. The parameters µ and µc are
higher for Germany than for France, which can be explained by a more liquid market in Germany,
with more transactions. The parameter κ is of the same order of magnitude from one country to
another. The different parameters increase with the year, which is probably due to the increase
in spot prices from 2019 to 2022. To support this assumption, we estimate the parameters every
week (starting on Monday) from January 1st, 2019 to December 31st, 2022, using the last 28 days
of data (i.e. 4 weeks). As previously done to remove outliers, for each period of estimation we
remove returns that are larger in absolute value than 5 times the standard deviation of returns.
Note that for each estimation period, the number of removed returns is less than 1% of the total
number of returns. The volatility parameter σ defined in (12) is displayed in Figure 8 against the
average German spot price over the estimation period for German prices. There is a strong linear
relationship between price volatility and the level spot prices. Future research could consider the
spot price as a covariate in the intensity of our model. µ and µc evolve over time in the same
way as shown in Figure 10: both seem to depend on the spot price. In contrast, the correlation
parameter (13) does not seem to depend on the spot price, see Figure 9, which is consistent with
a linear dependence of µ and µc on the spot price (as the correlation is a ratio). Finally, we show
some simulation examples in Figure 11. There are some differences between the behaviour of the
data and that of the simulations:

(i) The prices from the simulations do not move at the beginning of the trading session, while
the prices from the data show some jumps that seem to have mean-reverting behaviour.

(ii) In general, the price from the data has more jumps than the one from the simulations,
which is consistent with the estimation method: to avoid overestimating the volatility due
to microstructural noise, we have considered the 30-minute return level. As volatility and
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intensity are closely related, this leads to an underestimation of the number of jumps,
which in this case is related to round-trips on a microscopic scale.

(iii) The proportion of big jumps at the end of the trading session in the simulations appears
to be higher than in the data.

The following approaches could be considered to address these issues:

(i) Consider a more complex time-dependent baseline with, for example, a first period consist-
ing of a small and constant baseline and then a second period with an exponential function
as in our model.

(ii) Adding self-excitation to our model via Hawkes processes, which are relevant for marginal
modelling of intraday prices, see [18]. This would also avoid the arbitrary choice of sampling
time step ∆ when estimating the covariance matrix.

(iii) Using a time-dependent law for the jumps, which is consistent with the results of Deschatre
and Gruet [18] who have found that the distribution of jumps differs with time to maturity.

Remark 4. Note the break in the intensity values at the beginning of 2020 for Germany: it may
be due to the change in the frequency of the data (to the minute in 2019 and to the second in
2020), as there is more than one transaction per minute (if we look at 2(µ+ µc) as a proxy at the
beginning of 2020) and we have only taken into account the last transaction when several prices
have the same timestamp. This phenomenon is not met in France as the intensity is much lower
than one transaction per minute, the number of transactions in the same minute is much lower.
The same phenomenon is observed for κ, see Figure 10, and can explain the increase in Table 2 of
κ from 0.33 to 0.45.

year κ µ µc

∫
K
yν(dy)

∫
K
y2ν(dy)

2019 0.33 14.60 9.23 0.60 0.35
2020 0.45 37.65 32.06 0.43 0.18
2021 0.45 51.50 48.78 0.70 0.49
2022 0.50 71.96 65.68 1.31 1.72

Table 2. Model parameters for German prices. The unit for κ, µ and µc is the
inverse of the hour.

year κ µ µc

∫
K
yν(dy)

∫
K
y2ν(dy)

2019 0.36 7.12 2.57 0.79 0.62
2020 0.38 12.48 4.53 0.57 0.33
2021 0.48 17.00 6.43 1.19 1.42
2022 0.51 23.81 12.55 2.57 6.62

Table 3. Model parameters for French prices. The unit for κ, µ and µc is the
inverse of the hour.
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Figure 8. Volatility proxy parameter (12) estimated each week from the last 28
trading sessions of the German intraday market against the average German spot
price during the estimation period.

Figure 9. Correlation proxy parameter (13) estimated each week from the last
28 trading sessions of the intraday market against the average spot price during
the estimation period for Germany.
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Figure 10. Time evolution of µ and µc (left) and κ (right) estimated weekly
from the last 28 trading sessions of the German intraday market.

Figure 11. Price simulations (dashed curves), starting from the same initial value
with estimated parameters during the month of December 2022, together with two
samples of data (solid curves), for maturities 18 (left) and 19 (right).

5. Battery valuation

In the previous sections, we proposed a statistical model to simulate the different intraday
prices over a trading session, taking into account their dependence structure. In order to assess
the quality of the model, in addition to the statistical features that the model can represent, we
consider the valuation of a storage and see the ability of our model to capture value in the intraday
market through the volatility and correlation structure of the prices. Throughout this section, we
will consider the case of a 2h battery and the case of a 3h battery. A nh battery has the following
characteristics:

- The battery capacity is n MWh ;
- the injection and withdrawal capacities are 1 MWh per hour.

Battery efficiency is taken to be equal to ρ = 0.92, so:
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- Injecting E MWh into storage requires us to obtain E
ρ MWh from the grid, and therefore

to buy the corresponding quantity on the market;
- withdrawing E MWh from storage will only inject ρE MWh into the network, and therefore
corresponds to the sale of this volume on the market.

We consider the intraday prices fm,t for delivery period [Tm, Tm + θ] with θ = 1 hour, with
T1 = 0, . . . , T24 = 23 (each hour of the day). Each hour, a decision is taken on the nearest
maturity, with a delay of ∆ =1 hour: the decision is therefore based on the price fm,Tm−1

for
each m ∈ {1, . . . , 24}. The battery is managed assuming zero stock at T1 = 0 hour each day.
The objective function is to maximise the expected gain at date T0 = 15h on the day before
management, which we recall is the opening of the intraday market for the maturities under
consideration.

Remark 5. The assumption that the battery is empty at midnight is not very strong because we
only use 2 and 3 hour batteries. In the data, the lowest prices are always between 2 and 5 hours each
day, and the prices between midnight and 2 hours are always very low, so relaxing the assumption
would not change the results.

The non-anticipatory control taken at date Ti−∆ belonging to FTi−∆ = {fm,s|s ≤ Ti−∆, m =

1, . . . , 24} is noted Ci (a positive Ci corresponds to an injection) and we note C̃ = (C1, . . . , C24).
The function J that we want to maximise is written as:

J(C̃) = −E[
24∑
i=1

Ci(
1

ρ
1Ci≥0 + ρ1Ci≤0)fi,Ti−∆|FT0

](19)

with the constraints for i = 1, . . . , 24:

0 ≤
i∑

j=1

Cj ≤ C̄,

−C ≤ Ci ≤ C.

In our case, C̄ = n and C = 1. To solve the problem (19), the classical technique consists in
using dynamic programming in a Longstaff Schwartz approach [39]: at each explored stock level,
generalising the results of Bardou et al. [6] to our n hours battery case, the optimal control is to be
chosen in {−C, 0, C}. At each date, and for each stock level to be explored, we need to calculate
conditional earnings expectations: knowing the future earnings trajectories at date Ti+1, Gi+1, we
need to estimate Ai = E[Gi+1|FTi

]. In this case, the available information is generated by the
prices of future products for the rest of the day

Ai = E[Gi+1|{fj,Ti}j>i](20)

Unfortunately, calculating (20) is difficult because of the dimension of the problem. We therefore
propose to approximate (20) by

Ai ≃ Ap
i := E[Gi+1|{fj,Ti

}i+p≥j>i](21)

for p varying from 1 to 6. In the previous approximation, it is assumed that the information required
is reduced to the observation of p products of closest maturity. It is expected that increasing the
number of factors will lead to an improvement in the result. This improvement is expected to
diminish with increasing p. By limiting p to 6, classical techniques for calculating conditional
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expectation by regression on a basis of functions become usable. We choose to use local adaptive
linear bases from [9] in the StOpt library [22].

Remark 6. There are alternative techniques to dynamic programming for dealing with the curse
of dimension. These techniques, based on neural networks [40], are effective, but the cost of their
implementation does not allow them to be used for daily optimisation and backtesting, as in our
article.

Remark 7. Battery managers are concerned with the number of cycles per year, which is limited for
warranty reasons: this limitation induces a coupling between days and poses an insoluble problem
for our method. This constraint is very limiting when operating on the reserve market (ancillary
services). On the intraday market, our method allows us to calculate the number of cycles per day
a posteriori. We find that this number of cycles per day is around 1.5 on the French market and
1.60 on the German market for a 3H battery, and slightly higher for a 2H battery. Actual batteries
used in France by the French operator EDF have a limit of 1.5 cycles per day and this limit tends
to be higher for new technologies.

Remark 8. In this study, we assume that the battery manager chooses to optimise the profit on
the intraday market and avoids the balancing market, i.e. the penalties induced by this market are
high enough. In addition, the battery manager may try to arbitrage between all available markets
(spot, intraday, ancillary services, balancing).

To test our model, we perform the following backtest for each day of a year of a market for each
level p of approximation of the conditional expectation:

- A stochastic optimisation calculation is performed by solving (19) with the parameters
set for the market under study at the current day: we then recover the optimal strategy
associated with intraday storage management for the model used. For this optimisation,
we use 500000 Monte Carlo price trajectories and 4 meshes in each dimension for p ≤ 4,
and one mesh per dimension beyond 4, giving us a total of 4p∧4 meshes.

- We apply the previous strategy to intraday prices trajectory observed during the current
day, giving us the value obtained in back test during the day.

The parameters are estimated every Monday from January, 1st, 2019 to December 31st, 2022, using
the last 28 days of data as in Section 4.2. The annual gain obtained by applying our strategy for
a level p of approximation of the conditional expectation is then deduced. Our strategy can be
compared to a “spot control” optimisation strategy: in this strategy, the control is calculated from
the spot prices {fi,T0

}i=1,...,24 known in T0. The optimal control D̃ = (D1, . . . , D24) is obtained
by maximizing the following problem:

Ĵ(D̃) = −
24∑
i=1

Di(
1

ρ
1Di≥0 + ρ1Di≤0)fi,T0

,(22)

under the constraints for i = 1, . . . , 24:

0 ≤
i∑

j=1

Dj ≤ C̄,

−C ≤ Di ≤ C.

This control is applied in intraday, with the idea that the best view of intraday prices at T0 is
given by the spot price. We call this strategy the “Spot” strategy. In the Tables 4, 5, we evaluate
the backtest influence of p on the gains obtained by the Poisson model (4)-(5) for the year 2022 on
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the German market. As expected, an increase in p improves the gains obtained. Gain is optimal
for p = 4. There is a slight deterioration for p = 5 and p = 6, which can be explained by the
fact that the conditional expectation method would require more trajectories in optimisation and
also that the number of days in backtesting is limited. Depending on the year, the market, the
characteristics of the battery, the optimal choice for p is 4 or 5. In the sequel we present results
for p = 1, 3 and 5 on the different cases.

p 1 2 3 4 5 6
Gain 70728 102504 110642 112401 111725 109717

Table 4. Backtest value obtained on 2022 data as a function of p for the Poisson
model on the German market for a 2h battery.

p 1 2 3 4 5 6
Gain 113921 142909 150434 153693 152955 152817

Table 5. Backtest value obtained on 2022 data as a function of p for the Poisson
model on the German market for a 3h battery.

In Table 6 and Table 7, the sum of annual gains obtained by the spot strategy, the Poisson
model (4)-(5), and the limit diffusion model (6) are given as a function of market and year. The
use of our model enables us to obtain better performances for the valuation of a battery compared
to the “Spot” strategy. The “Spot” strategy sees only the price expectation and gains value from
the shape of the prices. Our model allows us to add gains linked to the volatility and correlation
structure of prices. Interestingly, the strategy derived from the diffusion limit model yields gains
equivalent to those derived from the Poisson model. The approximation seems sufficient to solve
the control problem in the simplified case of diffusion. The approximation of a control problem
where the noise arises from a Poisson process with a diffusive limit when the intensity becomes
large, is very recently studied theoretically by Abeille et al. [1].

In this section, we have limited ourselves to a decision for the product with the closest maturity
each hour. Our model makes it possible to optimise the battery by taking positions in several
products at the same time, as all prices are simulated continuously over the trading session; how-
ever, liquidity costs would have to be modelled to make the problem realistic. We do not deal with
this case here; it is an area for future research.
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Year p Spot Poisson Diffusion

2019 1 14176 11648 11664
2019 3 14176 21107 20126
2019 5 14176 20972 21186

2020 1 16040 10799 10772
2020 3 16040 21935 21821
2020 5 16040 21982 21776

2021 1 35825 27301 27309
2021 3 35825 45789 45387
2021 5 35825 45810 45669

2022 1 88346 70728 70627
2022 3 88346 110642 110311
2022 5 88346 111725 111520

German market.

Year p Spot Poisson Diffusion

2019 1 14409 14252 14225
2019 3 14409 16112 16034
2019 5 14409 16164 16170

2020 1 14947 13579 13550
2020 3 14947 17169 17130
2020 5 14947 17510 17348

2021 1 38191 37595 37555
2021 3 38191 42212 42180
2021 5 38191 42177 42018

2022 1 81017 82956 82946
2022 3 81017 97725 97835
2022 5 81017 98346 98063

French market.

Table 6. Battery 2h

Year p Spot Poisson Diffusion

2019 1 19781 19273 19270
2019 3 19781 27920 27726
2019 5 19781 28505 28605

2020 1 22105 19065 19053
2020 3 22105 29668 29566
2020 5 22105 29753 29626

2021 1 49113 44634 44525
2021 3 49113 62070 61714
2021 5 49113 63696 63314

2022 1 121030 113921 113852
2022 3 121030 150434 150322
2022 5 121030 152955 152870

German market.

Year p Spot Poisson Diffusion

2019 1 19436 19771 19778
2019 3 19436 21636 21538
2019 5 19436 21923 21799

2020 1 19982 19021 19015
2020 3 19982 22628 22583
2020 5 19982 23184 22820

2021 1 51069 51450 51466
2021 3 51069 55143 55194
2021 5 51069 55697 55560

2022 1 109236 114576 114559
2022 3 109236 127632 127747
2022 5 109236 129893 128570

French market.

Table 7. Battery 3h

6. Proofs

6.1. Proof of Proposition 1. Let

f
⊥,h

m,t =

∫ t

0

∫
R+

∫
K

y1x≤µe−κ(Tm−s)1s≤Tm
πh
m(ds, dx, dy)−

∫
K

yν(dy)

∫ t

0

µe−κ(Tm−s)1s≤Tmds
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and

f
c,h

m,t =

∫ t

0

∫
R+

∫
K

y1x≤µce−κ(Tm−s)1s≤Tm
πh
m(ds, dx, dy)−

∫
K

yν(dy)

∫ t

0

µce
−κ(Tm−s)1s≤Tmds

for m = 1, . . . ,M and h = +,−. For h = +,−, the process

(23)
(
f
⊥,h

1,t , f
c,h

1,t , . . . , f
⊥,h

M,t, f
c,h

M,t

)
is a (Ft)t square integrable martingale. Hence,(
fh
m,t −

∫
R yν(dy)

∫ t

0
(µ+ µc) e

−κ(Tm−s)1s≤Tm
ds
)
m=1,...,M

is also a square integrable martingale

for h = +,− as a linear combination of the components of (23).

6.2. Proof of Proposition 2. With h ∈ {+,−} and Am,u,t = {(s, x)|u ≤ s ≤ t, 0 ≤ x ≤
µce

−κ(Tm−s)}, we aim to compute

P

( ⋂
m∈M1

{πh (Am,u,t ×K) ≥ 1} ∩
⋂

m∈M2

{πh (Am,u,t ×K) = 0}

)
.

As (Am,u,t)m=1,...,M is a decreasing sequence and πh is a counting measure,⋂
m∈M1

{πh (Am,u,t ×K) ≥ 1} = {πh (AmaxM1,u,t ×K) ≥ 1}

and ⋂
m∈M2

{πh (Am,u,t ×K) = 0} = {πh (AminM2,u,t ×K) = 0}.

If maxM1 ≥ minM2, then AmaxM1,u,t ⊂ AminM2,u,t and

{πh (AmaxM1,u,t ×K) ≥ 1} ∩ {πh (AminM2,u,t ×K) = 0} = ∅.

Hence,

P

( ⋂
m∈M1

{πh (Am,u,t ×K) ≥ 1} ∩
⋂

m∈M2

{πh (Am,u,t ×K) = 0}

)
= 0.

Otherwise, we have

{πh (AmaxM1,u,t ×K) ≥ 1} ∩ {πh (AminM2,u,t ×K) = 0}

equal to

{πh ((AmaxM1,u,t\AminM2,u,t)×K) ≥ 1} ∩ {πh (AminM2,u,t ×K) = 0}.
πh being a Poisson measure, and (AmaxM1,u,t\AminM2,u,t) ∩AminM2,u,t = ∅, we get

P
(
{πh ((AmaxM1,u,t\AminM2,u,t)×K) ≥ 1} ∩ {πh (AminM2,u,t ×K) = 0}

)
equal to

P
(
{πh ((AmaxM1,u,t\AminM2,u,t)×K) ≥ 1}

)
P
(
{πh (AminM2,u,t ×K) = 0}

)
which is equal to(

1− exp

(
−
∫ t

u

µc

(
e−κ(TmaxM1

−s) − e−κ(TminM2
−s)
)
ds

))
exp

(
−
∫ t

u

µce
−κ(TminM2

−s)ds

)
.
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6.3. Proof of Proposition 4. For h = +,−, m = 1, . . . ,M , and t ≤ T , we have

f c,h
m,t =

∫ t

0

1s≤Tm

∫
R+

∫
K

y10≤x≤µ1(s)π
h (ds, dx, dy)

+

m∑
i=2

∫ t

0

1s≤Tm

∫
R+

∫
K

y1µi−1(s)<x≤µi(s)π
h (ds, dx, dy)

with µi(s) = µce
−κ(Tm−s) for i = 1, . . . ,M , that is

f c,h
m =

m∑
i=1

∫
K

yπh (Ai,t, dy) , t ≤ Tm,

f c,h
m,t = f c,h

m,Tm
, t ≥ Tm,

with A1,t = {(s, x)|0 ≤ s ≤ t, 0 ≤ x ≤ µ1(s)} and Ai,t = {(s, x)|0 ≤ s ≤ t, µi−1(s) < x ≤ µi(s)}.
We get that f c,h

m,t =
∫ t

0
1s≤Tm

∑m
i=1 dP

c,h
i,s with P c,h

i,t =
∫
K
yπh (Ai,t, dy), i = 1, . . . ,M and we show

that (P c,h
i,t )t is an non-homogeneous compound Poisson process with intensityµ1 for i = 1 and

µi − µi−1 for for i = 2, . . . ,M and jump law ν(dy). It remains to prove the independence of

the P c,h
i . Considering t1, t2, . . . , tM M real positive numbers, and K1, K2, . . . ,KM M elements

of K then the measures πh (Ai,ti ,Ki) for i = 1, . . . ,M are independent random variables since
(Ai,ti ×Ki) ∩

(
Aj,tj ×Kj

)
= ∅ for i ̸= j as 0 < µ1 < µ2 < . . . < µM and πh is a Poisson measure.

6.4. Proof of Proposition 5. For h = +,−, the process

n−1f
g,h,(n)
t −

(∫
K

g(y)ν(dy)

∫ t

0

(µ̃+ µ̃c) e
−κ(Tm−s)1s≤Tm

ds

)
m=1,...,M

is clearly a martingale (see the proof of Proposition 1) that we denote by M (n). Using the
Burkholder-Davis-Gundy inequality, we get

E

(
sup

t∈[0,T ]

∥∥∥M (n)
t

∥∥∥2) ≤ C

M∑
m=1

E
([

M (n)
m ,M (n)

m

]
T

)
= Cn−2

M∑
m=1

E

(∫ T

0

∫
R+

∫
K

g2(y)1x≤nµ̃e−κ(Tm−s)1s≤Tm
πh
m(ds, dx, dy)+

∫ T

0

∫
R+

∫
K

g2(y)1x≤nµ̃ce−κ(Tm−s)1s≤Tm
πh(ds, dx, dy)

)

= Cn−1
M∑

m=1

∫
K

g(y)2ν(dy)

∫ T

0

(µ̃+ µ̃c) e
−κ(Tm−s)1s≤Tm

ds

and then E

(
sup

t∈[0,T ]

∥∥∥M (n)
t

∥∥∥2) goes to 0 as n → ∞, achieving the proof.
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6.5. Proof of Proposition 6. The quadratic covariation at time t of the martingale 1√
n
fn is

equal to

n−1

∫ t

0

∫
R+

∫
K

y21x≤nµ̃e−κ(Tm−s)1s≤Tm
π+
m(ds, dx, dy)

+ n−1

∫ t

0

∫
R+

∫
K

y21x≤nµ̃ce−κ(Tm−s)1s≤Tm
π+(ds, dx, dy)

+ n−1

∫ t

0

∫
R+

∫
K

y21x≤nµ̃e−κ(Tm−s)1s≤Tm
π−
m(ds, dx, dy)

+ n−1

∫ t

0

∫
R+

∫
K

y21x≤nµ̃ce−κ(Tm−s)1s≤Tm
π−(ds, dx, dy)

(24)

on the diagonal at coordinate m ∈ {1, . . . ,M} and

(25) n−1

∫ t

0

∫
R+

∫
K

y21x≤nµ̃ce
−κ(max(Tk,Tl)−s)1s≤min(Tk,Tl)

(
π+ + π−) (ds, dx, dy)

for k, l ∈ {1, . . . ,M}, k ̸= l. From Proposition 5, the diagonal part (24) converges in L2(P) to

2

∫
K

y2ν(dy)

∫ t

0

(µ̃+ µ̃c) e
−κ(Tm−s)1s≤Tm

ds

as n → ∞ and in the same way as the proof of Proposition 5, we prove that the remaining part of
the quadratic covariation matrix (25) converges to

2

∫
K

y2ν(dy)

∫ t

0

µ̃ce
−κ(max(Tk,Tl)−s)1s≤min(Tk,Tl)ds.

The limit of the covariation matrix corresponds to the covariation matrix of the process(∫ t

0

√∫
K

y2ν(dy)
√

2 (µ̃+ µ̃c)e
−κ

2 (Tm−s)1s≤Tm
dWm,s

)
m=1,...,M

with W = (W1, . . . ,WM )
⊤

a multivariate Brownian motion with correlation matrix(
µ̃δklµ̃c

µ̃+µ̃c
e−

κ
2 |Tk−Tl|

)
k,l=1,...,M

. We achieve the proof by using [26, Section VIII, Theorem 3.22] which

requires an additional Lindeberg-Feller type condition [26, Section VIII, Theorem 3.22, Assumption
3.23], which we prove below.

For h = +,−, the compensated measure of 1√
n

∫
x∈R+

1x≤nµ̃e−κ(Tm−s)1s≤Tm
π
h,(n)
m (ds, dx, dy) is

nµ̃e−κ(Tm−t)1t≤Tm
dt⊗ ν(dy

√
n)

and for ϵ > 0 and t ≥ 0, using successively the Cauchy-Schwarz inequality and the Markov
inequality, we get∫

K

y21y>ϵν(dy
√
n)

∫ t

0

nµ̃e−κ(Tm−s)1s≤Tm
ds =

∫
K

y21y>
√
nϵν(dy)

∫ t

0

µ̃e−κ(Tm−s)1s≤Tm
ds

≤

√∫
K

y4ν(dy)

√∫
K

1y>
√
nϵν(dy)

∫ t

0

µ̃e−κ(Tm−s)1s≤Tm
ds

≤ n−1ϵ−2

∫
K

y4ν(dy)

∫ t

0

µ̃e−κ(Tm−s)1s≤Tm
ds.
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Therefore, ∫
K

y21y>ϵν(dy
√
n)

∫ t

0

nµ̃e−κ(Tm−s)1s≤Tmds → 0

as n → ∞, which corresponds to [26, Section VIII, Theorem 3.22, Assumption 3.23]. This assump-
tion is verified in the same way considering the compensated measure of
1√
n

∫
x∈R+

1x≤nµ̃ce−κ(Tm−s)1s≤Tm
πh,(n)(ds, dx, dy) for h = +,−.
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[22] Hugo Gevret, Nicolas Langrené, Jerome Lelong, Xavier Warin, and Aditya Maheshwari. STochastic OPTimiza-
tion library in C++. 2018.
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