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Abstract. This article presents an input convex neural network architecture using Kolmogorov-Arnold
networks (ICKAN). Two specific networks are presented: the first is based on a low-order, linear-by-part,
representation of functions, and a universal approximation theorem is provided. The second is based on cubic
splines, for which only numerical results support convergence. We demonstrate on simple tests that these
networks perform competitively with classical input convex neural networks (ICNNs). In a second part, we
use the networks to solve some optimal transport problems needing a convex approximation of functions and
demonstrate their effectiveness. Comparisons with ICNNs show that cubic ICKANs produce results similar
to those of classical ICNNs.

1. Introduction

Recently, Kolmogorov-Arnold Networks (KANs) have been introduced as an alternative to multilayer
perceptrons for high-dimensional function approximation, based on the Arnold-Kolmogorov representation
theorem [18]. Arnold and Kolmogorov demonstrated [14] that a multivariate continuous smooth R valued
function f on a bounded domain can be expressed as a finite composition of sums of continuous single-variable
functions. Specifically, if f is continuous on [0, 1]n, then

f(x) =
2n+1∑
i=1

ψi

 n∑
j=1

Φi,j(xj)

 ,(1)

where Φi,j : [0, 1] −→ R and ψi : R −→ R, i = 1, . . . , 2n + 1, j = 1, . . . , n. Since one-dimensional functions
ψ of ϕ can be highly irregular or even fractal, it has been demonstrated that they may not be practically
learnable [12, 23]. To address this issue, [18] propose extending this representation. Firstly, they suggest not
limiting the outer sum in (1) to 2n+ 1 terms but to m terms and define a KAN lth layer, l = 1, . . . , L, as an
operator ψlm,q from [0, 1]m to Rq:

(ψlm,q(x))k =
m∑
j=1

Φl,k,j(xj), for k = 1, . . . , q.(2)

Second, by stacking the layers, i.e., composing the operators ψl, l = 0 . . . , L, they define the KAN operator
from [0, 1]m to R:

K(x) = (ψLnL−1,d ◦ ψL−1
nL−2,nL−1

◦ . . . ◦ ψ1
n0,n1

◦ ψ0
m,n0

)(x).(3)
Since all ψ functions are one-dimensional, many classical methods are available to propose an easy-to-
implement approximation. The original implementation proposed in [18] uses B-Splines but many other
approximations based on wavelets [4], radial basis [17, 26] , Chebyshev polynomials [25] can be used. All of
these representations suffer from the same flaw: the output of a layer may not be in the grid initially chosen
for the following layer. Sending back the output of a layer, a priori in Rq to [0, 1]q using, for example, a
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sigmoid function is not a solution; it is clearly ineffective as the following layer discretizes [0, 1]q and only a
small fraction of the compact is used. Aware of this problem, [18] proposes an adaptation technique, but this
approach numerically fails.
Recently, using a P1 finite element flavour, [29] proposes a new architecture P1-KAN avoiding this flaw and
proves its convergence : Numerical examples based on function approximation using a MSE criterion or real
applications optimizing hydraulic valleys have shown that the P1-KAN is more effective than MLP and all
tested KANs.
In this article, we extend the work of [29] and propose new architectures to approximate convex functions with
a convex approximation. The approximation of a convex function while preserving its convexity property has
been investigated in many articles. The approximation by cuts of a convex function using regression methods
has been studied in [3, 10, 11] and [13], leading to max-affine approximations. A max-affine representation
using group-max neural networks [28] has been proposed and proven to be convergent. The theoretical in-
vestigation of convex function approximation has also recently been explored, as demonstrated in [6], using
a one-layer feedforward neural network with exponential activation functions in the inner layer and a loga-
rithmic activation at the output. Numerically, this issue has been addressed in [2] through the development
of the Input Convex Neural Network (ICNN) methodology, which is proven to be convergent in [7]. This
effective approach has been widely applied in various fields requiring convex approximation, such as optimal
transport problems [19, 15], optimal control problems [7, 1], inverse problems [22], and general optimization
problems [8], among others.

In this article, we propose two Kolmogorov-Arnold Networks:
• The first version is based on a piecewise linear approximation of the 1D functions involved in the KAN

approximation. It is based on the P1-KAN network recently developed in [29]. Different from other
KAN networks, it inputs a grid G1 defining the approximation domain and outputs a function value
f approximating the data and a grid G2 defining the image of the initial grid G1 by f . This clear
definition of a layer allow us to compose the layers easily. Imposing convexity in the one dimensional
approximation, we develop a new network and we provide an Universal Approximation Theorem.

• The second one is based on the Hermite cubic-spline approximation where convexity is also imposed.
This network enables us to provide a high-order approximation of a function, which can be a desired
feature, for example, when the gradient of the convex approximation is the target. In this case a
piecewise linear approximation provides a constant per mesh approximation which is no sufficient
enough. However, no convergence property is given.

In Section 2, we describe the two networks belonging to the class of Input Convex Kolmogorov Networks
(ICKAN), giving two variants, whether the grid is adapted or not, as in [29]. When the grid is adapted, we
provide a universal approximation theorem. The different variations are tested using an MSE criterion, and
we show that we can achieve results comparable to the best ones obtained by ICNNs.
In Section 3, we extend the previous networks to the case where the function to approximate is only partially
convex with respect to the input, leading to Partial Input Convex Kolmogorov Networks (PICKAN). We again
provide results comparing the efficiency of the PICKANs to the partial convex version of ICNNs (PICNN).
In Section 4, we use ICKANs to estimate the optimal transport map between two distributions µ and ν using
the Wasserstein distance W2(µ, ν) on simulated data, showing the efficiency of the proposed networks.

2. ICKAN

We suppose here that the function to approximate is fully convex. In a first part we explain how to derive
a one dimensional convex approximation of a function on [0, 1] either using piecewise linear approximation
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or a cubic-spline one. We show that adapting meshes can be an interesting feature on a numerical example.
In a second part, we detail the different layers construction with the two networks and provide the Universal
Approximation Theorem for the first network. In a third part, numerical examples are given.

2.1. Approximation of a 1D convex function f on [0, 1].
We introduce the lattice {x̂0 := 0} ∪ (x̂p)1≤p≤P−1 ∪ {x̂P := 1} where the x̂p in [0, 1] are increasing values

with p.

2.1.1. Piecewise linear approximation. For P > 0, the degrees of freedom of a P1 approximation ϕ of f are
the values of the function on the lattice leading to

ϕ(x) =
P∑
p=0

apΨp(x)(4)

where (ap)p=0,P are approximations of (f(x̂p))p=0,...,P and (Ψp)p=0,...,P is the basis of the shape functions:
these functions have compact support in each interval [x̂p−1, x̂p+1] for p = 1, . . . , P − 1 and are defined as:

(5) Ψp(x) =
{

x−x̂p−1
x̂p−x̂p−1

for x ∈ [x̂p−1, x̂p],
x̂p+1−x
x̂p+1−x̂p

for x ∈ [x̂p, x̂p+1],

for p = 1, . . . , P − 1 and Ψ0(x) = max(1 − x
x̂1
, 0), ΨP (x) = max(x−x̂P −1

1−x̂P −1
, 0) (see figure 1).

Figure 1. Uniform P1 basis functions on [0, 1] with P = 5.

As we are interested in having a convex function, we want our piecewise linear approximation to have
constant increasing derivatives on each mesh [x̂p, x̂p+1] for p = 0, . . . , P − 1. The trainable variables of the
convex approximation are b, an approximation of f(0), b̂, an approximation of f ′(0), and (di)i=1,...,P−1 an
approximation of f ′(x̂i) − f ′(x̂i−1) for i = 1, . . . , P .
Therefore ap ≈ f(x̂p) in (4) is given by:

ap = b+
p∑
j=1

(b̂+
j−1∑
i=1

max(di, 0))(x̂j − x̂j−1),p=0, . . . , P(6)

where the max is here to ensure that the approximation f ′(x̂p) ≈ b̂+
∑p
i=1 max(di, 0) is increasing with p.

As an example, it is possible the minimize the mean square error of a one dimensional convex function with
its approximation (4), (6) training b, b̂, (di)i=1,...,P−1 supposing that the lattice is regular so x̂j − x̂j−1 = h

for j = 1, . . . , P . It is also possible to adapt the grid as in [29], and in this case, b, b̂, (di)i=1,...,P−1 and
(x̂i)i=1,...,P−1 are trained by the algorithm method.
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Noting θ the list of the trained variables, our approximation f̃θ of a function f is parametrized by θ. We
minimize:

E[(f(X) − f̃θ(X))2](7)

whereX is a random variable sampled uniformly on [−10, 10]. We give the results approximating the functions
fi, i = 1, . . . , 4 on figure 2 where

(1) f1(x) = x2,
(2) f2(x) = x2 + 10[(ex − 1)1x<0 + x1x≥0] ,
(3) f3(x) = (|x|2 + 1)2,
(4) f4(x) = |x|1|x|≤3 + x2−3

2 .
The plots are obtained adapting the grid with P = 10 or P = 20. We also plot the adapted vertices.

2.1.2. The cubic approximation. On a mesh [x̂p, x̂p+1], the function f is approximated for x ∈ [x̂p, x̂p+1]
using a cubic Hermite spline by ϕp

(
x−x̂p

x̂p+1−x̂p

)
with:

ϕp(t) = f(x̂p)h00(t) + f
′
(x̂p)h10(t)(x̂p+1 − x̂p) + f(x̂p+1)h01(t) + f

′
(x̂p+1)h11(t)(x̂p+1 − x̂p)

and

h00(t) =2t3 − 3t2 + 1,
h10(t) =t3 − 2t2 + t,

h01(t) = − 2t3 + 3t2,
h11(t) =t3 − t2.

As previously we require that the derivative are increasing. Under this condition, in order to get a convex
approximation, we can check that the values {f(x̂p)}p=0,...,P have to satisfy for p = 0, . . . , P − 1:

f(x̂p) + x̂p+1 − x̂p
3 (2f

′
(x̂p) + f

′
(x̂p+1)) ≤ f(x̂p+1) ≤ f(x̂p) + x̂p+1 − x̂p

3 (f
′
(x̂p) + 2f

′
(x̂p+1)).

Therefore the convex approximation based on Cubic spline is defined on mesh [x̂p, x̂p+1] for p = 0, . . . , P − 1
by ϕp

(
x−x̂p

x̂p+1−x̂p

)
with

ϕp(t) = a0
ph00(t) + a1

ph10(t)(x̂p+1 − x̂p) + a0
p+1h01(t) + a1

p+1h11(t)(x̂p+1 − x̂p),(8)

where :

a1
p =b̂+

p∑
i=1

max(di, 0),

a0
p =b+

p∑
i=1

x̂i − x̂i−1

3
(
2a1
i−1 + a1

i + σ(ei)(a1
i − a1

i−1)
)
,(9)

where σ is the sigmoid function and b̂, b, {di}i=1,...,p, {ei}i=1,...,p are trainables. In the adapted version,
{x̂p}p=1,...,P−1 are also trained. As for the piecewise linear approximation we provide on figure 3 the vertices
and an estimation obtained adapting the grid with P = 5 or P = 10.
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f1 f2

f3 f4

Figure 2. Piecewise linear approximation of a one dimensional function using (4), (6) with
adaptation.

f1 f4

Figure 3. Cubic spline approximation of a one dimensional function using (8), (9) with
adaptation.
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2.2. The ICKAN layers. As for the P1-KAN layer, an ICKAN layer inputs an hypercube defining the
domain and the x batched values, and it outputs an estimation of the function at x and an hypercube defined
by the image of the initial hypercube. This allow us to concatenate the different layers in a coherent way.

2.2.1. The P1-ICKAN layers. As the first component of the first layer, we define κ̂0
n,m for x ∈ Rn and the

hypercube G0 := [0, 1]n as:

κ̂0
n,m(x,G0)k =

n∑
j=1

P∑
p=0

(
b0,k,j +

p∑
s=1

(b̂0,k,j +
s−1∑
i=1

max(d0,k,j,i, 0))(x̂0,j,s − x̂0,j,s−1)
)

Ψ0,j
p (xj), for k = 1, . . . ,m,

(10)

where the (x̂0,j,s)s=0,...,P correspond the one dimensional lattice of the dimension j of G0 and the Ψ0,j
p the

corresponding hat functions defined in Equation (5) and displayed in figure 1.

The image G1 =
m∏
k=1

[G1
k, Ḡ

1
k] of G0 by κ̂0

n,m is exactly given by:

G1
k =

n∑
j=1

min
0≤p≤P

(
b0,k,j +

p∑
s=1

(b̂0,k,j +
s−1∑
i=1

max(d0,k,j,i, 0))(x̂0,j,s − x̂0,j,s−1)
)

(11)

Ḡ1
k =

d0∑
j=1

max
[
b0,k,j , b0,k,j +

P∑
s=1

(b̂0,k,j +
s−1∑
i=1

max(d0,k,j,i, 0))(x̂0,j,s − x̂0,j,s−1)
]
.

for 1 ≤ k ≤ m, and the layer is defined as
κ0
n,m(x,G0) = (κ̂0

n,m(x,G0), G1).(12)

Remark 2.1. As the approximation is convex, we have used the fact that the maximum Ḡlk is reached on
the boundary of the domain.

As a sum of convex 1D function in each dimension, the Hessian of κ̂0
n,m(., G0) is diagonal and definite

positive.
As the first layer is convex in x, it remains to assure that it remains convex in x by composition of a layer
κ̂lm,q(., Gl). As in [2], it is sufficient to have for l ≥ 1, κ̂lm,q(x,Gl)k convex and increasing in x and naturally
we only have to impose that b̂l,k,j ≥ 0 for all k and j. Therefore for l ≥ 1, Gl being the hypercube defining
the domain, we first define

κ̂lm,q(x,Gl)k =
m∑
j=1

P∑
p=0

(
bl,k,j +

p∑
s=1

(max(b̂l,k,j , 0) +
s−1∑
i=1

max(dl,k,j,i, 0))(x̂l,j,s − x̂l,j,s−1)
)

Ψl,j
p (xj),

for k = 1, . . . , q,

and the output hypercube Gl+1 image of Gl is given by an expression similar to (11). Then the layer is
defined by:

κlm,q(x,Gl) = (κ̂lm,q(x,Gl), Gl+1).(13)

Concatenating the L layers, noting nl the number of neurons of layer l (see (3)), supposing the number of
mesh P constant, we define our global network as

K(x) = κ̂LnL−1,1 ◦ κL−1
nL−2,nL−1

◦ . . . ◦ κ0
n,n0

(x, [0, 1]n).(14)

As in [29], we propose two versions :
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• A first version, setting the lattice using an uniform meshing and the trainable variables are

A :=(b0,k,j , b̂0,k,j , (d0,k,j,i)i=1,...,P )k=1,...,n0,j=0,...n∪

(bl,k,j , b̂l,k,j , (dl,k,j,i)i=1,...,P )l=1,...,L−1,k=1,...,nl,j=0,...nl−1∪

(bL,1,j , b̂L,1,j , (dL,1,j,i)i=1,...,P )j=0,...nL−1

• A second version also trains the lattice values inside the domain:

A ∪ (x̂0,j,p)j=1,...,n,p=1,...P−1 ∪ (x̂l,j,p)l=1,...,L,j=1,...,nl,p=1,...P−1.

2.2.2. The Cubic-ICKAN layers. We define κ̂0
n,m for x ∈

∏n
j=1[x̂0,j,pj , x̂0,j,pj+1] where pj ∈ {0, . . . , P − 1}

for j = 1, . . . , n and an hypercube G0 := [0, 1]n by

κ̂0
n,m(x,G0)k =

n∑
j=1

a0
0,j,pj

h00(t0,j) + a1
0,j,pj

h10(t0,j)(x̂0,j,pj+1 − x̂0,j,pj
)+

a0
0,j,pj+1h01(t0,j) + a1

0,j,pj+1h11(t0,j)(x̂0,j,pj+1 − x̂0,j,pj ), for k = 1, . . . ,m,(15)

where t0,j = xj−x̂0,j,pj

x̂0,j,pj +1−x̂0,j,pj
,

a1
0,j,pj

=b̂0,j +
pj∑
i=1

max(d0,j,i, 0),(16)

a0
0,j,pj

=b0,j +
pj∑
i=1

x̂0,j,i − x̂0,j,i−1

3
(
2a1

0,j,i + a1
0,j,i−1 + σ(e0,j,i)(a1

0,j,i − a1
0,j,i−1)

)
where the (x̂0,j,s)s=0,...,P correspond the one dimensional lattice on G0 of input dimension j.

G1 =
m∏
k=1

[G1
k, Ḡ

1
k] defined with

G1
k =

n∑
j=1

min
0≤p≤P

a0
0,j,p(17)

Ḡ1
k =

d0∑
j=1

max
[
a0

0,j,0, a
0
0,j,P

]
,

is now included in the image of G0. In order that G1 is exactly the image of G0, we can truncate the output
of the layer κ̂ and :

κ0
n,m(x,G0) = ((κ̂0

n,m(x,G0)k ∨G1
k)k=1,...,m, G

1).

Remark 2.2. The truncation is not compulsory but it helps defining clearly a consistent layer. It potentially
clips the approximation once per spline. By convexity only the min value has to be truncated.

Similarly to the piecewise linear case, for l ≥ 1, Gl being the hypercube defining the domain, the operator
κ̂lm,q(x,Gl)k for l > 1 is defined similarly to (15) using

a1
l,j,pj

= max(b̂l,j , 0) +
pj∑
i=1

max(dl,j,i, 0)
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instead of (16).
The output hypercube Gl+1 image of Gl is given by an expression similar to (17). Then the layer is defined
by:

κlm,q(x,Gl) = ((κ̂lm,q(x,Gl)k ∨Gl+1
k )k=1,...,q, G

l+1).

The concatenation of the layers is still given by (14). As for the piecewise linear case, we can either use an
uniform meshing or adapting one.

2.2.3. Convergence results. We provide two universal approximation theorem in the piecewise linear case for
the two different cases.

Theorem 2.1. The space spanned by the P1-ICKAN letting nl for l = 0, . . . , L− 1 and L vary for P > 1 is
dense in set of Lipschitz convex functions on [0, 1]n with the sup norm when adaptation is used.

The proof of theorem 2.1 is given in appendix A. We give at last a theorem for the non adapted case.

Theorem 2.2. The space spanned by the P1-ICKAN letting nl for l = 0, . . . , L− 1, L and P vary is dense
in set of Lipschitz convex functions on [0, 1]n with the sup norm when no adaptation is used.

Proof. The idea of the demonstration is the same. The only difference is that as one uses an uniform grid,
0 is generally not in the lattice generated by the (x̂li,p)p=0,...,P and the ReLU function cannot be exactly
generated but has to be approximated. In order to control the approximation error uniformly on a compact,
one has to take P large. This explains why it is impossible to bound P while controlling the error. □

2.2.4. Numerical Results. We estimate the function

(18) f(x) =
d∑
i=1

(|xi| + |1 − xi|) + x⊺Ax

using an Input Convex Neural Network with a ReLU activation function and an Input Convex Kolmogorov
Network approximation f̃θ parametrized by θ by minimizing (7) where X ∼ U [−2, 2]d. We use ADAM
optimizer with a learning rate equal to 10−3, a batch size equal to 1000 and use 200000 iterations. Using
10 runs, the average MSE with a batch of 100000 and its standard deviation is calculated with different
parametrization. For the ICNN, we use 2,3, 4 or 5 layers, a number of neurons in {10, 20, 40, 80, 160, 320}
and the ReLU activation function. Testing all configurations our ICNN reference is the one with the smallest
averaged MSE. Results are given in tables 1 and 2 in dimensions 3 and 7. Results with the P1-ICKAN are
stable with the number of layers, and P . Results with adaptation (P1-ICKAN adapt) are better than without
adaptation (P1-ICKAN no adapt). The P1-ICKAN with adaptation gives results similar to the best ICNN,
while using a smaller network.
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method nb Layers nb neurons P Average std
Best ICNN 2 320 9.37E-05 8.29E-05

P1-ICKAN no adapt 2 20 20 1.56E-04 7.39E-05
P1-ICKAN no adapt 2 20 40 1.14E-04 9.79E-05
P1-ICKAN no adapt 2 40 20 2.62E-04 3.68E-04
P1-ICKAN no adapt 2 40 40 2.69E-04 4.65E-04
P1-ICKAN no adapt 3 20 20 3.13E-04 3.10E-04
P1-ICKAN no adapt 3 20 40 6.83E-04 1.04E-03
P1-ICKAN no adapt 3 40 20 2.76E-04 1.90E-04
P1-ICKAN no adapt 3 40 40 1.67E-04 2.91E-04

P1-ICKAN adapt 2 20 20 1.23E-04 4.62E-05
P1-ICKAN adapt 2 20 40 1.93E-04 3.72E-04
P1-ICKAN adapt 2 40 20 2.62E-04 2.97E-04
P1-ICKAN adapt 2 40 40 1.13E-04 1.42E-04
P1-ICKAN adapt 3 20 20 9.82E-04 2.23E-03
P1-ICKAN adapt 3 20 40 1.93E-04 2.75E-04
P1-ICKAN adapt 3 40 20 3.63E-04 6.50E-04
P1-ICKAN adapt 3 40 40 5.35E-04 1.16E-03

Table 1. Results on 10 runs on the minimization of (7) in dimension 3 with function (18)
: ICCN versus P1-ICKAN.

method nb Layers nb neurons P Average std
Best ICNN 2 320 2.39E-03 6.72E-04

P1-ICKAN no adapt 2 40 10 8.19E-03 9.23E-04
P1-ICKAN no adapt 2 40 20 3.71E-03 4.69E-03
P1-ICKAN no adapt 2 40 40 1.94E-03 1.20E-03
P1-ICKAN no adapt 3 40 10 9.05E-03 1.25E-03
P1-ICKAN no adapt 3 40 20 2.40E-03 8.88E-04
P1-ICKAN no adapt 3 40 40 3.45E-03 2.09E-03

P1-ICKAN adapt 2 40 10 2.31E-03 6.88E-04
P1-ICKAN adapt 2 40 20 2.72E-03 2.95E-03
P1-ICKAN adapt 2 40 40 1.33E-03 1.03E-03
P1-ICKAN adapt 3 40 10 2.69E-03 1.08E-03
P1-ICKAN adapt 3 40 20 2.87E-03 1.89E-03
P1-ICKAN adapt 3 40 40 2.24E-03 2.47E-03

Table 2. Results on 10 runs on the minimization of (7) in dimension 7 with function (18)
: ICCN versus P1-ICKAN.

As for computing time, on a GPU Tesla H100, in dimension 7, the best ICKAN (2 layers of 40 neurons,
P = 40) take 4.3 times more than the best ICNN configuration (2 layers, 320 neurons).
In table 3, results in dimension 7 using the Cubic-ICKAN show that the approximation is good:
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method nb Layers nb neurons P Average std
Best ICNN 2 320 2.39E-03 6.72E-04

Cubic-ICKAN no adapt 2 20 10 6.66E-03 2.06E-03
Cubic-ICKAN no adapt 2 20 20 3.59E-03 7.64E-04
Cubic-ICKAN no adapt 2 40 10 3.88E-03 1.06E-03
Cubic-ICKAN no adapt 3 20 10 6.19E-03 2.11E-03
Cubic-ICKAN no adapt 3 20 20 5.04E-03 2.81E-03
Cubic-ICKAN no adapt 3 40 10 3.82E-03 1.64E-03

Cubic-ICKAN adapt 2 20 10 1.43E-03 6.29E-04
Cubic-ICKAN adapt 2 20 20 1.19E-03 8.76E-04
Cubic-ICKAN adapt 2 40 10 1.38E-03 1.28E-03
Cubic-ICKAN adapt 3 20 10 3.06E-03 1.66E-03
Cubic-ICKAN adapt 3 20 20 1.95E-03 1.43E-03
Cubic-ICKAN adapt 3 40 10 1.49E-03 1.11E-03

Table 3. Results on 10 runs on the minimization of (7) in dimension 7 with function (18):
ICCN versus Cubic-ICKAN.

3. PICKAN

We suppose in this section that the function f to approximate is partially convex : f(x, y) is convex
in y ∈ Rny but not convex in x ∈ Rnx . We suppose that the function is defined on G0 = G0

x × G0
y where

G0
x = [0, 1]nx , G0

y = [0, 1]ny . We only present the network using a piecewise linear approximation of a function
but the network can be adapted to a Cubic approximation. We note P1-KANL the KAN layer defined in
[29] and its corresponding operator ρlp,q for layer l, input dimension p, output dimension q. The first layer
κ0 defined by equation (12) is noted ICKANL0, while a layer κl with l > 0 defined by equation (13) is noted
ICKANL1. The structure of the network is given on figure 4.

Figure 4. Partial Input Convex Kolmogorov Arnold Network using a piecewise linear ap-
proximation.

The recursion described in figure 4 is given for M > 0 by:
(X1, G

1
x) =ρ0

nx,M (x,G0
x),

(Y1, G
1
y) =(X1, G

1
x) + κ0

ny,M (y,G0
y),

(Xi+1, G
i+1
x ) =ρi+1

M,M (Xi, G
i
x),

(Yi+1, G
i+1
y ) =(Xi+1, G

i+1
x ) + κi+1

M,M (Yi, Giy) for i = 0, L− 2,
(YL, GLy ) =κLM,1(YL−1, G

L−1
y ).
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Remark 3.1. Notice that when f is a non convex function imposing that κl = 0 for l < L and κL(x) = x1
gives back the P1-KAN network which has a clear convergence error when the Kolmogorov Arnold basis
functions are Lipschitz.
When the function f is convex, nullifying the output of the P1-KANL layers gives back the ICKAN neural
network.

Remark 3.2. In the PICKAN, we add the results from the convex part and the non convex part as done in
the Kolmogorov Arnold layer (2).

Remark 3.3. Depending on the regularity of the function in y and x, it is possible the use a scheme in x
with an approximation order different from the one used in y.

We estimate the function

f(x, y) = |y + 1||x+ 2x3| on [−2, 2] × [2, 2],(19)

minimizing

E[(f(X,Y ) − f̃θ(X,Y ))2],

where f̃θ is our neural network approximation parametrized by θ and (X×Y ) ∼ U [−2, 2]2. As before we use
the ADAM descent method using 200000 iterations and a learning rate equal to 10−3. For the ICNN with a
ReLU activation function , we use 2,3, or 4 layers, a number of neurons in {10, 20, 40, 80, 160}. As before we
compute for each configuration the averaged loss and the standard deviation obtained with 10 runs. Testing
all configurations our PICNN (Partial Input Convex Neural Network in [2]) reference is the one with the
smallest averaged MSE. Results are given in tables 4 and show that the accuracy is again similar to the best
one obtained with an ICNN.

method nb Layers nb neurons P Average std
Best PICNN 2 80 1.04E-03 7.37E-04

PP1-ICKAN no adapt 2 20 20 4.98E-03 1.10E-02
PP1-ICKAN no adapt 2 20 40 5.17E-03 4.87E-03
PP1-ICKAN no adapt 2 40 20 2.57E-03 3.29E-03
PP1-ICKAN no adapt 2 40 40 9.23E-04 5.66E-04
PP1-ICKAN no adapt 3 20 20 2.10E-03 3.55E-03
PP1-ICKAN no adapt 3 20 40 3.85E-03 3.69E-03
PP1-ICKAN no adapt 3 40 20 3.75E-03 5.97E-03
PP1-ICKAN no adapt 3 40 40 9.34E-03 1.81E-02

PP1-ICKAN adapt 2 20 20 2.17E-03 2.58E-03
PP1-ICKAN adapt 2 20 40 2.67E-03 4.25E-03
PP1-ICKAN adapt 2 40 20 1.02E-03 1.03E-03
PP1-ICKAN adapt 2 40 40 1.27E-03 1.23E-03
PP1-ICKAN adapt 3 20 20 2.71E-03 3.98E-03
PP1-ICKAN adapt 3 20 40 1.10E-02 1.98E-02
PP1-ICKAN adapt 3 40 20 8.11E-03 1.65E-02
PP1-ICKAN adapt 3 40 40 5.79E-03 5.07E-03

Table 4. Testing partial convexity for function (19) : average and standard deviation for
10 runs.
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4. Application for optimal transport

Neural networks preserving convexity can be used to solve optimal transport problems, see for example [19,
16] which use ICNN. In this section we use ICKAN models to solve optimal transport problems and compare
their performance with ICNN.

4.1. Monge optimal transport and Brenier’s theorem. Let us consider two probability measures with
support Ω ⊂ Rd, µ and ν, such that

∫
Ω ∥x∥2dµ(x),

∫
Ω ∥x∥2dν(x) < ∞. Our goal is to estimate the optimal

transport map between X and Y , T : Ω → Ω, which is a solution to the Monge problem [21]

(20) inf
T#µ=ν

∫
Ω

∥x− T (x)∥2dµ(x),

where T#P (·) := P (T−1(·)) for a probability measure P and ∥ · ∥ denotes the Euclidean norm on Rd. The
Brenier’s theorem [5] guarantees the existence and uniqueness of the optimization problem (20) as soon as
the probability measure µ is absolutely continuous with respect to the Rd Lebesgue measure, that we assume
in the following. Furthermore, the optimal transport map T solution of (20) writes T = ∇f with f : Rd → R
a convex function differentiable almost everywhere. Furthermore, denoting CV X(µ) the set of all convex
functions in L1(µ), f is the solution of the optimization problem

inf
φ∈CVX(µ)

∫
Ω
φdµ+

∫
Ω
φ⋆dν,

with φ⋆(y) = sup
x∈Ω

{⟨x, y⟩ − f(x)} for y ∈ Ω the Legendre-Fenchel transform of φ, see [20, Theorem 1]. f is

called the Brenier’s potential. In [19], it is proven whenever ν admits a density, there exists an optimal pair
(φ0, ψ0) solution of

sup
φ ∈ CV X(µ)
φ⋆ ∈ L1(ν)

inf
ψ∈CVX(ν)

−
∫
φ(x)dµ(x) −

∫ (
⟨y,∇ψ(y)⟩ − φ(∇ψ(y))

)
dν(y),(21)

where ∇ψ0 = T−1.

4.2. Algorithm. Given samples X1, . . . , Xn ∼ µ and Y1, . . . , Yn ∼ ν both identically and independently
distributed (i.i.d.), the objective is to estimate the optimal transport map between a µ distribution and a ν
distribution. We denote by µ̂n = 1

n

∑n
i=1 δXi

and ν̂n = 1
n

∑n
i=1 δYi

the empirical distribution of X and Y
respectively. We use the formulation (21) to solve the minimax problem associated parameterizing φΘ by
Θ ∈ Rl and ψθ by θ ∈ Rl using an ICKAN or an ICNN where l is the number of parameters of the networks.
The empirical version of (21) solves

max
Θ

min
θ

1
n

∑
i

φΘ(∇ψθ(Yi)) − ⟨Yi,∇ψθ(Yi)⟩ − φΘ(Xi)

using the classical minimax algorithm 1.
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Algorithm 1 Minimax algorithm for transport problem
Require: Batch size n, external iteration Iext, internal iteration Iint.

for i = 1, . . . Iext do
Sample X1, . . . , Xn ∼ µ
for j = 1, . . . Iint do

Sample Y1, . . . , Yn ∼ ν
Update θ minimizing (21) using Adam method

end for
Update Θ maximizing (21) using Adam method

end for

Note that since the ICKAN networks are used on a compact set, and since we cannot control the values
taken by ∇ψ(y) during the resolution, the ψθ network linearly extrapolates the function outside its domain
of definition.

4.3. Numerical results on synthetic data. Since it is often difficult to get the transport map for a pair
(ν, µ), we define two examples using µ and T , and we consider ν = T#µ. The metric we consider for the
error between the optimal transport map T ⋆ and the estimated one T̂ is the percentage of unexplained

variance [16] UVP (%) = 100
∫

Ω
∥T⋆−T̂∥2

dµ̂n∫
Ω

∥x∥2dν̂n−∥
∫

Ω
xdν̂n∥2 on a validation set X1, . . . , Xn and Y1, . . . , Yn (an error of

100% corresponds to the constant map TC(x) =
∫

Ω xdν̂n(x)). As in [16], we choose as benchmark the linear
transport map estimated on the validation set defined by T̂L(x) = Â(x− m̂1) + m̂2 where m̂1 =

∫
Ω xdµ̂n(x),

m̂2 =
∫

Ω xdν̂n(x), Â = Σ̂−1/2
1

(
Σ̂1/2

1 Σ̂2Σ̂1/2
1

)1/2
Σ̂−1/2

1 , Σ̂1 =
∫

Ω xx
⊤dµ̂n(x) − m̂1m̂

⊤
1 , Σ̂2 =

∫
Ω xx

⊤dν̂n(x) −
m̂2m̂

⊤
2 , see [9]. We consider for the optimization the same hyperparameters than [16], that is
- Iext = 50000 iterations and Iint = 15 iterations ;
- at each iteration, we simulate a new batch of size 1024 ;
- the learning rate is equal to 0.001 ;
- every 100 iterations, we evaluate the error UVP on a test set consisting of 4096 data and we keep

the network with the lowest error ;
- the validation dataset has size 214.

For the ICKAN networks, the domain is defined from the minimum and maximum values from a first dataset
with 214 data. This framework is idealised, as in practice we by no means have this amount of data and we
do not have access to the optimal map, i.e. the one we need to estimate in the test step. We also initialise
the networks with θ0 minimising ∥∇fθ(x) − x∥2 so that the map is closed to identity at initialisation.
Transport map of [16]. We consider the transport map defined in the work of Korotin et al. [16]: the
authors consider the optimal transport map T1 between a mixture of 3 Gaussian random variables µ and a
mixture of 10 Gaussian random variables and the optimal transport map T2 between the same mixture of
3 Gaussian random variables and another mixture of 10 Gaussian random variables. They can then define
the optimal transport map 1

2 (T1 + T2). Since T1 and T2 are not explicitly known, they learn T1 and T2

with an ICNN, T̂1 and T̂2 respectively, that solves the optimal transport problem. The target distribution
considered by Korotin et al. [16] and by us is then 1

2

(
T̂1 + T̂2

)
#µ. We consider for the ICNN1 3 layers

1We use the implementation at https://github.com/iamalexkorotin/Wasserstein2Benchmark/, which uses a CELU activation
function.

https://github.com/iamalexkorotin/Wasserstein2Benchmark/
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with 64, 64 and 32 neurons (same parametrisation as in [16]) and for the ICKANs a network with 2 layers
with 64 and 32 neurons or with 10 and 5 neurons. The results are given in Table 5 for d ∈ {2, 4, 4, 8, 16, 32}.
Our optimization framework and network parametrization correspond to the [MMv2] case in [16]. For the
Cubic ICKAN with adapted mesh and with 64 and 32 neurons, the errors are much smaller than for the
linear map, but can be slightly larger than those obtained by the ICNN parametrization in some case, with
similar orders of magnitude. As mentioned in [16], the optimal transport map itself is learned with an ICNN,
which can be advantageous for the ICNN parametrisation. Furthermore, we did not search for the optimal
parametrisation of the Cubic ICKAN (nor for the ICNN). The number of meshes P ∈ {10, 20, 40} does not
have much influence on the results, as the use of an unadapted grid does. However, using a linear mesh
instead of a cubic one significantly degrades the results, but the network still outperforms the linear map.
Using a smaller network of 10 and 5 neurons for the Cubic ICKAN results in larger errors, and this difference
increases with dimension. The obtained distributions are displayed in Figure 5 for the case d = 2 and the
Cubic ICKAN with P = 10.

Method Neurons / Dim 2 4 8 16 32
Linear 13.93 14.96 27.29 42.05 55.48
Cubic ICKAN P=10 64 32 0.06 0.58 3.00 7.16 9.89
Cubic ICKAN P=20 64 32 0.05 0.51 2.44 5.97 7.66
Cubic ICKAN P=40 64 32 0.05 0.52 2.82 6.57 5.90
Cubic ICKAN P=40 No adapt 64 32 0.06 0.65 3.66 6.63 10.98
Linear ICKAN P=40 64 32 1.01 6.62 19.99 19.90 27.95
Cubic ICKAN P=40 10 5 0.16 1.84 11.56 47.25 101.83
ICNN 64 64 32 0.07 0.27 0.74 1.98 3.01

Table 5. Percentage of unexplained variance UVP (%) for the linear map, the map
parametrized by the Cubic ICKAN with adapted mesh and P ∈ {10, 20, 40}, the Cubic
ICKAN with non adapted mesh and P = 40, the linear ICKAN with adapted mesh and
P = 40 and the ICNN map when the true map is the one in [16]. For the Cubic ICKAN,
we consider networks with 2 layers and 64 and 32 neurons or 10 and 5 neurons while for the
ICKAN we consider 3 layers with 64, 64, and 32 neurons.
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First marginal Second marginal Second component versus first one

Figure 5. Distribution of the true target distribution as well as the one obtained by linear
transport or Cubic ICKAN transport with adapted mesh, P = 10, and 64 and 32 neurons
for the map in [16] and d = 2. The first two figures include the empirical histogram as well
as a Gaussian kernel density estimator with bandwidth selected using Scott’s rule [24].

Tensorized case [27]. We consider the example in Vacher et al. [27] where the transport map is defined by
T (x) = (Ti(xi))i=1,...,d with Ti(xi) = xi + 1

6−cos(2πxi) − 0.2, i = 1, . . . , d,2 for x = (xi)i=1,...,d ∈ [0, 1]d. µ is a
uniform law on [0, 1]d. We consider a 3-layers ICNN with 64, 64, 32 neurons and a 2-layers Cubic ICKAN
with max(2d, 10) and max(d, 5) neurons, an adapted mesh and P ∈ {10, 20, 40}. The results are given in
Table 6 for d ∈ {1, 2, 4, 8}. The ICNN performs very poorly for d ∈ {4, 8}, giving errors of the same order
of magnitude as the linear transport map. The Cubic ICKAN performs very well for all values of P . The
obtained distributions are displayed in Figure 6 for the case d = 2 case and the Cubic ICKAN with P = 10.
We also display Figure 7 the first component of T̂ (x, 0.5) (0.5 is chosen arbitrarily, the first component of
x2 → T̂ (x, x2) being constant and equal to T̂1(x)) and the second component of T̂ (0.5, x). We get similar
figures for larger dimensions. The neural network reproduces the target distribution and the transport map
very well. The better performance of ICKAN over ICNN is probably due to the structure of the Brenier
map, which is of the form f(x) =

∑d
i=1 fi(xi) with fi(xi) =

∫ xi

0 Ti(s)ds, i = 1, . . . , d: the functions in the
Arnold-Kolmogorov representation (3) then have a high degree of smoothness which can lead to a faster rate
of convergence, see Proposition 2.2 and 2.3 in [29] in the non-convex case.

Method / Dim 1 2 4 8
Linear 0.49 0.54 0.52 0.53
Cubic ICKAN P=10 0.00 0.01 0.01 0.02
Cubic ICKAN P=20 0.00 0.02 0.02 0.02
Cubic ICKAN P=40 0.01 0.02 0.02 0.02
ICNN 0.04 0.05 0.34 0.51

Table 6. Percentage of unexplained variance UVP (%) for the linear map, the map
parametrized by the Cubic ICKAN with adapted mesh and P ∈ {10, 20, 40}, and the
ICNN map and different dimensions when the true map is T (x) = (Ti(xi))i=1,...,d with
Ti(xi) = xi + 1

6−cos(2πxi) − 0.2, i = 1, . . . , d.

2The example considered is the one from the code https://github.com/litlboy/OT-Model-Selection/blob/main/Synth-XP/
Tensorised/sinkhorn.py which differs from the one of the paper [27].

https://github.com/litlboy/OT-Model-Selection/blob/main/Synth-XP/Tensorised/sinkhorn.py
https://github.com/litlboy/OT-Model-Selection/blob/main/Synth-XP/Tensorised/sinkhorn.py
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First marginal Second marginal Second component versus first one

Figure 6. Distribution of the true target distribution as well as the one obtained by linear
transport or Cubic ICKAN transport with adapted mesh and P = 10, for the map T (x) =
(Ti(xi))i=1,2 with Ti(xi) = xi + 1

6−cos(2πxi) − 0.2, i = 1, 2. The first two figures include the
empirical histogram as well as a Gaussian kernel density estimator with bandwidth selected
using Scott’s rule [24].

Figure 7. x 7→ T1(x) (left) and x 7→ T2(x) (right) for the map T (x) = (Ti(xi))i=1,2 with
Ti(xi) = xi + 1

6−cos(2πxi) − 0.2, i = 1, 2 as well as the first component of x 7→ T̂ (x, 0.5) (left)
and the second component of x 7→ T̂ (0.5, x) with T̂ the estimated map parametrized by the
Cubic ICKAN with adapted mesh and P = 10.

Product case. In this last case, we consider the map T = ∇f with f the convex function defined on [0, 1]d
by

(22) f(x) = 3−d
d∏
i=1

(
x2
i + xi + 1

)
,

and µ is the uniform law on [0, 1]d. The networks have the same architecture as in the second case (tensorized
map). The results are given in Table 7: ICKAN and ICNN give similar results and outperform the linear
map benchmark (except for the case d = 1 where the optimal transport map is linear).
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Method / Dim 1 2 4 8
Linear 0.00 6.90 16.43 33.57
Cubic ICKAN P=40 0.01 3.15 2.33 2.85
ICNN 0.00 2.77 1.81 1.30

Table 7. Percentage of unexplained variance UVP (%) for the linear map, the map
parametrized by the Cubic ICKAN with adapted mesh and P = 40, and the ICNN map
and different dimensions when the true map is T (x) = ∇f(x) with f given in (22).
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Appendix A. Proof of theorem 2.1

As usual, it is sufficient to show the result by fixing P = 2. The proof is constructive and is based on
theorem 1 demonstration in [7]. First any Lipschitz convex function on [0, 1]n can be approximated within ϵ
by the maximum of a finite set of affine functions (Lemma 1 in [7]). As a consequence, the proof of theorem
2.1 boils down to show that the P1-ICKAN network with adaptation with P = 2 can represent any maximum
of a finite set of affine functions. Following [7], we begin to show that the linear KAN can represent the
maximum of two affine functions f where for x ∈ Rn,

f(x) := max(α⊤
1 x+ β1, α

⊤
2 x+ β2),

= max((α⊤
1 − α⊤

2 )x+ β1 − β2, 0) + α⊤
2 x+ β2

with αi ∈ Rn, βi ∈ R, i = 1, 2.

We consider a L = 2-layers neural network. Take n1 = 2 neurons for the first layer and P = 1 which is
enough (and corresponds to a degenerate P = 2 case) and define in (10) the parameters

b0,1,1 =β1 − β2,

b0,1,j = 0 for 1 < j ≤ n,

b̂0,1,j = (α1,j − α2,j) for 1 ≤ j ≤ n,

b0,2,1 =β2,

b0,2,j = 0 for 1 < j ≤ n,

b̂0,2,j =α2,j for 1 ≤ j ≤ n.(23)

One checks that

κ̂0
n,2(x, [0, 1]n)1 = (α⊤

1 − α⊤
2 )x+ β1 − β2,

κ̂0
n,2(x, [0, 1]n)2 =α⊤

2 x+ β2.

Let I =
2∏
i=1

[x̂1,i,0, x̂1,i,2] denote the image of [0, 1]n by the first layer. For the second layer, supposing that

the non linearity is active for the first component of the first layer output, that is 0 ∈ ]x̂1,1,0, x̂1,1,2[, we take
x̂1,1,1 = 0 ∈ ]x̂1,1,0, x̂1,1,2[, x̂1,2,1 ∈]x̂1,2,0, x̂1,2,2[, and define

b1,1,1 = b̂1,1,1 = 0,
d1,1,1,1 = 1,
b1,1,2 = x̂1,2,0,

b̂1,1,2 = 1,
d1,1,2,1 = 0.
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The two first lines in the previous equation defines the ReLU with an active non linearity, while the three
last defines the identity function and we get the desired result

κ̂1
2,1 ◦ κ0

n,2(x, [0, 1]n)1 = max((α⊤
1 − α⊤

2 )x+ β1 − β2, 0) + α⊤
2 x+ β2.

Of course, the case when the non linearity is not active can be treated using P = 1.
Similarly as in [7], on can extend iteratively the procedure for a given N for

f(x) := max(α⊤
1 x+ β1, . . . , α

⊤
Nx+ βN ).

At last one cannot be sure that the term max(b̂l,1,j , 0) for l > 1 is really defined (it may be negative with
our construction with N > 2 as it is for example defined as b̂0,1,j = (α1,j − α2,j) for 1 ≤ j ≤ n in the first
layer in (23)). But, first by an affine transformation, on changes the initial problem on [0, 1]n in a problem

on [−1, 1]n and by a expansion of the input, on defines a new input x̂ =
(

x
−x

)
. With this new input it is

possible to have positive b̂ values as shown in [7] (duplication trick).
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