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Abstract

We study the machine learning task for models with operators map-
ping between the Wasserstein space of probability measures and a
space of functions, like e.g. in mean-field games/control problems.
Two classes of neural networks based on bin density and on cylin-
drical approximation, are proposed to learn these so-called mean-field
functions, and are theoretically supported by universal approximation
theorems. We perform several numerical experiments for training these
two mean-field neural networks, and show their accuracy and efficiency
in the generalization error with various test distributions. Finally, we
present different algorithms relying on mean-field neural networks for
solving time-dependent mean-field problems, and illustrate our results
with numerical tests for the example of a semi-linear partial differential
equation in the Wasserstein space of probability measures.

1 Introduction

Deep neural networks have been successfully used for approximating solu-
tions to high dimensional partial differential equations (PDEs) and control
problems, and various methods either based on physics informed representa-
tion ([1], [2]), or probabilistic and backward stochastic differential equations
(BSDEs) representation ([3], [4], [5]) have been recently developed in the
literature, see e.g. the survey papers [6] and [7].
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In the last years, a novel class of control problems has emerged with the
theory of mean field game/control dealing with models of large population
of interacting agents. Solutions to mean-field problems are represented by
functions that depend not only on the state variable of the system, but also
on its probability distribution, representing the population state distribu-
tion, and can be characterized in terms of PDEs in the Wasserstein space of
probability measures (called Master equation) or BSDEs of McKean-Vlasov
(MKV) type, and we refer to the two-volume monograph [8], [9] for a compre-
hensive treatment of this topic. In such problems, the input is a probability
measure on Rd, hence valued in the infinite dimensional Wasserstein space,
and the output is a function defined on the support of the input probability
measure.

In this paper, we aim to approximate the infinite dimensional mean-field
function by proposing two classes of neural network architectures. The first
approach starts from the approximation of a probability measure with den-
sity by a piecewise constant density function on some given fixed partition
of size K of a truncated support of the measure, called bins, see Figure 1
in the case of a Gaussian distribution. This allows us to approximate the
infinite dimensional mapping by a function that maps an input space of di-
mensionK corresponding to the bin density weights that can be learned by a
standard deep neural network. We show a universal approximation theorem
that justifies theoretically the use of such bin density neural network. The
second approach maps directly probability measures as input but through a
finite-dimensional neural network function in cylindrical form, for which we
also state a universal approximation theorem.

Next, we show how to effectively learn mean-field function by means of
these two classes of mean-field neural networks. This is achieved by gener-
ating a data set consisting of simulated probability measures following two
proposed methods, and then by training via stochastic gradient method the
parameters of the mean-field neural networks. We perform several numerical
tests for illustrating the efficiency and accuracy of these two mean-field neu-
ral networks on various examples of mean-field functions, and we validate
our results on different test distributions by computing the generalization
error.

As an application of these mean-field neural networks, we consider dy-
namic mean-field problems arising typically from mean-field type control,
and design different algorithms of local or global type, based on regression
or BSDE representation, for computing the solution. We illustrate the per-
formance of our algorithms with the example of a semi-linear PDE on the
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Wasserstein space. More applications and examples from mean-field con-
trol problems and Master equations are investigated in a companion paper
[10] where we provide a global comparison of the different neural network
algorithms.

Related works. Several methods have been recently proposed for solving
numerically mean field game/control problems. We mention for instance the
papers [11], [12] using Hamilton-Jacobi-equations and Lagrangian methods,
the works by [13], [14] relying on backward stochastic differential equations
and maximum principle or the work in [15] that approximates the mean-field
control problem by particle systems for reducing the problem to a finite, but
possibly very high-dimensional problem. Actually, in the latter paper, sym-
metry of the particle system is exploited in the numerical resolution by using
a specific class of neural networks, called DeepSets [16], which allows to re-
duce significantly the computational complexity. However, in all these cited
references, as the distribution probability of the state process is a determin-
istic function of time, the value function and optimal control are viewed as
functions of time and of the state, and approximated by neural networks on
finite-dimensional space. However, the solution obtained is valid for a given
initial distribution of the population state, but when varying the initial dis-
tribution, the solution has to be computed again by another neural network.
In this work, we develop instead a numerical scheme for approximating by
a suitable neural network the solution at any initial distribution.

The paper is organized as follows. In Section 2, we formulate the learn-
ing problem, present two network architectures: bin-density and cylindrical
neural networks, and explain the data generation and training procedures.
Numerical tests are developed in Section 3, and applications to time depen-
dent mean-field problems are given in Section 4 with various algorithms and
numerical results. The proofs of the universal approximation theorem for
mean-field neural networks are postponed in Appendix A.

Notations. Denote by P2(Rd) the Wasserstein space of square integrable
probability measures equipped with the 2-Wasserstein distance W2. Given
µ ∈ P2(Rd), we denote by L2(µ) as the set of measurable functions ϕ on Rd

s.t.

|ϕ|2µ :=

∫
|ϕ(x)|2µ(dx) < ∞.

(Here |.| denotes the Euclidian norm). Given some µ ∈ P2(Rd), and ϕ a
measurable function on Rd with quadratic growth condition, hence in L2(µ),
we set: EX∼µ[ϕ(X)] :=

∫
ϕ(x)µ(dx). We also denote by µ̄ := EX∼µ[X].
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2 Learning mean-field functions

Given a function V on Rd×P2(Rd), valued on Rp, with quadratic growth
condition w.r.t. the first argument in Rd, we aim to approximate the infinite-
dimensional mapping

V : µ ∈ P2(Rd) 7−→ V (·, µ) ∈ L2(µ), (2.1)

called mean-field function, by a map N constructed from suitable classes
of neural networks. The mean-field network N takes inputs composed of
two parts: µ a probability measure and x in the support of µ, and outputs
N (µ)(x). The quality of this approximation is measured by the error:

L(N ) :=

∫
P2(Rd)

EN (µ)ν(dµ),

with EN (µ) :=
∣∣V(µ)−N (µ)

∣∣2
µ

= EX∼µ

∣∣V (X,µ)−N (µ)(X)
∣∣2,

where ν is a probability measure on P2(Rd), called training measure. The
learning of the mean-field functional V will be then performed by minimizing
over the parameters of the neural network operator N the loss function

LM (N ) :=
1

M

M∑
m=1

EN (µ(m)), (2.2)

where µ(m), m = 1, . . . ,M are training samples of ν. We denote by N̂M the
learned functional from this minimization problem, and for test data µtest

(different from the training data set (µ(m))m), we shall compute the test
(generalization) error EN̂M (µtest).

2.1 Neural networks approximations

Bin density-based approximation Let us denote by D2(Rd) the subset
of probability measures µ in P2(Rd) which admit density functions pµ with
respect to the Lebesgue measure λd on Rd. Fix K as a bounded rectangular
domain in Rd, and divide K into a number K of bins, Bin(k), k = 1, . . . ,K:
∪K
k=1Bin(k) = K, of center xk, and with same area size h = λd(K)/K. Given

µ ∈ D2(Rd), we consider the bin approximation of its density function (see
figure 1), that is the truncated piecewise-constant density function defined
on K by

p̂µK(x) = pµk :=
pµ(xk)∑K

k=1 p
µ(xk)h

, if x ∈ Bin(k), k = 1, . . . ,K,
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and p̂µK(x) = 0 for x ∈ Rd \K, set pµ := (pµk)k∈J1,KK, which lies in DK :=

{p = (pk)k∈J1,KK ∈ RK
+ :

∑K
k=1 pkh = 1}, and called density bins of the

probability measure in D2(Rd) of density function p̂µK, denoted by µ̂K with
support on K

Figure 1: Bin approximation of a Gaussian distribution.

Conversely, given p = (pk)k∈J1,KK ∈ DK , we can associate the piecewise-

constant density function defined on Rd by

p(x) = pk, if x ∈ Bin(k), k = 1, . . . ,K, p(x) = 0, x ∈ Rd \K.(2.3)

We then denote by µ= LD

(
p
)
the bin density probability measure on P2(Rd)

with piecewise-constant density function p as in (2.3), hence with support
on K, and we note that µ̂K = LD(p

µ).
A mean-field density-based network is an operator on D2(Rd) in the form

ND(µ) = Φ(·,pµ),

where Φ = Φθ is a neural network function from Rd×DK into Rp, whose
architecture can be constructed as follows:

(i) Classical feedforward neural network, i.e. in the form:

(x,p) ∈ Rd×DK 7→ Φθ(x,p) = AL+1 ◦ σ ◦ AL︸ ︷︷ ︸
L−layer

◦ . . . ◦ σ ◦ A1(x,p)︸ ︷︷ ︸
1−layer

∈ Rp,

Aℓ(x,p) = wℓ

(
x
p

)
+ bℓ ∈ Rdℓ , dL+1 = p,

with L hidden layers (layer ℓ with dℓ neurons), parameters θ = (wℓ, bℓ)ℓ:
wℓ weight, bℓ bias, an activation function σ from R into R (composition
is componentwise), like e.g. tanh, sigmoid, or Relu.
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(ii) DeepOnet structure (see [17]): Φθ(x,p) =
∑L

ℓ=1 bℓtℓ, where (bℓ)ℓ is the
ouput of a branch net with input p = (pk)k representing the sensors,
and (tℓ)ℓ is the output of a trunk net with input x.

(iii) Other structures like the networks developed in [18] for a differentiated
treatment of uncertainties and storage level in reservoir optimization.

Let us denote by Dc(K) the subset of elements µ in D2(Rd) with support
in K, with continuous density functions pµ, and for µ ∈ Dc(K), we set ωµ

K
as its modulus of uniform continuity on K. Given a modulus of continuity
ω̄, i.e. a nondecreasing function on R+ s.t. limt↓0 ω̄(t) = ω̄(0) = 0, we
denote by Dω̄

c (K) the subset of elements µ ∈ Dc(K) such that ωµ
K ≤ ω̄ on a

neighborhood of t = 0.
The justification for the use of bin-density neural networks is due to the

following universal approximation theorem.

Theorem 2.1. Let K be bounded rectangular domain in Rd, ω̄ a modulus
of continuity, and V a continuous function on Rd×P2(Rd). Then, for all ε
> 0, there exists K ∈ N∗, and Φ a neural network on Rd×RK such that∣∣V (x, µ)− Φ(x,pµ)

∣∣ ≤ ε, ∀x ∈ K, µ ∈ .

Proof. See Appendix A. □

Cylindrical approximation. A mean-field cylindrical neural network is
an operator on P2(Rd) in the form

NC(µ) = Ψθ(·, < φθ, µ >),

where Ψθ is a feedforward network function from Rd×Rk into Rp, and φθ is
another feedforward network function from Rd into Rk (called latent space).
Here we denote < φθ, µ > :=

∫
φθ(x)µ(dx) = EX∼µ[φθ(X)]. By misuse of

language, we call (Ψθ, φθ) such cylindrical neural network with φθ the inner
network, and Ψθ the outer network.

We state a universal approximation theorem that justifies the use of
cylindrical mean-field neural networks. It is stated with an L2-distance,
which is, in practice, the distance that is minimized during the training
process.

Theorem 2.2. Let ν be a probability measure on P2(Rd), and V be a contin-
uous function from Rd×P2(Rd) into Rp s.t. ∥V ∥2L2(ν) :=

∫
P2(Rd) |V (., µ)|2µν(dµ)
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< ∞. Then, for all ε > 0, there exists k ∈ N, Ψ a neural network from
Rd×Rk into Rp, φ a neural network from Rd into Rk such that∫

P2(Rd)

∣∣V (., µ)−Ψ(., < φ, µ >)
∣∣2
µ
ν(dµ) ≤ ε.

Proof. See Appendix A. □

2.2 Data generation

The training of neural networks for approximating mean-field function re-
lies on samples of probability measures µ and of random state value X
distributed according to µ. We propose two methods.

1. We draw a random grid x = (xk)k∈J1,KK of K points in Rd, according

to some probability measure on Rd, e.g. uniform distribution on K,
as well as a random element π = (πk)k∈J1,KK in the simplex SK =

{π = (πk)k∈J1,KK ∈ RK
+ :

∑K
k=1 πk = 1}. This can be done for example

from a sample e1, . . . , eK of positive random variables according to
an exponential law, and by setting πk = ek∑K

k=1 ek
, k = 1, . . . ,K. This

generates a (random) quantized probability measure:

Lx
Q(π) :=

K∑
k=1

πkδxk
,

that is the discrete probability measure with support on the grid x
and with probability weights π.

2. We draw random vector p = (pk)k∈J1,KK in DK . This can be done
for example from a sample e1, . . . , eK of positive random variables ac-
cording to an exponential law on R+, e.g. with parameter 1, and by
setting pk = ek∑K

k=1 ekh
, k = 1, . . . ,K. This generates (random) bin

density probability measure µ = LD(p), whose cumulative distribu-
tion function is given in the one-dimensional case (d = 1, Bin(k) =
[xk−1, xk), k = 1, . . . ,K) by

Fp(x) =


0, x < x0
k−1∑
j=1

pjhj + pk(x− xk−1), x ∈ Bin(k), k = 1, . . . ,K,

1, x ≥ xK ,
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with the convention that
∑k−1

j=1 = 0 for k = 1. Its inverse function is
then explicitly given by

F−1
p (u) = xku−1 +

u−
ku−1∑
j=1

pjhj

pku
, u ∈ [0, 1],

with ku := inf{k ∈ J1,KK :
k∑

j=1

pjhj ≥ u}.

We then draw an uniform random variable U on [0, 1], which generates
a random variable X = F−1

p (U) distributed according to LD(p).

There are other methods for generating random probability measures that
can be found in the literature on probability theory, and we refer e.g. to
an overview in [19], but it is not clear how one can simulate easily random
variables distributed according to such random probability measures.

2.3 Training mean-field neural networks

According to the choice of the mean-field neural network, the training for
learning the mean-field operator V in (2.1) is performed as follows:

1. Bin density-based neural network. We draw a sample p(m) of vectors
in DK , which generates a sample of bin density probability measures
µ(m) = LD(p

(m)), m = 1, . . . ,M . By noting that the density bins of
the density probability measure µ(m) is p(m), the training of the bin
density-based neural network ND from the minimization of the loss
function in (2.2) consists in minimizing over the parameters θ of a
feedforward neural network Φθ on Rd×DK the loss function

LD(θ) =
1

M

M∑
m=1

EX∼µ(m)

∣∣V (X,µ(m))− Φθ(X,p(m))
∣∣2.

For the approximation of this expectation EX∼µ(m) [.] when applying

SGD we shall use for each m, a batch X(n), n = 1, . . . , N , of samples
of X ∼ µ(m). Notice that this method works effectively in dimension
d = 1 in order to be able to simulate X.

2. Cylindrical neural network. We draw a sample µ(m), m = 1, . . . ,M ,
of probability measures in P2(Rd), either according to discrete prob-

ability measures µ(m) = Lx(m)

Q (π(m)), or to bin density probability
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measures µ(m) = LD(p
(m)), and minimize over the parameters θ of a

cylindrical neural network (Ψθ, φθ) the loss function:

LC(θ) =
1

M

M∑
m=1

EX∼µ(m)

∣∣∣V (X,µ(m))−Ψθ

(
X,EX∼µ(m) [φθ(X)]

)∣∣∣2.
Again, when applying SGD for the approximation of this expectation
EX∼µ(m) [.], we shall use for each m, a batch X(n), n = 1, . . . , N , of

samples of X ∼ µ(m).

3 Numerical tests

We test our two choices of mean-field neural networks by computing the
corresponding training mean square error (MSE) and test (generalization)
error for different cases of mean-field functions V on R×P2(R).

We first consider the two following cases of mean-field functions:

A. Case A: a quadratic function of the measure

V (x, µ) = x+ µ̄+ 2Var(µ),

where µ̄ := EX∼µ[X], Var(µ) := EX∼µ[X
2]− |µ̄|2.

B. Case B : a superquantile function

V (x, µ) = x2 + 2xEX∼µ[X|X ≥ Qµ(0.5)] + EX∼µ[X|X ≥ Qµ(0.5)]
2,

where Qµ(p) = inf{x ∈ R : p ≤ Fµ(x)} and Fµ is the cumulative
distribution function of a random variable with law µ.

We first illustrate the convergence of the bin method with classical feed-
forward neural network for different hyperparameters. The data are gener-
ated in all cases with the second method described in section 2.2 for K =
100 bins. We take M̂ = 20 distributions as the batch size during training
with N = 50000, and give the convergence of the ADAM methods [20] by
plotting the moving average on 10 values of the MSE calculated every 100
iterations of SGD with M = 1000 testing distributions. The initial learning
rate is 10−3 and we use tensorflow [21].
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ReLu, 2 hidden layers ReLu, 3 hidden layers

Tanh, 2 hidden layers Tanh, 3 hidden layers

Figure 2: Bin approximation: Training error for case A depending on the number of
neurons.
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ReLu, 2 hidden layers ReLu, 3 hidden layers

Tanh, 2 hidden layers Tanh, 3 hidden layers

Figure 3: Bin approximation: Training error for case B depending on the number of
neurons.

Results for the bin approximation on Figures 2, 3 indicate that three
layers with 20 neurons and a tanh activation function is a good choice for
these regular functions. We may also wonder if another architecture for
neural network may improve the results: we test the DeepONet network
and the network developed in paragraph 3.2 in [18] (Deep Sensor in the
graphs). Results with three hidden layers with 20 neurons for each network,
the tanh activation function, are given on Figure 4, and show that other
networks do not seem to improve the feedforward results. In the sequel we
only use the classical feedforward network.
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Case A Case B

Figure 4: Comparison of different networks for bin approximation.

Next, we consider the cylindrical approximation, which uses two net-
works: One inner network φ having L layers of k neurons (so with output
in dimension k), and one outer network Ψ having L hidden layers with Q
neurons. The convergence of the training error is illustrated in Figure 5
for the case A: it indicates that a tanh activation function using 2 layers,
Q = 10, k = 20 is a good choice. This result is confirmed on test case B but
not reported here.
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ReLu, L = 2 , Q = 10 ReLu, L = 2 , Q = 20

ReLu, L = 3 , Q = 10 ReLu, L = 3 , Q = 20

Tanh, L = 2 , Q = 10 Tanh, L = 2 , Q = 20

Tanh, L = 3 , Q = 10 Tanh, L = 3 , Q = 20

Figure 5: Cylinder network: Training error for case A depending on the
number of neurons k = 10, 20 or 40 of the inner network.

In the sequel, all results for case A and B are obtained using the pre-
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viously fitted networks. We have shown that the global training errors de-
crease correctly, and we shall now compute the error for various given test
distributions, and for the two choices of mean-field neural networks:

1. Bin density-based neural network. We estimate the density bins ptest

of µtest from samples X(n), n = 1, . . . , N , of µtest as

ptestk =
#{n ∈ J1, NK : ProjK(X(n)) ∈ Bin(k)}

Nh
, k = 1, . . . ,K,

where ProjK(.) is the projection on K. We then compute the error test

EN̂M (µtest) = EX∼µtest

∣∣V (X,µtest)− Φθ̂M
(X,ptest)

∣∣2
≃ 1

N

N∑
n=1

∣∣V (X(n), µtest)− Φθ̂M
(X(n),ptest)

∣∣2.
2. Cylindrical neural network. From samples X(n), n = 1, . . . , N , of µtest,

we shall next compute the error test as

EN̂M (µtest) = EX∼µtest

∣∣V (X,µtest)−Ψθ̂M

(
X(n),EX∼µtest [φθ̂M

(X)]
)∣∣2

≃ 1

N

N∑
n=1

∣∣V (X(n), µtest)−Ψθ̂M

(
X(n),

1

N

N∑
i=1

φθ̂M
(X(i))

)∣∣2.
We test three distributions of Xtest ∼ µtest plotted in Figure 6 and given

by:

(i) Test 1 : Gaussian with µ̄test = 0.3, std(µtest) = 0.05.

(ii) Test 2 : A student distribution with parameter ν = 4 and localization
factor 0, scale factor σ = 0.2, therefore with a variance ν

ν−2σ
2.

(iii) Test 3 : Mixture of three gaussians: X0 = a[−1⌊3U⌋=0 +1⌊3U⌋=1] + bY
with U ∼ U(0, 1), a = 0.3, b = 0.07, Y ∼ N (0, 1) independent of U .

Test 1 Test 2 Test 3

Figure 6: Distributions used to test approximation algorithms.
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On Figures 7 and 8, we plot for different values of N , keeping M̂ = 20,
the training MSE obtained by the algorithms and the error associated to the
test distributions. Globally, the bin approximation is more sensitive to the
N parameter. Not surprisingly, the training size N has to be taken large to
get good results for both methods. For the case B, the results on test 1 with
a distribution tending to the Dirac distribution has a residual error clearly
above the errors obtained with the distribution test 2 and 3.

Training MSE : N=10000 Test error with bins : N=10000 Test error with cylinder: N=10000

Training MSE : N=50000 Test error with bins : N=50000 Test error with cylinder : N=50000

Training: N=250000 Test error with bins : N=250000 Test error with cylinder : N=250000

Figure 7: Case A: comparing bin to cylinder methods. Convergence for
given distributions.
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Training MSE : N=10000 Test error with bins : N=10000 Test error with cylinder : N=10000

Training MSE : N=50000 Test error with bins : N=50000 Test error with cylinder : N=50000

Training MSE : N=250000 Test error with bins : N=250000 Test error with cylinder : N=250000

Figure 8: Case B : comparing bin to cylinder methods. Convergence for
given distributions.

Finally, we consider three other mean-field functions

C Case C : a second-order mean-field interaction

V (x, µ) =

∫ ∫
(x− y − z)2µ(dy)µ(dz)

= x2 − 4xµ̄+ 2EX∼µ[X
2] + 2|µ̄|2.

D. Case D: median function

V (x, µ) =

∫
|x− y|µ(dy) = EX∼µ|x−X|.
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E. Case E : cumulative distribution function

V (x, µ) = µ(−∞, x] = EX∼µ[1X≤x]

On Figure 9, we keep the same hyperparameters as for case A and B.
For the more complex regular function of case C, the convergence is clearly
more difficult to obtained on the test distributions even if the training MSE
converges accurately. Results obtained by the bin network are better than
the results obtained using the cylinder network. Increasing the number of
layers or neurons does not improve the results.

Training MSE Test error with bins Test error with cylinder

Figure 9: Case C : comparing bin to cylinder networks with N = 250000.

On Figures 10 and 11, we give the results obtained for case D by the two
methods using 20 neurons and letting the number of layers increase. The
global training MSE does not seem to improve as we increase the number of
layers. Again the first test function gives the worst results. A high accuracy
is hard to obtained on the test distributions even if a high accuracy of the
global MSE is reached. As we increase the number of layers, the results on
the test distributions are more erratic.

Training MSE Test error with 2 layers Test error with 4 layers

Figure 10: Case D for bins : results depending on the number of layers with
N = 250000, 20 neurons.
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Training MSE Test error with 2 layers Test error with 4 layers

Figure 11: Case D for cylinder : results depending on the number of layers
with N = 250000, 20 neurons for the two networks.

On Figures 12 and 13, we test the influence of the number of layers of
the networks on case E using 20 neurons. For this very irregular function,
increasing the number of layers improve the training MSE and the results
on the test distributions but only marginally. Again results obtained on the
first test distribution are not as good as the results obtained for the two
other distributions.

Training MSE Testing 2 layers Testing 4 layers

Figure 12: Case E for bins : results depending on the number of layers
N = 250000, 20 neurons.
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Training MSE Test error with 2 layers Test error with 4 layers

Figure 13: Case E for cylinder : results depending on the number of layers
with N = 250000, 20 neurons for the two networks.

4 Algorithms for dynamic mean-field problems

In dynamic mean-field problems (over finite horizon), like mean-field con-
trol/game, the solution (value function, control) is time-dependent, and
function of some state process and its probability distribution. It is then
defined on T × Rd×P2(Rd), where T is an interval of the form [0, T ] in a
continuous-time problem, or a discrete time grid T = {ti, i = 0, . . . , NT }
in a discrete-time problem. Denoting by U this time-dependent mean-field
function, we aim to approximate by learning the time-dependent functional

U(t) : µ ∈ P2(Rd) 7−→ U(t, ·, µ) ∈ L2(µ), for t ∈ T .

The solution U is typically characterized via a Master Bellman PDE, a
dynamic programming formula, or a Backward stochastic differential equa-
tions of McKean-Vlasov type, and after time discretization (in the case of a
continuous-time problem) on a grid {ti, i = 0, . . . , NT }, one can design algo-
rithms for learning the operators Ui := U(ti), i = 0, . . . , NT . These machine
learning algorithms are either of global or local type, and are described in
the next paragraphs.

4.1 Local algorithms

In backward recursion local algorithm, arising from dynamic programming,
given an approximation at time ti+1 of the mean-field operator Ui+1 (e.g. the
value function and or the feedback control) by a mean-field neural network
function N̂i+1 as described in the previous section, we aim to learn at time ti
a mean-field neural network function Nθ by minimizing over θ a loss function
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in the form

Li(θ) = E
[
H
(
Xi, µi,Nθ(µi)(Xi), N̂i+1(µi+1)(Xi+1)

)]
,

for some function H, and we then update N̂i = Nθ̂i
where θ̂i is the resulting

optimal parameter from this minimization problem. In the above expecta-
tion for applying SGD, µi is sampled according to the data generation as
described in the previous section, Xi is sampled according to µi, Xi+1 is
given by a dynamics in the form:

Xi+1 = Fi(Xi, µi,Nθ(µi)(Xi), εi+1),

and µi+1 is the law ofXi+1. In practice, µi+1 has to be estimated/approximated
from samples of Xi+1, and the suitable method will be chosen depending on
the adopted class of mean-field neural networks.

1. Bin density-based neural network: Nθ(µ) = Φθ(.,p
µ). We sample prob-

ability measures µ
(m)
i = LD(p

(m)) in D2(R) from samples

p(m) = (p
(m)
k )k∈J1,KK, m = 1, . . . ,M , in DK , and then approximate the

loss function Li as

Li(θ)

≃ 1

MN

M∑
m=1

N∑
n=1

H
(
X

(m),(n)
i , µ

(m)
i ,Φθ(X

(m),(n)
i ,p(m)),Φθ̂i+1

(X
(m),(n)
i+1 , p̂(m))

)
where X

(m),(n)
i , n = 1, . . . , N , are sampled from LD(p

(m)),

X
(m),(n)
i+1 = F (X

(m),(n)
i ,LD(p

(m)),Φθ(X
(m),(n)
i ,p(m)), εi+1),

and p̂(m) = (p̂
(m)
k )k∈J1,KK are the estimated density bins in DK of

X
(m),(n)
i+1 (truncated on K = [x0, xK ]), namely:

p̂
(m)
k =

#{n ∈ J1, NK : ProjK(X
(m),(n)
i+1 ) ∈ Bin(k)}

Nh
, k = 1, . . . ,K,

where ProjK(.) is the projection on K.

2. Cylindrical neural network: Nθ(µ) = Ψθ(., < φθ, µ >). We sample

probability measures µ(m) = LD(p
(m)), m = 1, . . . ,M , so that the loss

function is approximated as

Li(θ)

≃ 1

MN

M∑
m=1

N∑
n=1

H
(
X

(m),(n)
i , µ

(m)
i ,Ψθ(X

(m),(n)
i , Ê[φθ(X

(m)
i )]),Ψθ̂i+1

(X
(m),(n)
i+1 ,

Ê[φθ̂i+1
(X

(m)
i+1 )])

)
,
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where X
(m),(n)
i , n = 1, . . . , N , are sampled from X

(m)
i ∼ LD(p

(m)),

X
(m),(n)
i+1 , n = 1, . . . , N , are sampled as

X
(m),(n)
i+1 = Fi(X

(m),(n)
i , µ

(m)
i ,Ψθ(X

(m),(n)
i , Ê[φθ(X

(m)
i )]), ε

(n)
i+1),

with Ê[.] denoting the empirical expectation:

Ê[φθ(X
(m)
i )] =

1

N

N∑
n=1

φθ(X
(m),(n)
i ),

Ê[φθ̂i+1
(X

(m)
i+1 )] =

1

N

N∑
n=1

φθ̂i+1
(X

(m),(n)
i+1 ).

4.2 Global algorithms

In global algorithms, we approximate at any time ti, i = 0, . . . , NT , the
mean-field operators Ui by mean-field networks Nθi that are learned simul-
taneously by minimizing over θ = (θi)i a global loss function in the form

L(θ) = E
[NT−1∑

i=0

ℓi
(
Xi, µi,Nθi(µi)(Xi)

)
+ g(XNT

, µNT
)
]

for some loss functions ℓi, and g. In the above expectation for applying
SGD, µ0 is sampled according to the data generation as described in the
previous section, X0 is sampled according to µ0, and for i = 0, . . . , NT − 1,
Xi+1 are given by a dynamics in the form

Xi+1 = Fi(Xi, µi,Nθi(µi)(Xi), εi+1),

where µi is the law of Xi. In practice, for i = 1, . . . , NT , µi has to be
estimated/approximated from samples of Xi, and the suitable method will
be chosen depending on the adopted class of mean-field neural networks.

1. Bin density-based neural network: Nθ(µ) = Φθ(.,p
µ). We sample prob-

ability measures µ
(m)
0 = LD(p

(m)) in D2(R) from samples

p(m) = (p
(m)
k )k∈J1,KK,m = 1, . . . ,M,
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in DK , and then approximate the global loss function as

L(θ) ≃ 1

MN

M∑
m=1

N∑
n=1

[
ℓ0(X

(m),(n)
0 , µ

(m)
0 ,Φθ0(X

(m),(n)
0 ,p(m))

)
+

NT−1∑
i=1

ℓi
(
X

(m),(n)
i , µ̂

(m)
i ,Φθi(X

(m),(n)
i , p̂

(m)
i

)
+g(X

(m),(n)
NT

, µ̂
(m)
NT

)
]

where X
(m),(n)
0 , n = 1, . . . , N are sampled from X

(m)
0 ∼ µ

(m)
0 , for i =

0, . . . , NT − 1, X
(m),(n)
i+1 , n = 1, . . . , N are sampled as

X
(m),(n)
i+1 = Fi(X

(m),(n)
i , µ̂

(m)
i ,Φθi(X

(m),(n)
i , p̂

(m)
i ), ε

(n)
i+1),

with µ̂
(m)
i = LD(p̂

(m)
i ), p̂

(m)
0 = p(m), and p̂

(m)
i = (p̂

(m)
i,j )j∈J1,KK are the

estimated density weights in DK of X
(m),(n)
i , i = 1, . . . , NT (truncated

on K = [x0, xK ]), namely:

p̂
(m)
i,j =

#{n ∈ J1, NK : ProjK(X
(m),(n)
i ) ∈ Bin(j)}

Nhj
, j = 1, . . . ,K,

where ProjK(.) is the projection on K.

2. Cylindrical neural network: Nθ(µ) = Ψθ(., < φθ, µ >). We sam-

ple probability measures µ
(m)
0 say according to Bin density measures

LD(p
(m)), and then minimize over the parameters θ = (θi) the ap-

proximate global loss function

L(θ) ≃ 1

MN

M∑
m=1

N∑
n=1

[
ℓ0(X

(m),(n)
0 , µ

(m)
0 ,Ψθ0(X

(m),(n)
0 , Ê[φθ(X

(m)
0 )])

)
+

NT−1∑
i=1

ℓi
(
X

(m),(n)
i , µ̂

(m)
i ,Ψθi(X

(m),(n)
i , Ê[φθ(X

(m)
i )]

)
+g(X

(m),(n)
NT

, µ̂
(m)
NT

)
]
,

where X
(m),(n)
0 , n = 1, . . . , N are sampled from X

(m)
0 ∼ µ

(m)
0 , for i =

0, . . . , NT − 1, X
(m),(n)
i+1 , n = 1, . . . , N are sampled as

X
(m),(n)
i+1 = Fi(X

(m),(n)
i , µ̂

(m)
i ,Ψθi(X

(m),(n)
i , Ê[φθ(X

(m)
i )]), εi+1),
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µ̂
(m)
i = LD(p̂

(m)
i ), p̂

(m)
0 = p(m), and p̂

(m)
i = (p̂

(m)
i,j )j∈J1,KK are the esti-

mated density weights in DK of X
(m),(n)
i , i = 1, . . . , NT (truncated on

K = [x0, xK ]), namely:

p̂
(m)
i,j =

#{n ∈ J1, NK : ProjK(X
(m),(n)
i ) ∈ Bin(j)}

Nhj
, j = 1, . . . ,K,

with Ê[.] denoting the empirical expectation:

Ê[φθ(X
(m)
i )] =

1

N

N∑
n=1

φθ(X
(m),(n)
i ).

Remark 4.1. For global algorithms, we can avoid the approximation of the
mean-field function at each single date ti, i = 0, . . . , NT − 1, by learning di-
rectly the mean field function which also takes the time as argument. Hence,
instead of having a different mean-field neural network Nθi for each date ti,
we learn with a single time dependent neural network N (t, .), which is used
for all dates, as illustrated on an example in the next section. This gives
generally more stable results, see e.g. [4].

4.3 A toy example of semi-linear PDE on Wasserstein space

Let us consider the linear differential operator on [0, T ]× R×P2(R) associ-
ated to the mean-field stochastic differential equation (SDE):

dXt = κ(E[Xt]−Xt)dt+ σdWt,

for some positive constants κ, σ, and given by

Lv(t, x, µ) =
∂v

∂t
(t, x, µ) + κ(µ̄− x)

∂v

∂x
(t, x, µ) +

1

2
σ2 ∂

2v

∂x2
(t, x, µ)

+ Eξ∼µ

[
κ(µ̄− ξ)∂µv(t, x, µ)(ξ) +

1

2
σ2∂x′∂µv(t, x, µ)(ξ)

]
,

where x′ 7→ ∂µv(t, x, µ)(x
′) is the Lions derivative of µ 7→ v(t, x, µ) (see [8]).

Given a C2 function w on Rd with quadratic growth condition, let us
define the function f on [0, T ]× R×P2(R)× R by

f(t, x, µ, y) = eT−tEξ∼µ

[
(w − σ2Dxxw)(x− ξ) + κ(x− ξ)Dxw(x− ξ)

]
− a

(
Eξ∼µ

[
eT−tw(x− ξ)

])2
+ ay2, (4.1)
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for some positive constant a, and consider the semi-linear PDE on [0, T ] ×
R×P2(R):{

Lv + f(t, x, µ, v) = 0, (t, x, µ) ∈ [0, T )× R×P2(R),
v(T, x, µ) = g(x, µ), (x, µ) ∈ R×P2(R),

(4.2)

where g(x, µ) := Eξ∼µ[w(x− ξ)]. By construction, the solution to the PDE
(4.2) is explicitly given by v(t, x, µ) = eT−tEξ∼µ[w(x−ξ)], and this will serve
as benchmark for evaluating the accuracy of our algorithms in the numerical
resolution of the PDE (4.2).

Recall that the PDE (4.2) has the following probabilistic representation:
by considering the pair of processes (Y,Z) given by

Yt = v(t,Xt,PXt), Zt = σ
∂v

∂x
(t,Xt,PXt), 0 ≤ t ≤ T,

we see by Itô’s formula that it satisfies the Backward SDE

dYt = −f(t,Xt,PXt , Yt)dt+ ZtdWt, YT = g(XT ,PXT
). (4.3)

Local Algorithms. We consider a time grid T = {ti, i = 0, . . . , NT } of
[0, T ] with mesh size ∆ti = ti+1 − ti, and consider two local algorithms for
approximating v on T ×R×P2(R). In the first approach, we start from the
expectation representation arising from (4.3):

v(ti, Xti ,PXti
) = E

[
v(ti+1, Xti+1 ,PXti+1

) +

∫ ti+1

ti

f(s,Xs,PXs , v(s,Xs,PXs))ds
∣∣Xti

]
,

which leads to the backward regression algorithm: starting from ÛNT
(µ)(x)

= g(x, µ), we approximate v at any time ti, i = NT −1, . . . , 0, by mean-field
neural networks Uθi , and minimize the local loss regression function

LR
i (θi) = E

∣∣∣Ûi+1(µi+1)(Xi+1)− Uθi(µi)(Xi) + f(ti, Xi, µi,Uθi(µi)(Xi))∆ti

∣∣∣2,
by updating Ûi = Uθ̂i

with θ̂i the resulting “optimal” parameter, and where
we sample µi, Xi ∼ µi, with (Xi)i given by the Euler scheme of the mean-
field SDE:

Xi+1 = Xi + κ(µ̄i −Xi)∆ti + σ∆Wti , ∆Wti := Wti+1 −Wti .

Alternately, by relying directly on the time discretization of the BSDE
(4.3), and following the idea in [5], we approximate v and its gradient σDxv
at any time ti by mean-field neural networks Uθi and Zθi , and minimize the
loss function

LBSDE
i (θi) = E

∣∣∣Ûi+1(µi+1)(Xi+1)− Uθi(µi)(Xi)

+ f(ti, Xi, µi,Uθi(µi)(Xi))∆ti −Zθi(µi)(Xi)∆Wti

∣∣∣2.
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Global Algorithms. We propose two global methods. In the first one,
we approximate v at any time ti, i = 0, . . . , NT , by a time dependent mean-
field neural networks Uθ(t, .), and minimize over θ the global loss regression
function:

LR(θ) = E
[∣∣g(XNT , µNT )− Uθ(tNT , µNT )(XT )

∣∣2
+

NT−1∑
i=0

∣∣Uθ(ti+1, µi+1)(Xi+1)− Uθ(ti, µi)(Xi)

+f(ti, Xi, µi,Uθ(ti, µi)(Xi))∆ti
∣∣2].

Alternately, following the idea in [3], we approximate v at time t = 0 by
a mean-field neural networks Uθ̄(.), and its gradient σDxv at any time ti
by a time dependent mean-field neural networks Zθ̃(t, .) by minimizing over

θ = (θ̄, θ̃) the global loss function:

LBSDE(θ) = E
∣∣∣Y θ

NT
− g(XT ,PXT

)
∣∣∣2,

where Y θ is given by

Y θ
i+1 = Y θ

i − f(ti, Xi, µi, Y
θ
i )∆ti + Zθ̃(ti, µi)(Xi)∆Wti , i = 0, . . . , NT − 1,

starting from Y θ
0 = Uθ̄(µ0)(X0), from samples of µ0, and X0 ∼ µ0.

Remark 4.2. The algorithm in [13] gives a solution to the master equation
only for a given initial distribution while the algorithms presented here permit
to solve the problem for all initial distributions. Furthermore, with local
algorithms, we are able to obtain the solution depending on x and µ at each
time step.

Tests. For the numerical tests, we choose T = 0.1, κ = 0.2, σ = 0.5,
w(x) = cos(x), and a = 0.1 in (4.1). We take M̂ = 10, N = 100000, a
number of bins of K = 200 with a domain K = [−1.3, 1.3] , 8E4 gradient
iterations at each optimization with an initial learning rate of 1E − 3 for
the ADAM method. After optimization, we calculate the value function
using the network at time t = 0 (bin or cylindrical), and then estimate the
associated MSE for various test distributions µtest as in Section 3, and fol-
lowing the local/global regression/BSDE algorithms. The results for the
default hyperparameters of the networks (the same as for case A and B)
are reported in Tables 1 and 2, and show that the local BSDE algorithm
with cylindrical neural networks provides the best results. Notice in our
case that the solution is very regular as it can be written as v(t, x, µ) =
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eT−t[cos(x)Eξ∼µ[cos(ξ)] + sin(x)Eξ∼µ[sin(ξ)]] and as shown in the first sec-
tions, a low number of layers, neurons is expected to be sufficient. This is
confirmed in table 3 and 4 where one hidden layer is added in the computa-
tions.

Method Network Test 1 Test 2 Test 3

Global Bins 1.55E-02 2.44E-02 1.46E-02
Global Cylinder 6.70E-03 6.81E-03 6.04E-03
Local Bins 3.04E-02 2.32E-02 2.33E-02
Local Cylinder 1.11E-04 1.18E-04 2.35E-04

Table 1: Regression approach : MSE at time 0 for PDE resolution (2 layers
for the cylinder network, 3 layers for the bin network).

Method Network Test 1 Test 2 Test 3

Global Bins 2.53E-03 5.99E-03 1.96E-03
Global Cylinder 4.59E-04 3.81E-04 4.13E-04
Local Bins 2.92E-02 3.73E-02 2.36E-02
Local Cylinder 5.41E-05 6.45E-05 9.05E-05

Table 2: BSDE approach : MSE at time 0 for PDE resolution (2 layers for
the cylinder network, 3 layers for the bin network).

Method Network Test 1 Test 2 Test 3

Global Bins 5.13E-02 8.15E-03 5.01E-02
Global Cylinder 8.52E-04 1.07E-03 8.53E-04
Local Bins 4.09E-02 6.57E-02 3.16E-02
Local Cylinder 2.52E-03 1.96E-03 1.84E-03

Table 3: Regression approach : MSE at time 0 for PDE resolution (3 layers
for the cylinder network, 4 layers for the bin network).
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Method Network Test 1 Test 2 Test 3

Global Bins 1.74E-02 4.94E-03 1.39E-02
Global Cylinder 4.88E-03 3.66E-03 3.67E-03
Local Bins 3.92E-02 6.26E-02 3.14E-02
Local Cylinder 2.08E-03 1.70E-03 1.62E-03

Table 4: BSDE approach : MSE at time 0 for PDE resolution (3 layers for
the cylinder network, 4 layers for the bin network).

We plot in Figure 14 the MSE error at different time steps when using
the local BSDE algorithm with cylindrical mean-field neural networks.

Test 1 Test 2 Test 3

Figure 14: Local BSDE approach with cylindrical NN: MSE at different
time steps.

Finally, we plot in Figure 15 the MSE error at different time steps when
using the global BSDE algorithm with cylindrical mean-field neural net-
works.

Test 1 Test 2 Test 3

Figure 15: Global BSDE approach with cylindrical NN: MSE at different
time steps.
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Remark 4.3. The use of a single network in global algorithms permits to
have a smooth time representation of the value function as shown on Figure
15.
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A Proofs of universal approximation theorems for
mean-field neural networks

A.1 Proof of Theorem 2.1

Let ε > 0 be given arbitrarily. Fix K a bounded rectangular domain in Rd,
and divide it intoK = K̄d bins: Bin(k), k = 1, . . . ,K, of center xk, and same
area size h = λd(K)/K, where λd is the Lebesgue measure on Rd. Denote
by diamk the diameter of Bin(k), and notice that diamk ≤ diam(K)/K̄,
where diam(K) is the diameter of K. Let V be a continuous function on
Rd×P2(Rd).

Step 1. For µ ∈ Dc(K) with density pµ, denote by µ̂K = LD(p
µ) the prob-

ability measure with bin density pµ in DK . Since µ, µ̂K are supported on
the compact set K, they lie in P1(Rd) the set of probability measures with
finite first moment. From the Kantorovich-Rubinstein dual representation
of the 1-Wasserstein distance, we have

W1(µ, µ̂
K) ≤ sup

ϕ

∫
K
ϕ(x)(pµ(x)− p̂µK(x))dx,

where p̂µK(x) =
∑K

k=1
pµ(xk)
NK

1x∈Bin(k), with NK =
∑K

k=1 p
µ(xk)h, and the

supremum is taken over all Lipschitz continuous functions ϕ on K with
Lipschitz constant bounded by 1, and where we can assume w.l.o.g. that
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ϕ(x0) = 0 for some fixed point x0 in K. We then have

W1(µ, µ̂
K) ≤ sup

ϕ

K∑
k=1

∫
Bin(k)

ϕ(x)
(
pµ(x)− pµ(xk)

NK

)
dx

≤ sup
ϕ

K∑
k=1

[ ∫
Bin(k)

ϕ(x)
(
pµ(x)− pµ(xk)

)
dx

+

∫
Bin(k)

ϕ(x)pµ(xk)
NK − 1

NK
dx

]
≤ diam(K)h

K∑
k=1

ωµ
K(diamk) + diam(K)|NK − 1|

≤ 2diam(K)λd(K)ωµ
K
(diam(K)

K
1
d

)
,

where we used in the third inequality the fact that |ϕ(x)| ≤ |x − x0| ≤
diam(K), for any x ∈ K, and |pµ(x) − pµ(xk)| ≤ ωµ

K(diamk) for any x ∈
Bin(k), and in the fourth inequality the fact that diamk ≤ diam(K)/K

1
d ,

Kh = λd(K), and the relation

∣∣1−Nk

∣∣ =
∣∣ K∑
k=1

∫
Bin(k)

[
pµ(x)− pµ(xk)

]
dx

∣∣∣ ≤ λd(K)ωµ
K
(diam(K)

K
1
d

)
.

By noting that W2(µ, µ̂
K) ≤

√
diam(K)W1(µ, µ̂K), this shows that

sup
µ∈Dω̄

c (K)
W2(µ, µ̂

K) → 0, as K → ∞. (A.1)

On the other hand, by Lemma 5.7 and Proposition 5.3 in [22], the set Dc(K)
is relatively compact in P2(Rd), and thus V is uniformly continuous on
K ×Dc(K). From (A.1), it follows that there exists K ∈ N∗, such that

|V (x, µ)− V (x, µ̂K)| ≤ ε

2
, ∀x ∈ K, µ ∈ Dω̄

c (K). (A.2)

Step 2. Denote by VK the function defined on Rd×DK by

VK(x,p) = V (x,LD(p)), (x,p) ∈ Rd×DK ,

where we recall that DK = {p = (pk)k∈J1,KK ∈ RK
+ :

∑K
k=1 pkh = 1}, and

LD(p) is the probability measure with bin density p ∈ DK . It is clear that
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when (pn)n converges to p in DK , then LD(p
n) converges weakly to LD(p),

and thus VK is continuous on Rd×DK . By the classical universal approx-
imation theorem for finite-dimensional functions (see [23]), there exists a
feedforward neural network Φ on Rd×DK such that

|VK(x,p)− Φ(x,p)| ≤ ε

2
, ∀x ∈ K, p ∈ DK . (A.3)

We conclude that for all x ∈ K, µ ∈ Dω̄
c (K),∣∣V (x, µ)− Φ(x,pµ)

∣∣ ≤ ∣∣V (x, µ)− V (x, µ̂K)
∣∣+ ∣∣VK(x,pµ)− Φ(x,pµ)

∣∣∣ ≤ ε.

by noting that V (., µ̂K) = VK(.,pµ), and using (A.2)-(A.3).

A.2 Proof of Theorem 2.2

Step 1: Approximation theorem on compact set. Let ε > 0 be given arbi-
trarily. Fix K a compact set of Rd, and let V be a continuous function on
Rd×P2(Rd). By the density of cylindrical polynomial function with respect
to mean-field functions, see Lemma 3.12 in [24], for all ε > 0, there exists k ∈
N∗, P a polynomial function from Rd×Rk into R, Q a polynomial function
from Rd into Rk s.t.∣∣V (x, µ)− P (x,< Q, µ >)

∣∣ ≤ ε

3
, ∀x ∈ K, µ ∈ P(K).

Now, by the uniform continuity of P on compact sets of Rd×Rk, and the
classical universal approximation theorem for finite-dimensional functions
applied to Q, there exists a feedforward neural network φ from Rd into Rk

such that∣∣P (x,< Q, µ >)− P (x,< φ, µ >)
∣∣ ≤ ε

3
, ∀x ∈ K, µ ∈ P(K),

by noting that one can find some compact set Y (depending on Q and K)
of Rk such that < Q,µ > and then < φ, µ > lie in Y for all µ ∈ K. Next,
we invoke again the classical universal approximation theorem for finite-
dimensional functions to get the existence of a feedforward neural network
Ψ on Rd×Rk such that∣∣P (x, y)−Ψ(x, y)

∣∣ ≤ ε

3
, ∀(x, y) ∈ K × Y.
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We conclude that for all x ∈ K, µ ∈ P(K),∣∣V (x, µ)−Ψ(x,< φ, µ >)
∣∣

≤
∣∣V (x, µ)− P (x,< Q, µ >)

∣∣+ ∣∣P (x,< Q, µ >)− P (x,< φ, µ >)
∣∣

+
∣∣P (x,< φ, µ >)−Ψ(x,< φ, µ >)

∣∣ ≤ ε.

Step 2: Approximation theorem in L2. Let ε > 0 be given arbitrarily, and ν
be a probability measure on P2(Rd). Given M > 0, we truncate the function
V by defining VM on Rd×P2(Rd) as

VM (x, µ) =

{
V (x, µ), if |V (x, µ)| ≤ M,

M V (x,µ)
|V (x,µ)| , if |V (x, µ)| > M,

so that |VM (x, µ)| ≤ M for all x ∈ Rd, µ ∈ P2(Rd). It is clear that VM

converges pointwise to V as M goes to infinity, and thus by the dominated
convergence theorem ∥V − VM∥2L2(ν) converges to zero. We can thus choose

M >
√
ε
4 so that

∥V − VM∥2L2(ν) =

∫
P2(Rd)

|V (., µ)− VM (., µ)|2µν(dµ) ≤ ε

8
. (A.4)

Next, we consider some compact set K of Rd such that ν(P2(Rd)\P(K))
≤ ε/(80M2), and we note that VM is continuous on Rd×P2(Rd). We can
then apply the universal approximation theorem in Step 1, to get the ex-
istence of a cylindrical mean-field neural network (Ψ̃ : Rd×Rk 7→ Rp, φ :
Rd 7→ Rk) s.t.

∣∣VM (x, µ)− Ψ̃(x,< φ, µ >)
∣∣ ≤ √

ε

4
, ∀x ∈ K, µ ∈ P(K). (A.5)

This implies in particular that∣∣Ψ̃(x,< φ, µ >)
∣∣ ≤ |VM (x, µ)|+

∣∣VM (x, µ)− Ψ̃(x,< φ, µ >)
∣∣

≤ M +

√
ε

4
< 2M, x ∈ K, ∀µ ∈ P(K). (A.6)

By the clipping lemma C.1 in [25], there exists a neural network γ : Rp 7→
Rp, such that {

|γ(y)− y| ≤
√
ε
4 , if |y| ≤ M +

√
ε
4 ,

|γ(y)| ≤ 2M, ∀y ∈ Rp .
(A.7)
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(Actually, when p = 1, one can simply take γ(y) = min[max[y,−2M ], 2M ]).
Define now the neural network Ψ : Rd×Rk → Rp by Ψ = γ ◦ Ψ̃. It is then
bounded from above by

|Ψ(x, z)| ≤ 2M, ∀(x, z) ∈ Rd×Rk,

and satisfies for all x ∈ K, µ ∈ P(K),∣∣VM (x, µ)−Ψ(x,< φ, µ >)
∣∣ ≤ ∣∣VM (x, µ)− Ψ̃(x,< φ, µ >)

∣∣
+

∣∣γ ◦ Ψ̃(x,< φ, µ >)− Ψ̃(x,< φ, µ >)
∣∣

≤
√
ε

4
+

√
ε

4
=

√
ε

2
,

by (A.5), (A.6), and (A.7). It follows that

C :=

∫
P2(Rd)

|VM (., µ)−Ψ(., < φ, µ >)
∣∣2
µ
ν(dµ)

≤
∫
P(K)

|VM (., µ)−Ψ(., < φ, µ >)
∣∣2
µ
ν(dµ)

+ 2

∫
P2(Rd)\P(K)

(|VM (., µ)|2µ + |Ψ(., < φ, µ >)|2µ)ν(dµ)

≤ ε

4
+ 2(M2 + 4M2)

ε

80M2
=

3ε

8
.

We conclude with (A.4) that

D :=

∫
P2(Rd)

|V (., µ)−Ψ(., < φ, µ >)
∣∣2
µ
ν(dµ)

≤ 2

∫
P2(Rd)

|V (., µ)− VM (., µ)|2µν(dµ)

+ 2

∫
P2(Rd)

|VM (., µ)−Ψ(., < φ, µ >)
∣∣2
µ
ν(dµ)

≤ 2
ε

8
+ 2

3ε

8
= ε.
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