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ABSTRACT. In this paper, we introduce various machine learning solvers for (coupled) forward-backward
systems of stochastic differential equations (FBSDEs) driven by a Brownian motion and a Poisson random mea-
sure. We provide a rigorous comparison of the different algorithms and demonstrate their effectiveness in various
applications, such as cases derived from pricing with jumps and mean-field games. In particular, we show the
efficiency of the deep-learning algorithms to solve a coupled multi-dimensional FBSDE system driven by a time-
inhomogeneous jump process with stochastic intensity, which describes the Nash equilibria for a specific mean-field
game (MFG) problem for which we also provide the complete theoretical resolution. More precisely, we develop
an extension of the MFG model for smart grids introduced in [Ala+23] to the case when the random jump times
correspond to the jump times of a doubly Poisson process. We first provide an existence result of an equilibrium
and derive its semi-explicit characterization in terms of a multi-dimensional FBSDE system in the linear-quadratic
setting. We then compare the MFG solution to the optimal strategy of a central planner and provide several
numerical illustrations using the deep-learning solvers presented in the first part of the paper.
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1 Introduction
This paper is devoted to the numerical resolution of a coupled system of forward-backward stochastic differential
equations (in short FBSDEs) with jumps of the form:

dXt = b(t,Xt, Yt)dt+ σ(t,Xt)dWt +
∫
Rd\{0} β(t,Xt− , e)J̃ (dt, de),

dYt = −f(t,Xt, Yt)dt+ ZtdWt +
∫
Rd\{0} Ut(e)J̃ (dt, de),

X0 = ξ, YT = g(XT ),

t ∈ [0, T ], (1)

where the functions b, σ, β, f, g, as well as the the initial condition ξ satisfy appropriate assumptions which ensure
the well-posedness of the system (1).
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This kind of equations are linked to a class of (deterministic) partial integro-differential equations, which are
non-local and take the following form:{

∂u
∂t

(t, x) + Lu(t, x) + f (t, x, u(t, x)) = 0, (t, x) ∈ [0, T )× Rd,

u(T, x) = g(x), x ∈ Rd,
(2)

where the second-order nonlocal operator L is defined as follows:

Lu(t, x) = ⟨b(t, x, u(t, x)), Dxu(t, x)⟩+
1

2
⟨D2

xxu(t, x)σ(t, x), σ(t, x)⟩

+

∫
Rd\{0}

(u(t, x+ β(t, x, e))− u(t, x)− ⟨Dxu(t, x), β(t, x, e)⟩) ν(de).

Indeed, it is known that, under mild assumptions, Yt = u(t,Xt), where u corresponds to the viscosity solution of
(2). We refer to [PP90] for a rigorous connection between PDEs and FBSDEs in a Markovian setting in the case
of decoupled system of FBSDEs and Brownian filtration, further extended to the case with jumps in [BBP97] and
to the case of coupled FBSDEs with jumps in [Zhe99; Zhe03].

Literature review. The resolution of partial differential equations (in short PDEs) by standard techniques as
finite difference methods becomes unfeasible beyond dimension 3. An alternative method to solve nonlinear PDEs
in dimension above 4 is based on the backward stochastic differential equation (in short BSDE) representation
of semilinear PDEs: using the time discretization scheme proposed in [BN04], some effective algorithms based
on regression have been developed in [GLW05], [LGW06] and has led to a lot of research as shown for example
in [GT16]. This regression technique uses some basis functions that can be either some global polynomials as
in [LS01] or some local polynomials as proposed in [BW12]: therefore this methodology still faces the curse of
dimensionality and can only solve some problems in dimension below 7 or 8.

Over the past few years, machine learning methods have shown exceptional promise to solve high-dimensional
nonlinear PDEs (see e.g. [DO16; HJW17; CMW19]). Machine learning methods have emerged since the pioneering
papers by [HJW17] and [SS18], and have shown their efficiency for solving high-dimensional nonlinear PDEs by
means of neural networks approximation. [SS18] proposes the so-called Deep Galerkin Method which uses the
automatic numerical differentiation of the solution to solve the PDE on a finite domain. The authors prove the
convergence of their method, but without information on the rate of convergence. An alternative methodology to
solve PDEs in high-dimension is based on the BSDE representation of the solution of the PDE and deep learning
approximations (see e.g. [HJW17; BEJ19; HL20; Ji+20; GPW21]). Two main classes of algorithms have been
developed. The first class is based on the global approach, which was initially proposed in [HJW17] to tackle
semi-linear PDEs. It consists in the training of as many neural networks as time steps by solving in a forward way
the backward representation of the PDE solution. The Zt process is represented by a different neural network
Zθ

i with parameters θ at each date ti. Instead of solving the BSDE starting from the terminal condition, the
method writes it down as a forward equation and an optimization problem aiming to reach the terminal condition
g(XT ) by minimizing a mean squared error E[|YT − g(XT )|2]. It allows to solve PDEs in high dimension and a
convergence study of Deep BSDE is conducted in [HL20]. In [BEJ19], this approach has been extended to fully
nonlinear equations. Furthermore, [CMW19] shows that using a single network across all dates is more efficient,
and additionally introduces a fixed-point algorithm to resolve semi-linear PDEs.

The second class of algorithms is based on the local approach, first proposed in [HPW20], which consists in
solving local optimization problems at each time step in a backward manner. Unlike the global method, the
local method involves successive optimization problems of moderate dimension. At each time step, local neural
networks are trained, thus it results in as many learning problems as time steps with two neural networks (in
the setting of a Brownian filtration). This process is further simplified by utilizing strategies inspired from the
standard backward resolution of BSDEs with conditional expectations and regression techniques from [BN04;
GLW05; LGW06; BD07]. The resulting solver was named the Deep Backward Dynamic Programming (DBDP)
solver. Furthermore, the methodology is then expanded to handle fully nonlinear PDEs in [PWG21] by merging
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it with ideas proposed in [Bec+19]. Additionally, extensive tests performed in [HPW20] indicate that the local
method yields superior results compared to the global one, such as [PWG21] for fully nonlinear dynamics. A more
robust machine learning solver, called deep backward multi-step scheme (MDBDP), was introduced in [GPW21]
that builds on the Linear Regression Multi step-forward Dynamic Programming (MDP) scheme for discrete
BSDEs introduced in [GT16]. According to the authors, the multi-step scheme yields the best performance when
compared to other algorithms in the local approach.

Machine learning techniques to solve coupled FBSDEs within a Brownian filtration are explored in [HL20]
and [Ji+20]. The resulting algorithms are all rooted in the global approach first introduced in [HJW17].

The resolution of partial integro-differential equations (in short PIDEs) has been much less regarded in the
literature, even in the decoupled case, the main approaches to solve them being based on the finite-difference
methods (see e.g. [VC05]) and the probabilistic representation of the solution in terms of a FBSDE system, a
discrete time approximation of the associated decoupled forward-backward SDE with jumps being proposed in
[BE08]. As it can be noticed above, the literature on machine learning solvers for standard PDEs is quite rich
by now. In contrast, the case of integro-differential PDEs has received very little attention. Several algorithms
have been recently proposed in: [BCN22; FK22; GPP22; LG23]). In these papers, the deep-learning solvers are
based on the approximation of the solution of the PIDE and, for the gradient, either another neural network is
employed [BCN22; FK22; LG23], or the Automatic differentiation in TensorFlow is applied [GPP22].

Contributions. The aim of our paper is to develop deep-learning solvers for the (coupled) FBSDE
system (1) and a specific multi-dimensional coupled FBSDE system driven by a time-inhomogeneous
Poisson process with stochastic intensity which is shown to solve an extended version of the MFG model
in [Ala+23]. Our main contributions are the following:

• In the first part of the paper, we introduce five different algorithms to solve the system (1). Fur-
thermore, we propose two different variants of the DBDP and MDBDP solvers to handle the jumps
part. We emphasize that most of the literature on deep learning solvers for FBSDEs with jumps
does not treat the fully coupled case and that the algorithms developed in this paper are new also
in the context of decoupled FBSDEs with jumps.

• We provide a rigorous numerical comparison between all methods in terms of computation time,
stability and convergence for different pricing models, which require solving a decoupled FBSDE
system. To assess the performance of the algorithms for coupled FBSDEs, we purposefully introduce
an equivalent coupled FBSDE system in the context of pricing which uses the explicit form of the
analytical solution already known. This allows to benchmark the deep learning solvers in different
settings.

• In the second part of the paper, we develop an extension of the MFG model introduced in [Ala+23]
to the case when the random jump times correspond to the jumps times of a doubly Poisson process.
We first provide an existence result of an equilibria by using the stochastic maximum principle and
derive its semi-explicit characterization in terms of a multi-dimensional coupled FBSDE system
driven by a Cox process in the linear-quadratic setting. We then compare the MFG solution to the
optimal strategy of a central planner.

• We build a numerical algorithm based on the deep-learning solvers presented in the first part of
the paper to solve the multi-dimensional coupled FBSDE systems driven by a Cox process, which
characterize the Nash equilibrium for the MFG problem and the mean-field optimal control of the
central planner. In particular, we numerically demonstrate the robustness of our deep learning-based
numerical methods in handling time-inhomogeneous jump processes with stochastic intensity.
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The paper is organized as follows: in Section 2.1, we give some Preliminaries on existence and uniqueness
results for (coupled) FBSDEs with jumps and on neural networks. In Section 2.2, we introduce the five
different deep learning solvers for (coupled) FBSDEs with jumps. In Section 2.3, we perform several
numerical tests for examples derived from option pricing and provide a detailed analysis and comparison
between the different algorithms. In Section 3.1, we present the mean-field game model. In Section 3.2, we
characterize the mean-field equilibria, and in Section 2.3 we study the related problem of a central planner
and characterize the mean-field optimal control (MFC). Section 3.4. is devoted to the implementation of
the Deep learning solvers for the multi-dimensional fully coupled FBSDE system characterizing the MFG
equilibria (and the MFC optimal control), as well as to the comparison between the different algorithms.
Finally, in Section 3.5 we provide an interpretation of the numerical results from an economic perspective.

2 General Deep Learning algorithms for coupled FBSDEs with
jumps

This section is devoted to the presentation of different deep learning algorithms for coupled FBSDEs with
jumps and of their performance on several numerical examples. We shall start with some preliminaries.

2.1 Preliminaries
In this subsection, we first introduce some notation, as well as some existence and uniqueness results

related to coupled FBSDEs with jumps. We then focus on neural networks which are used to solve
numerically the FBSDE system.

Coupled FBSDEs with jumps. Fix a time horizon T < ∞ and let (Ω,F,P) be a complete probability
space. Let Wt be a d-dimensional Brownian motion and J (dt, de) an independent Poisson random
measure with compensator ν(de)dt such that ν(de) is a σ-finite measure on Rd \ {0}, equipped with its
Borel field B(Rd \ {0}). Let J̃ be the compensated jump measure, i.e. J̃ (dt, de) := J (dt, de)− ν(de)dt.
Let F = (Ft)t∈[0,T ] be the (completed) filtration associated with W and J . Assume that ν satisfies the
condition ∫

Rd\{0}
(1 ∧ |e|2)ν(de) <∞.

We now introduce the following spaces, using the usual inner product and the Euclidean norm in Rd,Rk

and Rk×d, respectively.

• L2(G,Rd) is the set of Rd-valued random variables ξ which are G-measurable such that E
[
|ξ|2
]
<

+∞, where G is a sub-σ-algebra of FT .

• S2 is the set of F-adapted càdlàg Rk-valued processes Y such that E
[
sup0≤t≤T |Yt|2

]
< +∞.

• H2 is the set of F-predictable Rk×d-valued processes Z such that ∥Z∥2 := E[
∫ T

0
|Zt|2dt] < +∞.

• H2
ν is the set of P ⊗ B(Rd \ {0})-measurable maps U taking values in Rk such that ∥U∥2ν :=

E[
∫ T

0

∫
Rd\{0} |Ut(e)|2ν(de)dt] < +∞, where P denotes the σ-field of F-predictable subsets of Ω ×

[0, T ].
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We now introduce the following coupled FBSDE system with jumps:
dXt = b(t,Xt, Yt)dt+ σ(t,Xt)dWt +

∫
Rd\{0} β(t,Xt− , e)J̃ (dt, de),

dYt = −f(t,Xt, Yt)dt+ ZtdWt +
∫
Rd\{0} Ut(e)J̃ (dt, de),

X0 = ξ, YT = g(XT ),

t ∈ [0, T ], (3)

where the functions b : [0, T ] × Rd × Rk → Rd, σ : [0, T ] × Rd → Rd, β : [0, T ] × Rd × Rd \ {0} → Rd,
f : [0, T ] × Rd × Rk → Rk and g : Rd → Rk are measurable maps which have to satisfy the following
assumptions ensuring the well-posedness of the FBSDE system.

Assumption 2.1. (i) b and f are uniformly Lipschitz with respect to (x, y), and there exists ρ : Rd \
{0} → R+ with

∫
Rd\{0} ρ

2(e)ν(de) < +∞ such that for any t ∈ [0, T ], x, x̄ ∈ Rd, and e ∈ Rd \ {0},
we have:

|β(t, x, e)− β(t, x̄, e)| ≤ ρ(e)|x− x̄|.

(ii) σ and g are uniformly Lipschitz with respect to x ∈ Rd.

(iii) Furthermore,∫ T

0

|b(s, 0, 0)|2ds+
∫ T

0

|f(s, 0, 0)|2ds+
∫ T

0

∫
Rd\{0}

|β(s, 0, e)|2ν(de)ds <∞.

Given an k × d full-rank matrix G and GT being the transposed matrix of G, we define:

π =

(
x
y

)
in Rd × Rk, A(t, π) =

(
−GT f
Gb

)
(t, π) in Rd × Rk.

For any π = (x, y), and π̄ = (x̄, ȳ), let us denote x̃ = x− x̄, and ỹ = y − ȳ. We also assume the following
monotonicity conditions hold .

Assumption 2.2. There exists γ1, γ2, µ1 non negative constants with γ1+γ2 > 0, γ2+µ1 > 0, such that

(i) ⟨A(t, π)−A(t, π̄), π − π̄⟩ ≤ −γ1|Gx̃|2 − γ2|GT ỹ|2.

(ii) ⟨g(x)− g(x̄), G(x− x̄)⟩ ≥ µ1|Gx̃|2,

Moreover, we have γ1 > 0, µ1 > 0 (respectively, γ2 > 0) when k > d (respectively, k < d).

Assumption 2.3. Assume that b, f , σ and β are uniformly 1
2 -Hölder continuous in time.

Assumption 2.4. Assume that k = 1 and for any t ∈ [0, T ], (x, y) ∈ Rd+1, we have:

|b(t, x, y)|+|f(t, x, y)|+|σ(t, x)|+|g(x)|≤ K(1 + |x|+|y|),

and there exists ρ : Rd \ {0} → R+ with
∫
Rd\{0} ρ

2(e)ν(de) < +∞ such that for any t ∈ [0, T ], x ∈ Rd,
and e ∈ Rd \ {0}, we have |β(t, x, e)|≤ ρ(e)(1 + |x|).

We now give two well-posedness results for the FBSDE (3), as well as a decoupling field representation
of the Y -component of the system, which follow from [Zhe99], [LW14], and [BE08].
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Theorem 2.1 (Well-posedness for arbitrary time horizon). Under the Assumptions 2.1 and 2.2, for any
ξ ∈ L2(F0,Rd), FBSDE (3) has a unique solution (X,Y, Z, U) ∈ S2 × S2 ×H2 ×H2

ν .

We give here an alternative existence and uniqueness result for a fully-coupled FBSDE in small time.

Theorem 2.2 (Well-posedness in small time). Under the Assumptions 2.1 and 2.4, there exists a constant
δ0 > 0 only depending on ρ, K, and the Lipschitz constants of b, σ, and f such that for every 0 ≤ δ ≤ δ0,
and ξ ∈ L2(Ft,Rd), FBSDE (3) has a unique solution (Xs, Ys, Zs, Us)s∈[t,t+δ] on the time interval [t, t+δ].

Let us introduce the decoupling field:

u(t, x) = Y t,x
s |s=t, (t, x) ∈ [0, T ]× Rd,

where Y t,x is the solution of the FBSDE (3) with the initial condition Xt = x. Using the Markov property
of the forward component X of the system (3) and the continuity of the function u with respect to x, it
is shown in [LW14] that, under the above assumptions, for any (t, ξ) ∈ [0, T ]× L2(Ft,Rd), we have

Y t,ξ
s = u(s,Xs), t ≤ s ≤ T, P− a.s. (4)

where X is the solution of the SDE with initial state ξ at time t and Y t,ξ the associated backward
component of the FBSDE system (3). Furthermore, under the given assumptions on the coefficients, u
is uniformly Lipschitz, and has linear growth with respect to x ∈ Rd. Finally, by the assumption (2.3),
we recover the 1

2 -Hölder continuity of the decoupling field u with respect to time which is essential for
the discrete approximation discussed later. We also have the following representation for the component
U of the solution: for all (t, e) ∈ [0, T ]× Rd \ {0},

Ut(e) = u(t,Xt− + β(t,Xt− , e))− u(t,Xt−), P− a.s.

The second part of the preliminaries concentrates on a brief introduction to neural networks.

Neural networks. We consider a feedforward neural network, denoted by Φθ, which approximates the
processes of interest. Let d0 be the input dimension, and d1 be the output dimension. We fix an integer
L ≥ 2 to represent the total number of layers, including the input and output layers. We define m to be
the number of neurons on each hidden layer, and for simplicity, we set m0 = d0 and mL−1 = d1.

The feedforward neural network is defined as the composition of affine transformations and nonlinear
activation functions. Specifically, we have:

Φθ = AL ◦ σa ◦AL−1 ◦ · · · ◦ σa ◦A1,

where σa is a component-wise activation function, A1 is a mapping from Rd0 to Rm, AL is a mapping
from Rm to Rd1 and for l = 2 to L− 1, Al is a mapping from Rm to Rm.

We represent each affine function Al as Al(x) = Wlx+ βl, where Wl is a matrix of weights and βl is
a vector of biases.

The neural network has parameters θ, which include all the weights and biases of the affine functions.
The total number of parameters is NL

d0,m,d1
= (d0 +1)m+ (L− 2)m(1 +m) + (m+1)d1, where m is the

number of neurons on each hidden layer.
We denote by NN∞ the set of such functions Φθ. To restrict the number of neurons per layer, we

introduce NNp the set of neural networks with at most p ∈ N neurons per hidden layer and L−1 hidden
layers. We recall here the two following approximation theorems.
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Theorem 2.3 (Universal Approximation Theorem). Assume that the function σa is non constant and
bounded. Let µ denote a probability measure on Rd, then for any L ≥ 2, NN∞ is dense in L2(Rd, µ).

Theorem 2.4 (Universal Approximation Theorem). Assume that the function σa is non constant,
bounded and a continuous function, then when L = 2, NN∞ is dense in C(Rd) for the topology of
the uniform convergence on compact sets.

2.2 Deep Learning algorithms
We introduce here five deep learning algorithms to solve the coupled system of forward-backward

SDEs with jumps (1) in the case of jumps with finite activity (i.e. λ =
∫
Rd\{0} ν(de) <∞).

Let us first define the Lévy process J associated with the Poisson random measure J , which is given,
for 0 ≤ t ≤ T , by

Jt :=

∫ t

0

∫
Rd\{0}

eJ (ds, de). (5)

and ∆Jt := Jt − Jt− , for all t > 0. We also introduce the following Poisson process, denoted by Nt:

Nt :=

∫ t

0

∫
Rd\{0}

J (ds, de).

The Poisson Process (Nt) has the intensity λt.
By defining the map b̄(t, x, y) := b(t, x, y) −

∫
Rd\{0} β(t, x, e)ν(de), we observe that the FBSDE (3)

system can be written as:
dXt = b̄(t,Xt, Yt)dt+ σ(t,Xt)dWt +

∫
Rd\{0} β(t,Xt− , e)J (dt, de),

dYt = −f(t,Xt, Yt)dt+ ZtdWt +
∫
Rd\{0} Ut(e)J̃ (dt, de),

X0 = ξ, YT = g(XT ).

t ∈ [0, T ], (6)

Remark 1. The numerical approximation of the compensator of the jump part of the forward component
in the drift b̄ can be done through numerous methods. For example, explicit integration with respect to
the intensity measure, Monte Carlo estimation, or the methods used in [VC05].

By using (4), the FBSDE system (6) reads as follows:{
Xt = ξ +

∫ t

0
b̄(s,Xs, u(s,Xs))ds+

∫ t

0
σ(s,Xs)dWs +

∫ t

0

∫
Rd\{0} β(s,Xs− , e)J (ds, de),

u(t,Xt) = g(XT )−
∫ T

t
f(s,Xs, u(s,Xs))ds+

∫ T

t
ZsdWs +

∫ T

t

∫
Rd\{0} Us(e)J̃ (ds, de).

t ∈ [0, T ]. (7)

Discrete-time approximation. Let us consider a uniform time grid π := {t0, t1, ..., tM} where ti :=
i TM for i ∈ {0, 1, ...,M} and ∆ti := ti+1 − ti represents the constant time step size. We also define the
Brownian increment ∆Wi as ∆Wi :=Wti+1 −Wti and the Poisson increment ∆Ni := Nti+1 −Nti , which
follows a Poisson distribution with mean λ∆ti. Finally, for a fixed i ∈ {0, 1, . . . ,M − 1}, denote by
(∆J i

l )l∈[1,∆Ni] the lth jump of the process (Jt) given by (5) which occurs on the time interval ]ti, ti+1].
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To give the intuition about the approximation of the backward SDE of the system (7) and, in particular,
about the treatment of the jump part, we first introduce the following continuous-time process (X̄π

t )t∈[0,T ]:

X̄π
t := Xti +

∫ t

ti

∫
Rd\{0}

β(ti, X̄
π
ti , e)J (ds, de), ∀t ∈ [ti, ti+1[,∀i ∈ [|0,M − 1|],

and the process (Ūπ
t ) which is defined as follows

Ūπ
t (e) := u(ti, X̄

π
t− + β(ti, X̄

π
ti , e))− u(ti, X̄

π
t−), ∀t ∈ [ti, ti+1[,∀i ∈ [|0,M − 1|].

We can observe that, for a number of time steps M sufficiently large, we have the following approximation:

u(ti, Xti) ≈ u(ti+1, Xti+1
) + f(ti, Xti , u(ti, Xti))∆ti − Z̄π

i ∆Wi −
∫ ti+1

ti

∫
Rd\{0}

Ūπ
s (e)J̃ (ds, de),

with Z̄π
i := 1

∆ti
E[
∫ ti+1

ti
Zsds|Fti ]. Note that the integral of (Ūπ

t ) with respect to the Poisson measure J
admits the representation:∫ ti+1

ti

∫
Rd\{0}

Ūπ
s (e)J (ds, de) =

∫ ti+1

ti

∫
Rd\{0}

u(ti, X̄
π
s− + β(ti, X̄

π
ti , e))− u(ti, X̄

π
s−)J (ds, de)

(by definition of X̄π) =
∆Ni∑
k=1

u(ti, Xti +

k∑
l=1

β(ti, Xti ,∆J
i
l ))− u(ti, Xti +

k−1∑
l=1

β(ti, Xti ,∆J
i
l )),

= u(ti, Xti +

∆Ni∑
l=1

β(ti, Xti ,∆J
i
l ))− u(ti, Xti).

By using the Euler scheme to approximate the solution Xt of the SDE, we are led to the following discrete
time approximation of the solution of the FBSDE system (6):

Xπ
i+1 = Xπ

i + b̄(ti, X
π
i , u(ti, X

π
i ))∆ti + σ(ti, X

π
i )∆Wi +

∆Ni∑
l=1

β(ti, X
π
i ,∆J

i
l ),

u(ti, X
π
i ) ≈ u(ti+1, X

π
i+1) + f(ti, X

π
i , u(ti, X

π
i ))∆ti − Zπ

i ∆Wi −

(
u(ti, X

π
i +

∆Ni∑
l=1

β(ti, X
π
i ,∆J

i
l ))− u(ti, X

π
i )

)

+E

[
u(ti, X

π
i +

∆Ni∑
l=1

β(ti, X
π
i ,∆J

i
l ))− u(ti, X

π
i )
∣∣∣Fti

]
,

Zπ
i = E

[
u(ti+1, X

π
i+1)

∆Wi

∆ti
|Fti

]
,

Xπ
0 = ξ, u(tM , X

π
M ) = g(Xπ

M ),

i = 0, · · · ,M − 1.

(8)

Remark 2. • The approximation proposed here for the jumps part for the backward component is
different from the one proposed in [GPP22] and is particularly well-suited for the deep learning
framework. In this approach, the neural networks deal with the sum of the jumps rather than
handling each jump individually which can be problematic for large intensities given a small number
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of time steps. The numerical tests that we have conducted show the robustness of this approximation.
1

• To handle the case when the Poisson increment ∆N equals 0, we adopt the convention
0∑

l=1

ϕl := 0,

where (ϕ)l represents a sequence of random variables.

From the discrete-time FBSDE to neural networks. We denote by Uθ the network function
approximating the decoupling field u, Zθ the network function approximating the process Z, and Wθ the
network function approximating the function t, x, y → u(t, x + y) − u(t, x). We present two families of
algorithms : one is based on the representation (8) (below denoted by first class of algorithms) and the
second one relies on the regression methods (denoted by second class of algorithms).

2.2.1 First class of deep-learning algorithms.

In this part, we introduce the deep-learning algorithms based on the representation (8) (with possibly
two variants depending on the algorithm).

1. Global solver. This algorithm extends to the case of jumps and fully coupled setting the Deep BSDE
solver developed in [HJW17], where each neural network takes t (i.e. time) as input (see [CMW19]). In
our setting, we use three networks: Yθ to approximates the initial condition of the backward component,
Zθ to approximate the control Z and Wθ to approximate the jump part in equation (8) leading to

Y π
i+1 ≈ Y π

i − f(ti, X
π
i , Y

π
i )∆ti + Zθ(ti, X

π
i )∆Wi +Wθ(ti, X

π
i ,

∆Ni∑
l=1

β̃i(∆J
i
l ))− E

[
Wθ(ti, X

π
i ,

∆Ni∑
l=1

β̃i(∆J
i
l ))
∣∣Fti

]
,

where β̃i(∆J i
l ) = β(ti, X

π
i ,∆J

i
l ). Notice that the network Wθ has to depend on t, Xπ, and

∑
s β̃s(∆Js).

Observe that we have the following result to compute the conditional expectation by means of Monte
Carlo on each trajectory of the batch:

E

[
Wθ(ti, X

π
i ,

∆Ni∑
l=1

β̃i(∆J
i
l ))
∣∣Fti

]
= Θ(ti, X

π
i ),

where Θ(t, x) = E

[
Wθ(t, x,

∆Ni∑
l=1

β(t, x,∆J i
l ))

]
, ∀(t, x) ∈ [0, T ]× Rd.

Thus, we choose small batch sizes during the gradient descent in order to estimate the compensator with
a large number of Monte Carlo simulations for each sample of the batch.

Let θ = (θ0, θ1, θ2), where θ0 ∈ RNL
d,m,k are the parameters of the network function Yθ0 , θ1 ∈

RNL
d+1,m,kd , are the parameters of the network function Zθ1 , θ2 ∈ RNL

2d+1,m,k are the parameters of
the network function Wθ2 . This method consists in training the neural networks by solving in a forward
way the backward representation of the solution, i.e. instead of solving the BSDE starting from the
terminal condition, one estimates Y0 with Yθ0(ξ) and solves the forward optimization problem with the
aim of minimizing E

[
|YT − g(XT )|2

]
. The Global solver is detailed in Algorithm 1.

1The full convergence of the algorithms proposed in this paper will be provided in an upcoming paper.
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Algorithm 1: Global solver
1 for m = 0, . . . ,K do
2 ∀j ∈ [|1, B|] sample ξj from the law of ξ, and set Xj

0(θ) = ξj , Y
j
0 (θ) = Yθ0(ξj) ;

3 for i = 0, . . . ,M − 1 do
4 for j = 0, . . . , B do
5 Sample ∆W j

i from a Gaussian vector, sample ∆N j
i from a Poisson distribution

P (λ∆ti) and sample each element of the jumps sequence (∆J i,j
l )l=1,··· ,∆Nj

i
from the

distribution ν(de)
λ 1Rd\{0}.

Xj
i+1(θ) =X

j
i (θ) + b̄(ti, X

j
i (θ), Y

j
i (θ))∆ti + σ(ti, X

j
i (θ))∆W

j
i +

∆Nj
i∑

l=1

β(ti, X
j
i (θ),∆J

i,j
l )

6

7 end
8 for k = 0, . . . , A do
9 Sample ∆N̄k

i from a Poisson distribution P (λ∆ti) and sample each element of the
jumps sequence (∆J̄ i,k

l )l=1,··· ,∆N̄k
i

from the distribution ν(de)
λ 1Rd\{0}.

10 end
11 for j = 0, . . . , B do
12

Y j
i+1(θ) =Y

j
i (θ)− f(ti, X

j
i (θ), Y

j
i (θ))∆ti + Zθ1(ti, X

j
i (θ))∆W

j
i

+Wθ2(ti, X
j
i (θ),

∆Nj
i∑

l=1

β̃j
i (∆J

i,j
l ))− 1

A

A∑
k=1

Wθ2(ti, X
j
i (θ),

∆N̄k
i∑

l=1

β̃j
i (∆J̄

i,k
l ))

 ,

13 end
14 end
15 ϕ(θ) = 1

B

∑B
j=1

∣∣Y j
M (θ)− g(Xj

M (θ))
∣∣2.

16 θ = θ − rm∇ϕ(θ)
17 end

10



2. SumLocal solver. The second algorithm we develop extends the one introduced in [HPW20].
The setting with jumps is more involved and we propose two variants of this algorithm to deal with the
jumps part of the backward component. The Y component is approximated by a neural network Uθ and
the two variants of the algorithm can be written as follows:

(i) We can directly use the system (8) giving the SumLocal1 solver:

Uθ(ti+1, X
π
i+1) ≈ Uθ(ti, X

π
i )− f(ti, X

π
i ,Uθ(ti, X

π
i ))∆ti + Zθ(ti, X

π
i )∆Wi+

Uθ(ti, X
π
i +

∆Ni∑
p=1

β(ti, X
π
i ,∆J

i
p))− E

[
Uθ(ti, X

π
i +

∆Ni∑
p=1

β(ti, X
π
i ,∆J

i
p))
∣∣∣Fti

]
.

(ii) Or, as in the Global solver, we can use a network Wθ for the jump part, which gives the SumLocal2
solver :

Uθ(ti+1, X
π
i+1) ≈ Uθ(ti, X

π
i )− f(ti, X

π
i ,Uθ(ti, X

π
i ))∆ti + Zθ(ti, X

π
i )∆Wi+

Wθ(ti, X
π
i ,

∆Ni∑
l=1

β̃i(∆J
i
l ))− E

[
Wθ(ti, X

π
i ,

∆Ni∑
l=1

β̃i(∆J
i
l ))
∣∣∣Fti

]
.

Let θ = (θ0, θ1, θ2) where θ0 ∈ RNL
d+1,m,kd are the parameters of the network function Zθ0 , θ1 ∈ RNL

1+2d,m,k

are the parameters of the network function Wθ1 , and θ2 ∈ RNL
d+1,m,k are the parameters of the network

function Uθ2 . We detail the SumLocal2 solver in Algorithm 2.

3. SumMultiStep solver. The third algorithm represents a multistep version of the previous one,
and extends the solver proposed in [GPW21] to the jumps setting. It also has two versions, both based
on the representation (8), for SumMultiStep1 we approximate the jumps part in the backward SDE as in
(i) above and for SumMultiStep2 we approximate the jumps part in the backward SDE as in (ii) above.
Let θ = (θ0, θ1, θ2) where θ0 ∈ RNL

d+1,m,kd are the parameters of the network function Zθ0 , θ1 ∈ RNL
1+2d,m,k

are the parameters of the network function Wθ1 , and θ2 ∈ RNL
d+1,m,k are the parameters of the network

function Uθ2 . The SumMultiStep2 solver is described in detail in Algorithm 3.
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Algorithm 2: SumLocal solver (SumLocal2 variant).
1 for m = 0, . . . ,K do
2 Set ∀j ∈ [|1, B|] Xj

0(θ) = x0 ;
3 for i = 0, . . . ,M − 1 do
4 for j = 1, . . . , B do
5 Sample ∆W j

i from a Gaussian vector, sample ∆N j
i from a Poisson distribution

P (λ∆ti) and sample each element of the jumps sequence (∆J i,j
l )l=1,··· ,∆Nj

i
from the

distribution ν(de)
λ 1Rd\{0}.

Xj
i+1(θ) =X

j
i (θ) + b̄(ti, X

j
i (θ),U

θ2(ti, X
j
i (θ)))∆ti + σ(ti, X

j
i (θ))∆W

j
i

+

∆Nj
i∑

l=1

β(ti, X
j
i (θ),∆J

i,j
l ).

6 end
7 for k = 0, . . . , A do
8 Sample ∆N̄k

i from a Poisson distribution P (λ∆ti) and sample each element of the
jumps sequence (∆J̄ i,k

l )l=1,··· ,∆N̄k
i

from the distribution ν(de)
λ 1Rd\{0}.

9 end
10 end
11

• ϕlocal(θ) =

M−2∑
i=0

(
1

B

B∑
j=1

∣∣∣Uθ2(ti+1, X
j
i+1(θ))− Uθ2(ti, X

j
i (θ)) + f(ti, X

j
i (θ),U

θ2(ti, X
j
i (θ)))∆ti

−Zθ0(ti, X
j
i (θ))∆W j

i −Wθ1(ti, X
j
i (θ),

∆N
j
i∑

l=1

β̃j
i (∆J i,j

l )) +
1

A

A∑
k=1

Wθ2(ti, X
j
i (θ),

∆N̄k
i∑

l=1

β̃j
i (∆J̄ i,k

l ))

 ∣∣∣2


• ϕfinal(θ) =
1

B

B∑
j=1

∣∣∣∣g(Xj
M (θ))− Uθ2(tM−1, X

j
M−1(θ))+

f(tM−1, X
j
M−1(θ),U

θ2(tM−1, X
j
M−1(θ)))∆tM−1 −Zθ0(tM−1, X

j
M−1(θ))∆WM−1

−Wθ1(tM−1, X
j
M−1(θ),

∆N
j
M−1∑

l=1

β̃i(∆JM−1,j
l )) +

1

A

A∑
k=1

Wθ2(tM−1, X
j
M−1(θ),

∆N̄k
M−1∑

l=1

β̃j
M−1(∆J̄M−1,k

l ))

 ∣∣∣∣2
12

ϕ(θ) = ϕlocal(θ) + ϕfinal(θ)
13 θ = θ − rm∇ϕ(θ)
14 end
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Algorithm 3: The SumMultiStep solver (SumMultiStep2 variant).
1 for m = 0, . . . ,K do
2 Set ∀j ∈ [|1, B|] Xj

0(θ) = x0 ;
3 for i = 0, . . . ,M − 1 do
4 for j = 1, . . . , B do
5

ψj
i (θ) = Uθ2(ti, X

j
i (θ))

Sample ∆W j
i from a Gaussian vector, sample ∆N j

i from a Poisson distribution
P (λ∆ti) and sample each element of the jumps sequence (∆J i,j

l )l=1,··· ,∆Nj
i

from the

distribution ν(de)
λ 1Rd\{0}.

6 end
7 for s = 0, . . . , A do
8 Sample ∆N̄s

i from a Poisson distribution P (λ∆ti) and sample each element of the
jumps sequence (∆J̄ i,s

l )l=1,··· ,∆N̄s
i

from the distribution ν(de)
λ 1Rd\{0}.

9 end
10 for k = 0, . . . , i do
11 for j = 1, . . . , B do
12

ψj
k(θ) = ψj

k(θ)− f(ti, X
j
i (θ),U

θ2(ti, X
j
i (θ)))∆ti + Zθ0(ti, X

j
i (θ))∆W

j
i

+Wθ1(ti, X
j
i (θ),

∆Nj
i∑

l=1

β̃i(∆J
i,j
l ))− 1

A

A∑
s=1

Wθ2(ti, X
j
i (θ),

∆N̄s
i∑

l=1

β̃j
i (∆J̄

i,s
l ))

 .
13 end
14 end
15 for j = 1, . . . , B do
16

Xj
i+1(θ) = Xj

i (θ) + b̄(ti, X
j
i (θ),U

θ2(ti, X
j
i (θ)))∆ti + σ(ti, X

j
i (θ))∆W

j
i

+

∆Nj
i∑

l=1

β(ti, X
j
i (θ),∆J

i,j
l ).

17 end
18 end

19 ϕ(θ) =
∑M−1

i=0

(
1
B

∑B
j=1

∣∣ψj
i (θ)− g(Xj

M (θ))
∣∣2)

20 θ = θ − rm∇ϕ(θ)
21 end
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2.2.2 Second class of deep-learning algorithms.

In this second part, we introduce the deep-learning algorithms based on the regression methods.
The following algorithms exploit the fact the driver does not depend on Z and U , thus use a single
network Uθ to approximate the Y component of the solution. By conditionning the backward component
in (8), we obtain

Uθ(ti, X
π
i ) ≈ E

[
Uθ(ti+1, X

π
i+1) + f(ti, X

π
i ,Uθ(ti, X

π
i ))∆ti|Fti

]
.

1. SumLocalReg solver. The first algorithm based on the regression methods is the SumLocalReg
solver, which is a neural network version of the algorithms developed in [GLW05], [LGW06]. It is
described in detail in Algorithm 4.
Algorithm 4: The SumLocalReg solver.
1 for m = 0, . . . ,K do
2 Set ∀j ∈ [|1, B|] Xj

0(θ) = x0 ;
3 for i = 0, . . . ,M − 1 do
4 for j = 1, . . . , B do
5 Sample ∆W j

i from a Gaussian vector, sample ∆N j
i from a Poisson distribution

P (λ∆ti) and sample each element of the jumps sequence (∆J i,j
l )l=1,··· ,∆Nj

i
from the

distribution ν(de)
λ 1Rd\{0}.

Xj
i+1(θ) =X

j
i (θ) + b̄(ti, X

j
i (θ),U

θ(ti, X
j
i (θ)))∆ti + σ(ti, X

j
i (θ))∆W

j
i

+

∆Nj
i∑

l=1

β(ti, X
j
i (θ),∆J

i,j
l ).

6 end
7 end
8

ϕlocal(θ) =

M−2∑
i=0

 1

B

B∑
j=1

∣∣∣Uθ(ti+1, X
j
i+1(θ))− Uθ(ti, X

j
i (θ)) + f(ti, X

j
i (θ),U

θ(ti, X
j
i (θ)))∆ti

∣∣∣2


ϕfinal(θ) =
1

B

B∑
j=1

∣∣∣g(Xj
M (θ))− Uθ(tM−1, X

j
M−1(θ)) + f(tM−1, X

j
M−1(θ),U

θ(tM−1, X
j
M−1(θ)))∆tM−1)

∣∣∣2
ϕ(θ) = ϕlocal(θ) + ϕfinal(θ)9

θ = θ − rm∇ϕ(θ)
10 end

2. SumMultiStepReg solver. The second algorithm is the SumMultiStepReg solver, which is a
multistep version of the previous one, in the same spirit as in [BD07]. It is described in detail in Algorithm
5.
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Algorithm 5: The SumMultiStepReg solver
1 for m = 0, . . . ,K do
2 Set ∀j ∈ [|1, B|] Xj

0(θ) = x0;
3 for i = 0, . . . ,M − 1 do
4 for j = 1, . . . , B do
5

ψj
i (θ) = Uθ(ti, X

j
i (θ))

6 Sample ∆W j
i from a Gaussian vector, sample ∆N j

i from a Poisson distribution
P (λ∆ti) and sample each element of the jumps sequence (∆J i,j

l )l=1,··· ,∆Nj
i

from the

distribution ν(de)
λ 1Rd\{0}.

7 end
8 for k = 0, . . . , i do
9 for j = 1, . . . , B do

10 ψj
k(θ) = ψj

k(θ)− f(ti, X
j
i (θ),Uθ(ti, X

j
i (θ)))∆ti

11 end
12 end
13 for j = 1, . . . , B do
14

Xj
i+1(θ) = Xj

i (θ) + b̄(ti, X
j
i (θ),U

θ(ti, X
j
i (θ)))∆ti + σ(ti, X

j
i (θ))∆W

j
i

+

∆Nj
i∑

l=1

β(ti, X
j
i (θ),∆J

i,j
l ).

15 end
16 end

17 ϕ(θ) =
∑M−1

i=0

(
1
B

∑B
j=1

∣∣ψj
i (θ)− g(Xj

M (θ))
∣∣2)

18 θ = θ − rm∇ϕ(θ)
19 end

Remark 3. As proposed in [GPP22] in the case of decoupled FBSDEs, another method to estimate the
compensator is to consider an additional neural network function Cθ3 approximating the compensator
t, x →

∫
Rd\{0} (u(t, x+ e)− u(t, x)) ν(de) by adding an additional penalty term to the original loss func-

tion. Hence, the conditional expectation E
[
Wθ2(ti, Xi,

∑∆Ni

l=1 β̃i(∆J
i
l ))
∣∣Fti

]
is estimated by Cθ3(ti, Xi)∆ti

at each time step by optimizing the following penalty function:

M−1∑
i=0

∣∣∣∣∣Wθ2(ti, Xi(θ),

∆Ni∑
l=1

β̃i(∆J
i
l ))− Cθ3(ti, Xi(θ))∆ti

∣∣∣∣∣
2
 . (9)

We tested this approximation method in the coupled case for the Global method and both local methods,
and the algorithms lacked accuracy due to the presence of an additional neural network and an additional
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term in the loss function. Our approach is based on the approximation of the conditional expectation as in
(9) to directly estimate the backward component Y in the SumLocalReg and SumMultiStepReg algorithms,
which yields better results.

Remark 4. The above algorithms can be used to handle the general case of jumps with infinite activity,
after truncating the small jumps as in [DRZ21; GPP22].

2.3 Numerical tests for option pricing
In this subsection, we aim to assess the performance of the deep learning algorithms discussed in the
preceding section in the context of pricing European options in three different financial models: the
Black-Scholes (BS) model (without jumps), the Merton (MJ) model (with jumps with finite activity),
and the Variance Gamma (VG) model (with jumps with infinite activity). Indeed, we can adapt the
algorithms presented in the finite-activity setting to the pricing of European-options under the exponential
Variance-Gamma model.

We first set the hyper-parameters for the Global solver and both variants of the SumLocal and SumMul-
tiStep solvers where NbTraining corresponds to the number of gradient iterations of the Adam stochastic
gradient descent algorithm [KB14].

Parameter value
m 21
L 2

NbTraining 12000

Parameter value
A 5000
B 10
σa tanh

Table 1: Hyper-parameters for the first class of deep-learning algorithms

Furthermore, the specific parameters of the regression methods (since the compensator is not com-
puted) are:

Parameter value
m 21
L 2

NbTraining 12000

Parameter value
B 10 000
σa tanh

Table 2: Hyper-parameters for the second class of deep-learning algorithms

The algorithms are implemented in Python with Tensorflow library. Each numerical experiment
is conducted using GPU Tesla T4-PCIE-16GB. The code for the numerical experiments of the pricing
and Mean Field Game (MFG) models can be accessed at the following URL: https://github.com/
ZakariaBensaid/DeepFBSDEJSolvers.

In the Black-Scholes and Merton models, we compare the results we get by implementing our deep
learning algorithms with those obtained by using the well-known closed formula of the solutions of the
PDE, respectively PIDE. In the Variance Gamma model, we compare our results with those obtained by
using the inverse Fourier method computed with the Fast Fourier Transform algorithm.
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2.3.1 The models

We present below the three models.

The Black Scholes model (No jumps) The BS model proposes to model the underlying asset St

under the risk neutral probability measure Q following a geometric Brownian motion with the following
dynamics: St = s exp((r− σ2

2 )t+σWt). The problem of pricing an European call option in the BS model
translates to the following FBSDE:

dSt = St(rdt+ σdWt),

−dYt = −rYtdt− ZtdWt,

S0 = s, YT = (ST −K)+.

t ∈ [0, T ], (10)

where K is the strike price. More precisely, the price of the European option at time t is given by Yt.
Furthermore, it is known that there exists a function ū such that Yt = ū(t, St), where the function ū
solves a specific PDE.

To test the performance of the algorithms in a coupled setting, we propose below a forward-backward
system for which the forward component has an additional term coupled to the backward component.
More precisely, we consider the following system

dXt = Xt(rdt+ σdWt) + a|Yt − ū(t,Xt)|dt,
−dYt = −rYtdt− ZtdWt,

X0 = S0, YT = (XT −K)+.

t ∈ [0, T ], (11)

where ū is the analytical solution of the PDE in the decoupled case. In the case of a small time maturity,
Theorem 2.2 guarantees that the system (11) admits an unique solution for which the backward compo-
nent Y provides the price of the european call option. This applies for all the models below.

Model parameters. For the numerical implementation, we set T = 1 , M = 50 steps, the interest rate
r = 0.1, the diffusion volatility σ = 0.3, the strike price K = 0.9, the spot price S0 = 1, and the coupling
linearity coefficient when non-null a = 0.1 .

Merton model (Jumps with finite activity) Merton’s [Mer76] approach proposes to ignore risk premia
for jumps, this assumption leading to a specific choice for pricing and hedging. To describe the model, we
assume that the underlying asset St under the risk neutral probability measure Q follows the dynamics
St = S0 exp((r − σ2/2 − m)t + σWt +

∑Nt

i=1 Yi), where Nt, Yi are independent from Wt and Nt is a
Poisson process with intensity λt. The random variables Yi are i.i.d. and follow a N (α, ξ2) distribution.
The constant m is chosen such that the process S̃t = Ste

−rt is a martingale under Q and is given by
m := λE[eYi − 1].

As above, under appropriate assumptions on the coefficients, we can express the problem of pricing
an European call option in the Merton model in terms of the following coupled FBSDE:

dXt = Xt−(rdt+ σdWt +
∫
R⋆(e

e − 1)J̃ (dt, de)) + a|Yt − ū(t,Xt)|dt,
−dYt = −rYtdt− ZtdWt −

∫
R⋆ Ut(e)J̃ (dt, de),

X0 = S0; YT = (XT −K)+.

t ∈ [0, T ], (12)
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where ū is the analytical solution of the partial integro differential equation associated to the decoupled
FBSDE and J̃ (dt, de) is the compensated jump measure associated with the compound Poisson process∑Nt

i=1 Yi with intensity measure ν(de), where ν is given by :

ν(de) =
λ

ξ
√
2π

exp

(
− (e− α)2

2ξ2

)
de.

Model parameters. For this example, we set T = 1 , M = 50 steps, the interest rate r = 0.1, the
diffusion volatility σ = 0.3, the jumps intensity λ = 3, the parameters of the jumps distribution α = 0
and ξ = 0.2, the strike price K = 0.9, the initial condition X0 = 1, and the coupling linearity coefficient
when non-null a = 0.1 .

It can be observed that the algorithms introduced in the previous section in the case of finite activity
jumps can be used to compute the solution of coupled FBSDEs in some particular case of infinite activity
jumps. In particular, in the case when β(t, x, e) = γ(x) · e, the jump process Jt has finite variation and
its jumps between two consecutive points on the grid can be simulated. In particular, this can be imple-
mented for jump models based on the Brownian subordination, such as the Gamma or Variance-Gamma
processes. We present below the results we obtained for the Variance-Gamma model.

Variance Gamma model (Jumps with infinite activity) The Variance-Gamma process is a Lévy process
with infinite activity jumps, where the jumps part Jt have a Variance-gamma law V G(σ̄, κ, θ) (see e.g.
[MS90]). Its characteristic function is

E[eiuJt ] =

(
1− iuθκ+

1

2
σ̄2κu2

)− t
κ

.

The variance-gamma process can be characterized as a time changed Brownian motion with drift, i.e.

Jt = θTt + σ̄WTt ,

where Wt is a standard Brownian motion, Tt ∼ Γ(t, κt) and θ, κ, σ̄ are given constants. The intensity
measure of a Variance-Gamma process is given by

ν(de) =
exp

(
θe
σ̄2

)
κ|e|

exp

−

√
2
κ + θ2

σ̄

2

σ̄
|e|

 de

Under the risk neutral probability measure Q, we assume that the underlying asset St follows the dynamics

St = S0 exp((r + ω)t+ Jt),

where
ω = κ−1 log

(
1− 1

2
σ̄2κ− θκ

)
.

Similarly to the BS and MJ models, we consider below the following coupled FBSDE system which,
under appropriate assumptions on the coefficients, provides the price of an European call option in the
VG model:
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dXt = Xt−(rdt+

∫
R⋆(e

e − 1)J̃ (dt, de)) + a|Yt − ū(t,Xt)|dt,
−dYt = −rYtdt−

∫
R⋆ Ut(e)J̃ (dt, de),

X0 = S0; YT = (XT −K)+,

t ∈ [0, T ], (13)

where J̃ (dt, de) is the compensated jump measure associated with the variance Gamma process Jt, and
ū is the analytical solution of the PIDE in the decoupled case.

Model parameters. For this example, we set T = 1 , M = 30 steps, the interest rate r = 0.1, the time-
scaled Brownian motion drift and volatility θ = −0.1 and σ̄ = 0.2, the variance of the Gamma process
κ = 0.1, the strike price K = 0.9, the initial condition X0 = 1, and the coupling linearity coefficient when
non-null a = 0.1 .

2.3.2 Results

On Figure 1, 2, 3, we plot the convergence of the different algorithms for the BS model, the Merton model
and the Variance Gamma model, for a = 0 (the decoupled case) and a different from 0 (the coupled case).
Hence, we plot the evolution of Y0 through 100 epochs for BS and 120 epochs for MJ and VG. Notice
that 100 gradient descents are performed between 2 epochs for BS, MJ and VG.

(a) Coupled case (a = 0.1) (b) Decoupled case (a = 0)

Figure 1: Convergence of the 7 algorithms in the BS model

Figure 1 illustrates the convergence of the European call price Y0 in the Black-Scholes model in both,
the coupled and decoupled cases. This figure demonstrates that all methods converge smoothly in the
decoupled case. In the coupled system, all methods also converge smoothly except for SumLocalReg,
which stagnates between 0.255 and 0.256, instead of converging to the true value 0.225.
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(a) Coupled case (a = 0.1) (b) Decoupled case (a = 0)

Figure 2: Convergence of the 7 algorithms in the Merton model

Figure 2 illustrates the convergence of the value of the European call price Y0 for the Merton model, in
both the coupled and decoupled cases. This model allows us to test the performance of our algorithms in a
setting that involves a jump diffusion model with finite activity. It can be observed that all the algorithms
converge quickly, requiring only 80 epochs, except for SumLocalReg in the coupled case. Similar to its
performance in the BS model, SumLocalReg is very unstable and far from the true value.

(a) Coupled case (a = 0.1) (b) Decoupled case (a = 0)

Figure 3: Convergence of the 7 algorithms in the Variance Gamma model

Figure 3 illustrates the convergence of the value of the European call price Y0 for the Variance Gamma
model, in both the coupled and decoupled cases. This model allows us to test the performance of our
algorithms in a model with pure jumps with infinite activity. We observed that all the algorithms were
consistent, stable and relatively quick except for the SumLocalReg algorithm.

To focus on the processing times intrinsic to the training process, we first present the computation
times and results for the Merton and Variance Gamma models with the parameter a = 0. This removes
the additional computation time required for the analytical solution u that is not part of the training
process.
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Model DL Methods

Global MultiStep1 MultiStep2 SumLocal1 SumLocal2 SumLocalReg MultiStepReg

MJ 874s 941s 928s 921s 902s 622s 642s
VG 634s 687s 692s 673s 670s 666s 702s

Table 3: Computation times in seconds for different DL methods after 12000 training steps

As shown in Table 3, the performance of the different deep learning methods for the Merton and
Variance Gamma models was evaluated based on the computation time required for 12000 training steps.
Overall, the results indicate that the MultiStepReg and SumLocalReg methods were the most time-
efficient for the Merton model. Nonetheless, the discrepancies are not significant enough to base our
choice on the computation time only. Thus, we present some accuracy and convergence results.

In Table 4, we present the results obtained for a = 0 after 12000 training steps.

Model DL Methods

Global MultiStep1 MultiStep2 SumLocal1 SumLocal2 SumLocalReg MultiStepReg

MJ 0.271 0.273 0.266 0.276 0.270 0.272 0.267
VG 0.133 0.132 0.137 0.141 0.130 0.135 0.132

Table 4: Y0 for a = 0 and different DL methods. The reference value for the Merton and Variance Gamma
models are 0.271 respectively 0.133. The green color corresponds to an error less than 4.10−3 and the
red color to an error larger than 4.10−3.

In Table 5, we present the results obtained for a = 0.1 after 12000 training steps.

Model DL Methods

Global MultiStep1 MultiStep2 SumLocal1 SumLocal2 SumLocalReg MultiStepReg

MJ 0.273 0.274 0.269 0.280 0.273 0.292 0.272
VG 0.133 0.136 0.135 0.141 0.135 0.140 0.132

Table 5: Y0 for a = 0.1 and different DL methods. The reference value for the Merton and Variance
Gamma models are the same as in Table 4.

2.3.3 Conclusion

The results above show that neural network methods can solve coupled FBSDEs with jumps with finite
activity (or a particular class of jumps with infinite activity as explained above) issued from pricing
models. After various benchmarks, we observe that

1. The Global method is consistent, stable and relatively robust compared to the other methods when
it comes to the calibration of the hyper-parameters (especially the learning rate).
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2. The first variant SumLocal1 of the local methods is not very accurate in the decoupled and coupled
cases, whereas the regression version SumLocalReg is accurate in the decoupled case and faces more
difficulties in the coupled case. On the other hand, SumLocal2 performs well in the decoupled
and coupled cases with the fine-tuned hyper-parameters which have an important impact on the
accuracy of the local algorithms.

3. All the MultiStep variants MultiStep1, MultiStep2 and the regression version MultiStepReg, perform
very well conditionally on finding the adequate hyperparameters that depend on the parameters of
the models.

4. Finally, MultiStepReg provides the best computation speed and a good accuracy without the need
to estimate the compensator using Monte Carlo or additional networks which will add extra biases.

3 Application to an MFG model with jumps for smart grids
In this section, we develop a generalized version of the model introduced in [Ala+23] (which is also
related to the MFG models presented in [ATM19; MMS19]), which we solve numerically using the deep
learning algorithms introduced in Section 2.2. We consider an energy system with n consumers who are
linked by a Demand Side Management (DSM) contract, i.e. they agree to diminish, at random times,
their aggregated power consumption by a predefined volume during a predefined duration. Their failure
to deliver the service is penalised via the difference between the sum of the n power consumptions and
the contracted target. The jumps are supposed to come from a Cox process with a stochastic intensity
process, in contrast with [Ala+23] where the intensity is only assumed to be constant. From a modeling
perspective, this generalization is important since it allows to capture the dependence of the intensity
on e.g. the aggregated consumption, which implies that the jumps arrive with a higher rate when the
demand is at its peak. This is when the demand is at its peak that the power system is more likely to
benefit from a reduction of this power demand so that it reduces the cost of production. Furthermore,
compared to [Ala+23] where the contracted target is a constant, we consider here the general case of a
stochastic target process. When n → ∞, the problem can be written in terms of a Mean-Field Game
model with interaction on the control.

3.1 Extended MFG model for Demand Side Management with Cox process
In this subsection, we first briefly describe the model in the setting of a finite population of players, and
then present the MFG formulation.

Model with n-consumers. We assume that there are two types of consumers (active consumers and
standard consumers). An active consumer i = 1, . . . , n enters a demand side management contract (DSM)
and is characterized by two state variables (Qi, Sαi

). The variable Qi
t denotes the instantaneous electricity

consumption of consumer i at time t, representing the required electricity volume. Active consumers can
deviate from their natural power demand by an amount αi

t, their total instantaneous consumption being
(Qi

t + αi
t)dt. In case the instantaneous effort αi

t > 0 (resp. < 0), the consumer is anticipating (resp.
postponing) specific activities which require energy, which implies that consumption is increased (resp.
decreased) compared to the natural demand. The total deviation in consumption from natural power
demand up to time t is represented by Sαi

t . The second type of consumers is represented by the standard
consumers, for i = n + 1, . . . , n + n′, who do not optimize their consumption. They are characterized
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by a single state variable Qi,st corresponding to the instantaneous consumption of consumer i at time
t. More precisely, the dynamics of the consumption (resp. total deviation in consumption) for consumer
i = 1, . . . , n with DSM contract are given by

dQi
t = µ(t, Qi

t)dt+ σ(t, Qi
t)dW

i
t + σ0(t, Qi

t)dW
0
t , Qi

0 = qi0,

dSαi,i
t = αi

tdt, Si
0 = si0,

while those for any standard consumer i = n+ 1, . . . , n+ n′ are

dQst,i
t = µst(t, Qst,i

t )dt+ σst(t, Qst,i
t )dW i

t + σst,0(t, Qst,i
t )dW 0

t , Qst,i
0 = qst,i0 .

The processes W 0
t ,W

1
t , . . . ,W

n+n′

t appearing above are assumed to be independent Brownian motions,
and the functions µ, µst, σ, σst, σ0, σst,0 are such that the above stochastic differential equations admit
strong solutions.

The demand side management contract incorporates real-time pricing and an interruptible load fea-
ture. First, real-time pricing refers to the fact that consumers are charged at a spot price p which depends
on the total consumption, having the role to incentivize the active consumers to reduce their consumption
when it becomes too high. The associated power cost cit is a function of the total consumption of the
standard consumers and those with a DSM contract.

The interruptible load part of the contract is described as follows. At random times indicated by the
Transmission System Operator (TSO) in case of supply-demand imbalance, the total consumption of the
active consumers

∑
i(Q

i
t + αi

t) has to match a target process αtg
t , which could represent e.g. a fraction

of the usual consumption. The target is maintained for a specific duration, and each agent is penalized
if the total response differs from the required level of demand. The corresponding divergence cost di is
expressed as a function of the total consumption of the active consumers.

The DSM contract also includes: an inconvenience cost g (associated with the efforts made by con-
sumers to control their consumption, which increases with the instantaneous effort αi and the accumulated
deviations Sαi

), a demand charge cost l and a terminal cost function h (which penalizes any excess or
shortfall of energy consumption during the period, as it indicates that the agent did not acquire the exact
amount of energy needed during the specified time frame).

MFG formulation. To present the model in the MFG setting, we first introduce the probabilistic
setup.

Probabilistic setup. Let (Ω,F ,P) be a complete probabilistic space. We assume that all stochastic
processes are defined on a finite time horizon [0, T ] with T > 0.

Suppose W 0 is a Brownian motion on this space on [0, T ] and G0 ≜ (G0
t )t∈[0,T ] is the filtration

generated by W 0 augmented by the P-null sets. Let N0 be a doubly stochastic Poisson process (or a Cox
Process) with a G0-predictable non-negative intensity λ0 := (λ0t )t∈[0,T ]. In relation to N0, we denote by
D0 ≜ (D0

t )t∈[0,T ] the filtration generated by the Cox Process N0 augmented with the P-null sets. Let
F0 = (F0

t )t∈[0,T ] denote the filtration F0 = G0 ∨D0, i.e. the smallest filtration containing G0 and D0. In
our setting, F0 plays the role of the common noise filtration.

Assume that E[
∫ T

0
λ0sds] < ∞ for all t ∈ [0, T ], from which it follows that the compensated Poisson

process Ñ0
t := N0

t −
∫ t

0
λ0sds is a F0-martingale.

We also introduce the Brownian motions W and W̄ (representing the idiosyncratic noises of the active
and standard consumers), which are independent of W 0 and N0. Let G ≜ (Gt)t∈[0,T ] denote the filtration
generated by W and W̄ , augmented with the P-null sets. We denote by FW the (completed) filtration
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generated by W . Let (s0, q0) be two random variables independent of all the above processes. Finally,
let F = (Ft)t∈[0,T ] be the smallest filtration containing F0, G, and the information generated by (s0, q0).

Representative consumer with DSM contract and representative standard consumer. The represen-
tative consumer involved in the DSM contract is characterized by two state variables (Q,Sα), with Qt

representing the instantaneous volume of electricity needed at time t and Sα
t the accumulated deviation

of electricity from the natural consumption, which is controlled by a control process (αt). The dynamics
of the state variables of the representative consumer with DSM contract are given by{

dQt = µ(t, Qt)dt+ σ(t, Qt)dWt + σ0(t, Qt)dW
0
t , Q0 = q0,

dSα
t = αtdt, S0 = s0,

(14)

where (αt) represents the instantaneous effort.
The representative standard consumer is characterized by only one state variable Qst representing

their usual consumption. The dynamics of the standard consumption is then given by

dQst
t = µst(t, Qst

t )dt+ σst(t, Qst
t )dW̄t + σst,0(t, Qst

t )dW 0
t , Qst

0 = qst0 , (15)

where all the above coefficients are continuous in (t, x) and Lipschitz continuous with respect to x,
uniformly in t.

Optimization problem consumer with DSM contract and MFG equilibrium. As explained in the de-
scription of the n-player model, the demand side management model considered in this paper includes
dynamic pricing and an interruptible load feature. To describe the interruptible load part of the con-
tract, let (αtg

t )t∈[0,T ] be a given G0-adapted process. At random times indicated by the operator system
in charge of the production-consumption balance, the aggregated power deviation of the consumption has
to match the stochastic contracted target process αtg

t for a predefined time period θ > 0. The random
times correspond to the jump times of the Cox process (N0

t ). In case the target is not achieved during
the period θ, then the representative consumer is penalized. We introduce the process R which measures
the time since the last DSM jump occurred. Thus, the dynamics of R are given by

dRt = dt−Rt−dN
0
t , R0 = 2θ.

Fix ξ = (ξt)t∈[0,T ] a F0-adapted process which represents a predetermined power deviation and α ∈ A,
where A is the set of all real-valued FW ∨G0-progressively measurable processes α such that E[

∫ T

0
α2
tdt] <

+∞ and E[|ατ |1τ<∞] < +∞ for all F0-stopping times τ with values in [0, T ] ∪ {+∞}. This set is called
the set of admissible controls. The divergence cost is then defined as follows:

dα,ξt = (Qt + αt − αtg
t )f

(
E[Qt|F0

t ] + ξt − αtg
t

)
Jθ
t ,

where Jθ
t = 1Rt≤θ (i.e. Jθ

t is equal to one during interruptible load contract activation and zero otherwise)
and f is a convex growing function such as f(0) = 0.

The second component of the DSM contract is represented by the power cost cα,ξt , which defines the
dynamic pricing rule and is defined as

cα,ξt = (Qt + αt)p
(
πE[Qst

t |F0
t ] + (1− π)(E[Qt|F0

t ] + ξt)
)
,

where p represents the spot price functional of the power system at which the consumers are charged,
and π represents the proportion of standard consumers with respect to DSM consumers in the total
population.
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Finally, we introduce the inconvenience cost g(αt, S
α
t , Qt) (with g convex in αt and Sα

t ), the cost l
representing the demand charge component of the retail tariff structure, and the terminal cost h(Sα

T ).
We can now formulate the MFG problem. For a fixed process ξ, the active consumer is optimizing

the following functional:

J(α; ξ) = E

[∫ T

0

{
g(αt, S

α
t , Qt) + l(Qt + αt) + cα,ξt + dα,ξt

}
dt+ h(Sα

T )

]
.

Therefore, the optimization problem of the representative consumer can be then written as follows

VMFG(ξ) = inf
α∈A

JMFG(α; ξ) (16)

Definition 3.1 (Mean-field Nash Equilibrium). The solution α⋆ to problem (16) is called a mean field
Nash equilibrium if E[α⋆

t |F0
t ] = ξt a.s. for all 0 ≤ t ≤ T .

Remark 5. Notice that, in contrast to [Ala+23] where the target αtg is only considered to be a constant,
we consider here a G0-adapted target process αtg = (αtg

t )t∈[0,T ]. We also assume that the jump times
correspond to the ones of a Cox process (time non-homogeneous Poisson process), compared to [Ala+23]
where it is supposed that they come from a Poisson process.

3.2 Characterization of the MFG equilibrium with Cox Process
In this Section, we first provide a characterization of the MFG equilibrium in a general setting, and then
focus on the linear-quadratic model. We introduce the following sets, which will be used throughout the
rest of the paper:

• S2 is the set of F-adapted càdlàg real-valued processes Y such that E
[
sup0≤t≤T |Yt|2

]
< +∞.

• H2 is the set of F-predictable real-valued processes q such that ∥q∥2 := E[
∫ T

0
|qt|2dt] < +∞.

• H2
λ0 is the set of F-predictable real-valued processes ν0 such that ∥ν0∥2λ0 := E[

∫ T

0
|ν0t |2λ0tdt] < +∞.

• L2(FT ) is the set of FT -measurable real-valued random variables ξ such that E[|ξ|2] < +∞.

In the sequel, given a B([0, T ]) ⊗ F-measurable process X such that E[|Xτ |1τ<∞] < ∞ for all F0-
stopping times τ with values in [0, T ] ∪ {+∞}, we will denote by X̂ the optional projection of X with
respect to the filtration F0, i.e. X̂ is the unique (up to indistinguishability) F0-optional process such that
X̂τ1τ<∞ = E

[
Xτ1τ<∞|F0

τ

]
a.s. for all F0-stopping times τ with values in [0, T ] ∪ {+∞} (cf. Section 2

in [BY78]).

Assumption 3.1. We make the following assumptions:

• g, l and h have at most quadratic growth and are strictly convex.

• p and f have at most linear growth.

• g, p, f , l and h are differentiable.

We now give the following characterization of a MFG equilibrium.
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Theorem 3.1 (Characterization of the mean-field game equilibrium). Let ξ̂ be a given F0-adapted real
valued process and x0 = (s0, q0, q

st
0 ) be a random vector independent of F0. Assume that α→ JMFG(α; ξ̂)

is strictly convex. If there exists a control α⋆ ∈ A which minimizes α→ JMFG(α; ξ̂) and if (Sα⋆

, Q,Qst)
is the state process associated to the initial condition x0, optimal control α⋆ and the dynamics (14)-(15),
then there exists a unique solution (Y ⋆, q0,⋆, q⋆, ν0,⋆) ∈ S2 × (H2)2 × H2

λ0 of the following BSDE with
jumps: {

−dY ⋆
t = ∂αg(α

⋆
t , S

α⋆

t , Qt)dt− q0,⋆t dW 0
t − qst,⋆t dW̄t − ν0,⋆t dÑ0

t ,

Y ⋆
T = ∂xh(S

α⋆

T ),
(17)

satisfying the coupling condition

∂αg(α
⋆
t , S

α⋆

t , Qt) + ∂αl(Qt + α⋆
t ) + p(πQ̂st

t + (1− π)(Q̂t + ξ̂t)) + Y ⋆
t + Jθ

t f(Q̂t + ξ̂t − αtg
t ) = 0 (18)

Conversely, assume that there exists (α⋆, Sα⋆

, Y ⋆, q0,⋆, q⋆, ν0,⋆) ∈ A× (S2)2 × (H2)2 ×H2
λ0 satisfying the

FBSDE (17) and the coupling condition (18), then α⋆ is the optimal control minimizing α→ JMFG(α; ξ̂)
and Sα⋆

is the optimal trajectory.
If additionally α̂⋆

t = ξ̂t a.s for all t ∈ [0, T ], then α⋆ is a Mean-field equilibrium.

Proof. Under Assumption 3.1 and using similar arguments as in [DQS17] to prove existence and unique-
ness results for BSDEs driven by Cox processes, we conclude that the BSDE defined in the theorem is
well-posed. Using this result, the proof follows the same steps as in Theorem 3.1 in [Ala+23] , and we
therefore omit it.

Semi-explicit representation of the MFG equilibrium in the linear quadratic case We shall
provide here a semi-explicit characterization of the equilibrium in the linear-quadratic setting, which is
ensured by the following assumption.

Assumption 3.2. Let (χt)t∈[0,T ] and (χst
t )t∈[0,T ] be two continuous deterministic processes. We suppose

that the following assumptions are satisfied:
1. µ(t, q) = µ(χt − q), µst(t, q) = µst(χst

t − q), σ(t, q) = σ, σst(t, q) = σst, σst,0(t, q) = σst,0, and
σ0(t, q) = σ0, with µ, µst, σ, σ0, σst > 0.
2. g(a, s, q) = A

2 a
2 + C

2 s
2 with A,C > 0.

3. l(x) = K
2 x

2 with K ≥ 0.
4. f(a) = f0 + f1a with fi ∈ R, i = 0, 1 and f1 ≥ 0.
5. p(q) = p0 + p1q with p0 ∈ R, and p1 > 0.
6. h(s) = h0 + h1s+

h2

2 s
2, with hi ∈ R, i = 0, 1, 2 and h2 ≥ 0.

Following the approach used in [Ala+23] in the particular case of a Poisson process, in the linear-
quadratic setting we look for solutions taking the form:

Ŷt = ϕ̄tS
α̂
t + ψ̄t and Yt = ϕtS

α
t + ψt,

with (ϕ̄t, 0, ξ̂
0
t , ξ̂

0,N
t ), (ψ̄t, η̂

0
t , 0, η̂

0,N
t ), (ϕt, 0, 0, 0) and (ψt, η

0
t , ηt, η

0,N
t ) the unique solutions in S2×(H2)2×

H2
λ0 of the following BSDEs driven by a Cox process:

dϕt =

(
−C +

1

A+K
ϕ2t

)
dt, ϕT = h2,

26



dψt =
ϕt

A+K

[
KQt + p0 + πp1Q̂

st
t + ((1− π)p1 +K)(Q̂t + α̂t)+

Jθ
t (f0 + f1(Q̂t + α̂t − αtg

t )) + ψt

]
dt+ η0t dW

0
t + ηtdWt + η0,Nt dÑ0

t , ψT = h1,

dϕ̄t =

(
−C +

1

Kθ
t

ϕ̄2t

)
+ ξ̂0t dW

0
t + ξ̂0,Nt dÑ0

t , ϕ̄T = h2,

dψ̄t =
ϕ̄t
Kθ

t

[
p0 + πp1Q̂

st
t + ((1− π)p1 +K)Q̂+ Jθ

t (f0 + f1(Q̂t − αtg
t )) + ψ̄t

]
dt

+ η̂0t dW
0
t + η̂0,Nt dÑ0

t , ψ̄T = h1,

where Kθ
t = A+K + (1− π)p1 + f1J

θ
t .

The wellposedness of the above BSDEs follows by an adaptation of the theorems provided in [DQS17].
By using the ansatz and replacing it in the projected coupling condition, we obtain:

α̂t = − 1

Kθ
t

(
p0 + πp1Q̂

st + ((1− π)p1 +K)Q̂t + Ŷt + (f0 + f1(Q̂t − αtg
t ))Jθ

t

)
. (19)

Finally, by using the expression of α̂ and again the ansatz and the coupling condition, we finally obtain
that the MFG equilibrium α admits the following representation:

αt = − 1

A+K

(
KQt + p0 + πp1Q̂

st + ((1− π)p1 +K)(Q̂t + α̂t) + Yt + (f0 + f1(Q̂t + α̂t

−αtg
t ))Jθ

t

)
.

(20)

3.3 Aggregator problem and Price of Anarchy
In this part, we consider the point of view of an aggregator and characterize his optimal strategy, as well
as discuss the related price of anarchy.

Aggregator problem We now introduce the following mean-field control problem of an aggregator
who plays the role of a central planner who coordinates all the DSM consumers in the system, without
taking into account the non-active consumers. The associated value function of the aggregator is given
by

VMFCagg

= inf
α∈A

E

[∫ T

0

{
g(αt, S

α
t , Qt) + l(Qt + αt) + cα,α̂t + dα,α̂t

}
dt+ h(Sα

T )

]
.

The solution to this optimization problem is called the MFCagg optimal control. Using a similar proof
to the one of Theorem 3.1, we have the following characterization of the optimal control.

Theorem 3.2 (Characterization of the aggregator’s mean field control). Let x0 = (s0, q0, q
st
0 ) be a random

vector independent of F0. Assume that the map α 7→ JMFC(α) is strictly convex. If there exists a control
α⋆ ∈ A which minimizes the map α 7→ JMFC(α) and if (Sα⋆

, Q,Qst) is the state process associated
to the initial condition x0, control α⋆ and the dynamics (14)-(15), then there exists a unique solution
(Y ⋆, q0,⋆, q⋆, ν0,⋆) ∈ S2 × (H2)2 ×H2

λ0 of the BSDE with jumps{
−dY ⋆

t = ∂xg(α
⋆
t , S

α⋆

t , Qt)dt− q0,⋆t dW 0
t − q⋆t dWt − ν0,⋆t dÑ0

t ,

Y ⋆
T = ∂xh(S

α⋆

T ),
(21)
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satisfying the coupling condition

∂αg(α
⋆
t , S

α⋆

t , Qt) + ∂αl(Qt + α⋆
t ) + p

(
πQ̂st

t + (1− π)(Q̂t + α̂⋆
t )
)

+(Q̂t + α̂⋆
t )∂αp(πQ̂

st
t + (1− π)(Q̂t + α̂⋆

t ))

+Y ⋆
t + Jθ

t f(Q̂t + α̂⋆
t − αtg) + Jθ

t (Q̂t + α̂⋆
t − αtg)∂αf(Q̂t + α̂⋆

t − αtg
t ) = 0, (22)

with α̂⋆ the optional projection of α⋆ with respect to F0. Conversely, assume that there exists(
α⋆, Sα⋆

, Y ⋆, q0,⋆, q⋆, ν0,⋆
)
∈ A × (S2)2 × (H2)2 × H2

λ0 satisfying the coupling condition (22), as well
as the FBSDE (14)-(21), then α⋆ is the optimal control minimizing the map α 7→ JMFC(α) and Sα⋆

is
the optimal trajectory.

Remark 6. As observed in [Ala+23], by comparing the coupling conditions (18) and (22), the optimal
control for the MFCagg problem in the linear quadratic setting with pricing rules pMFCagg

(πQ̂st + (1−
π)Q) = p0+p1(πQ̂

st+(1−π)Q) and fMFCagg

(Q) = f0+f1Q corresponds to the MFG equilibrium for the
problem with pricing rules pMFG(πQ̂st+(1−π)Q) = p0+2p1(1−π)Q+p1πQ̂

st and fMFG(Q) = f0+2f1Q.

Price of Anarchy The price of anarchy is defined as the ratio of a worst case social cost computed for
a mean field game equilibrium to the optimal social cost as computed by a central planner.

For our problem, the expression for the price of anarchy takes the following form:

PoA =
VMFG(α̂⋆)

VMFCagg ,

where α⋆ is the MFG Nash equilibrium.

3.4 Deep learning algorithms for the MFG and MFC problem
In this section, we design several numerical algorithms to compute in the linear-quadratic setting the
MFG equilibrium and the mean-field optimal control for the aggregator’s problem. The algorithms are
based on the machine learning solvers introduced in the first part of the paper and extended to the case
of a time-inhomogeneous Poisson process with stochastic intensity of jumps.

Characterization of the MFG equilibria via a multi-dimensional coupled FBSDE with jumps
Using the results from the previous section, the MFG equilibria in the linear-quadratic case can be
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expressed through the following multi-dimensional fully-coupled FBSDE system:

(MFG)



dQt = µ(χt −Qt)dt+ σdWt + σ0dW 0
t ,

dQ̂t = µ(χt − Q̂t)dt+ σ0dW 0
t ,

dQst
t = µst(χst

t −Qst
t )dt+ σstdW̄t + σst,0dW 0

t ,

dQ̂st
t = µst(χst

t − Q̂st
t )dt+ σst,0dW 0

t ,

dRt = dt−Rt−dN
0
t ,

dSα⋆

t = − 1
A+K

(
KQt + p0 + πp1Q̂

st + ((1− π)p1 +K)(Q̂t + P (t, Q̂t, Q̂
st
t , Ŷt, Rt)) + Yt + (f0 + f1(Q̂t

+P (t, Q̂t, Q̂
st
t , Ŷt, Rt)− αtg

t ))1Rt≤θ

)
dt,

dSα̂⋆

t = P (t, Q̂t, Q̂
st
t , Ŷt, Rt)dt,

−dYt = CSα⋆

t dt− q0t dW
0
t − qtdWt − ν0t dÑ

0
t ,

−dŶt = CSα̂⋆

t dt− q̂0t dW
0
t − ν̂0t dÑ

0
t ,

Q0 = q0, Qst
0 = qst0 , R0 = 2θ, Sα⋆

0 = s0, YT = h1 + h2S
α⋆

T ,

Q̂0 = q0, Q̂st
0 = qst0 , Sα̂∗

0 = s0, ŶT = h1 + h2S
α̂⋆

T ,

(23)

where

P (t, Q̂t, Q̂
st
t , Ŷt, Rt) := − 1

A+K + (1− π)p1 + f11Rt≤θ

(
p0 + πp1Q̂

st + ((1− π)p1 +K)Q̂t + Ŷt

+(f0 + f1(Q̂t − αtg
t ))1Rt≤θ

)
.

We are thus led to solve a fully-coupled multi-dimensional FBSDE driven by a doubly stochastic Pois-
son process (which admits an unique solution, by using the results from the part on the Characterization
of the MFG equilibrium in the linear quadratic case from subsection 3.2). For a generic fully-coupled
system of FBSDEs driven by a doubly Poisson process, the discretized version takes the form

Xπ
i+1 = Xi + b(ti, X

π
i , Yi)∆ti + σ(ti, X

π
i )∆Wi + σ0(ti, X

π
i )∆W

0
i + β(ti, X

π
i )dN

0
i ,

Y π
i+1 ≈ Y π

i − f(ti, X
π
i , Y

π
i )∆ti + Zπ

i ∆Wi + Z0,π
i ∆W 0

i + Uπ
i dN

0
i − Uπ

i λ
0
i∆ti,

Xπ
0 = ξ, Y π

M = g(Xπ
M ),

i = 0, · · · ,M − 1.

(24)

Notice that in this setting, we do not require specific methods to estimate the compensator as it
is directly given in this model. Thus, there is no need to test the two variants for the Sumlocal and
SumMultiStep methods when comparing the deep learning solvers.

Furthermore, we make the following assumption on the intensity λ0:

Assumption 3.3. There exists a continuous function λ̄ : R 7→ R such that

λ0t = λ̄(Q̂t). (25)

Finally, in view of Remark 6, the computation of the mean-field optimal control of the aggregator
can be done through the same multi-dimensional fully-coupled FBSDE system (23), but with different
coefficients.
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Numerical results and comparison between the deep-learning solvers. We shall now perform
a detailed analysis of the convergence and stability of the five different algorithms to solve the FBSDE
system associated to the computation of the MFG equilibria. To do so, we first set the hyper-parameters.

Parameter value
m 20
L 2

NbTraining 10000

Parameter value
B 64

lRate 0.01/0.007
σa tanh

The compensator having an analytical form, we have adapted the algorithms and have taken batches
of small sizes. In contrast to [Ala+23], we consider a random intensity of jumps (λ0t ) and a target process
(αtg

t ) which are given by

λ0t = e−
γ
2 (eγQ̂t − 1), αtg

t = βE
[
Q̂t

]
.

The other parameters associated to the model are inspired from [Ala+23] and are given below:

Parameter value
T 2 days

nsteps 96 half-hours
A 150
C 80
K 50
χst χ

σ0 = σst,0 0.1

Parameter value
σ 0.3
σst 0
µ 5

h0 = h1 0
h2 600
θ 0.12 hours
s0 0

Parameter value
f0 0
f1 10000
p0 6.16 e/MWh
p1 87.43 e/MWh2

q0 = qst0 χ0

γ 30
β 0.8

The function (χt) corresponds to the consumption seasonality observed from the data from [Ala+23].
We shall now compare the initial values of the backward components through each epoch. Notice

that, between two epochs, 100 stochastic gradient descents are performed.

Figure 4: Convergence of the 5 algorithms in the MFG model
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According to various benchmarks and the convergence results in Figure 4, it is obvious that the
comparison results are similar to the pricing models. The Global method is the most stable one and
provides a good approximation with a large learning rate which makes up for the problem of initializing
low values. MultiStep method and its regression version MultiStepReg converge after few epochs with a
learning rate considerably lower than the one used in the Global method. They present a good trade-off
between convergence speed and stability. Finally, SumLocal method and its regression version performed
poorly in terms of stability as is obvious from the figures above.

Remark 7. In the particular case of a Poisson process with a constant intensity and a constant con-
sumption rate target αtg, we have compared our results with the ones obtained in [Ala+23] (which were
obtained by combining a tree approximation of the martingales, as in e.g. [DL16a; DL16b], and the Monte
Carlo method). We observed that our results were coherent with the ones provided in [Ala+23].

3.5 Interpretation of numerical results from a modelling perspective
In this Section, we provide an economic interpretation of our numerical results, which are computed
using the Global method. The results are illustrated on two typical customers whose power consumption
are represented in Figure 5. Consumer 2 shows a typical power consumption profile with two peaks of
consumption in the morning and in the evening. Consumer 2 needs more electricity during the first
day than the consumers’ average consumption, whereas Consumer 1 consumes very little during the first
morning. As expected, the intensity of jumps is very high when the consumption is at its highest level.

Figure 5: Trajectories over 48 hours of the consumption for 2 different consumers in kW (upper figure
left) and the common intensity of jumps for the divergence costs (upper figure right).

The following results present how these two typical consumers optimize their consumption when two
activations of the DSM contract happen following the DSM activation scenario presented in Figure 6 .

The illustrations show that the consumers react as expected: when they are exposed to dynamic
pricing only (no activation of jump DSM), they smooth their consumption over the period as illustrated
in Figure 7 (b). When they are exposed to divergence cost only, their average consumption perfectly
matches the random target αtg, whereas the individual consumption of the consumers can differ from the
target.
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Figure 6: One trajectory of DSM activation jumps issued from the intensity presented in the previous
figure.

(a) With divergence cost and no dynamic pricing (b) Dynamic pricing and without divergence cost

Figure 7: Trajectories of Q̂ + α̂ and Q + α (in kW) for two consumers in the MFG setting when these
consumers have no dynamic pricing but only the control with respect to the divergence cost (a) and when
have dynamic pricing only (b). DSM activations are represented by the green bar.

When consumers are exposed to both dynamic pricing and divergence cost activation, they combine
the two behaviours observed above. Their resulting consumption is presented in Figure 8.
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(a) With divergence cost and dynamic pricing

Figure 8: Trajectories of Q̂+ α̂ and Q+ α (in kW) for two consumers in the MFG setting.

We then analyze how the spot price reacts to the DSM contract (see Figure 9). We can observe that
the proportion of consumers with DSM contract (the lower π, the more widespread the DSM contract
within the global population) directly impacts how much spot price is smoothed and how much peak
prices are reduced.

Figure 9: Trajectories of the price p for four different proportions of active consumers in the MFG setting.

A comparison between MFCagg and MFG. We now provide a comparative analysis between the levels
of the consumption and corresponding prices in the case when the optimization problem is either imple-
mented from an aggregator perspective, i.e. a MFC problem, or is solved in the MFG setting. We can
observe that when consumers are not selfishly optimizing their power consumption, but are guided by an
aggregator they make greater effort to reduce their consumption (see figure 10). This efficiency can be at-
tributed to better coordination among consumers in the MFC problem. Naturally, as the prices follow the
same trend as the power consumption, we observe that the prices are cheaper when there is an aggregator.
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Figure 10: Trajectories of price p (right) and Q+ α in kW (left) for MFG setting (plain lines) compared
to MFCagg setting (dotting lines)

We also perform numerical computations of the PoA. As expected, the PoA (see Table 6) increases
with the proportion of customers who have a DSM contract in the population and is strictly superior to
1 when π is low enough. When we consider π = 0.95, the impact of the MFG optimization compared to
MFC is indeed very little as the proportion of DSM consumers in the population is too low to impact the
Price Of Anarchy.

Table 6: PoA with standard prices (p1 = 87.43).

π = 0 π = 0.1 π = 0.5 π = 0.95

VMFG 34.104 (±0.030) 34.354 (±0.030) 35.387 (±0.031) 36.601 (±0.032)
VMFCagg

33.519 (±0.029) 33.876 (±0.029) 35.226 (±0.030) 36.599 (±0.032)
PoA 1.017465 1.014111 1.004558 1.000072

It can also be observed that the PoA is sensitive to the different parameters of the model. In par-
ticular, by varying the coefficient p1, we remark that if the spot price becomes much higher, the PoA
increases as well as illustrated in Table 7.

Table 7: PoA with high prices (p1 = 1000).

π = 0 π = 0.1 π = 0.5 π = 0.95

VMFG 139.973 (±0.127) 144.598 (±0.132) 164.214 (±0.157) 178.435 (±0.210)
VMFCagg

119.421 (±0.097) 126.039 (±0.105) 154.433 (±0.145) 179.536 (±0.214)
PoA 1.172094 1.142468 1.063333 0.993867
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