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Abstract

This article introduces a novel mean-field game model for multi-sector economic growth
in which a dynamically evolving externality, influenced by the collective actions of agents,
plays a central role. Building on classical growth theories and integrating environmental
considerations, the framework incorporates “common noise” to capture shared uncertainties
among agents about the externality variable. We demonstrate the existence and unique-
ness of a strong mean-field game equilibrium by reformulating the equilibrium conditions
as a Forward-Backward Stochastic Differential Equation under the stochastic maximum
principle and establishing a contraction argument to ensure a unique solution. We provide
a numerical resolution for a specified model using a fixed-point approach combined with
neural network approximations.
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1 Introduction

Mean-field game (MFG) theory, first introduced by Lasry and Lions [22] and independently
by Huang, Malhamé, and Caines [19], has emerged as a powerful framework for modelling
interactions within large populations of agents. In these models, each agent optimises its strategy
based on the aggregate behaviour of the population, often leading to Nash equilibria, which are
easier to analyse in the infinite-agent limit. MFGs have found applications in economics, finance,
and environmental modelling, providing essential tools for studying distributed decision-making
in complex systems.

The incorporation of common noise, random external factors that affect all agents simulta-
neously, into MFGs has been an area of growing interest. This extension introduces additional
complexity but also broadens the applicability of MFGs to real-world scenarios where agents are
subject to shared uncertainties. Foundational work in this area includes studies by Ahuja [4],
Cardaliaguet, Delarue, Lasry, and Lions [8], Carmona and Delarue [11, Vol. II] and Carmona,
Delarue, and Lacker [12]. These contributions address the well-posedness of MFGs with com-
mon noise and provide insights into the convergence of finite-agent systems to their mean-field
counterparts. Recent research by Djete [15] further explores the impact of common noise on
interactions through controls.

In this paper, we propose a novel mean-field game model in which agents interact via a
dynamically evolving common externality in a multi-sector economic growth framework. This
externality, driven by aggregate agent actions, introduces a structure that differs from classical
MFG formulations. While individual agent actions do not directly affect the externality, their
collective behaviour influences its drift, leading to new challenges in both analysis and compu-
tation. Notably, unlike the master equation typically associated with games involving common
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noise, which generally includes a second-order derivative with respect to the measure, the master
equation in our framework involves only first-order derivatives with respect to the measure as
noted in Section 4.5. This structural distinction aligns with observations in Bertucci’s work on
monotone solutions for MFG master equations [5]. Our setting also resonates with work on trad-
ing by Cardaliaguet and Lehalle [10] and recent developments in mean-field game theory, such as
the incorporation of noise through an additional variable in finite state spaces by Bertucci and
Meynard [6]. Furthermore, the use of advanced techniques such as Malliavin calculus to handle
MFGs with common noise, as explored by Tangpi and Wang [28], underscores the increasing
complexity and versatility of these models. Our framework contributes to this growing body of
work by offering a novel perspective on multi-sector economic growth under the influence of a
common externality.

The proposed model builds upon classical growth theory, such as the two-sector models de-
veloped by Uzawa [29], and extends it to incorporate environmental and sustainability consid-
erations. Research on green growth models by Smulders, Toman, and Withagen [26], Tahvonen
and Kuuluvainen [27], and the Green Solow Model by Brock and Taylor [7] highlights the im-
portance of integrating environmental externalities into growth dynamics. These approaches
motivate our investigation of how agents’ investment decisions in different types of capital affect
common resources or external factors.

Recent advances in mean-field games have highlighted their potential to address growth and
distributional dynamics in more complex settings. For example, Achdou et al. [2] use a mean-
field framework to study interactions between firms in input markets, providing insights into
competitive equilibria in complex economic networks. Similarly, Achdou et al. [3] study wealth
and income distributions in macroeconomic contexts, providing continuous-time approaches to
understanding inequality. Gomes, Lafleche, and Nurbekyan [17] extend mean-field game theory
to model economic growth, addressing investment dynamics and sectoral interactions. In addi-
tion, Zhou and Huang [32] study stochastic growth games with common noise, illustrating the
impact of common uncertainties on optimal strategies and equilibrium states. Taken together,
these papers highlight the versatility of mean-field game models for capturing the interplay
between individual decisions and aggregate economic outcomes.

This article is situated within a broader context of applications, including environmental
economics and sustainable development. For instance, MFG models have been used to study
the tragedy of the commons by Kobeissi, Mazari-Fouquer, and Ruiz-Balet [21] and to analyse
the decarbonisation of financial markets by Lavigne and Tankov [23]. Our work extends these
applications by providing a framework for multi-sector investment in a growth context with
externalities driven by common noise.

Contributions. First, we contribute to the Integrated Assessment Models (IAMs) literature.
IAMs are economic models of development, incorporating couplings with respect to the resources
and environmental variables, see [30] for a survey. They aim at better understanding the nature
of the coupling between climate and economics to recommand policies preventing and mitigating
the effects of climate change on societies. For practical reasons, they often simplifies the overall
economical system as one representative country.

Climate change is a perfect illustration of the tragedy of commons [18]. Climate can be seen
as a common good shared by a finite number of interacting agents (the countries) deciding on
their amount of effort to preserve its quality. Because the common good is shared, incentives
to preserve its quality is reduced, and its effective conservation is determined as the output of
a Nash equilibrium problem.

On the one hand, taking into account for the interaction among every country is impossible
for computational reasons. On the other hand, strategic behaviours is a key aspect of the
problematic, which might lead to fundamental misconception and irrelevant solutions if not
taken into account. We fill this gap, proposing a limit model where the strategic behaviour of
each country is taken into account, expected to approximate the finite player case, while being
computationally tractable.

From a modelling perspective, we introduce the first economic growth model of mean field
game type with interactions occurring through an external variable. While this modelling feature
seems natural, it raises new mathematical challenges, see [5, 6, 24] for recent contributions. This

2



modelling characteristic has also been considered in a mathematical finance context [10], but
the associated mathematical difficulties vanishes due to structural assumptions on the cost
functional of the agents. See [11, Vol. 1, Remark 1.20] for a discussion.

From a mathematical perspective, we address both the theoretical and computational chal-
lenges posed by our model. We demonstrate the existence and uniqueness of a strong mean-field
game equilibrium. Using the stochastic maximum principle, we reformulate the equilibrium
conditions as a Forward-Backward Stochastic Differential Equation (FBSDE) and establish a
contraction argument to ensure the existence of a unique solution. If the contraction condition
does not hold, existence and uniqueness can be recovered under regularity and monotonicity
assumptions, see [24]. However, the monotonicity assumptions are not satisfied in our study,
although we expect weak solutions to exist.

On the computational side, inspired by Carmona and Laurière [13], we develop a fixed-point
algorithm combined with neural network approximations to solve the resulting optimisation
problems. At each iteration, we fix the common contribution to the externality and approximate
the optimal control using a neural network. The algorithm alternates between solving the
optimisation problem faced by agents and updating the estimate of the aggregate contribution
to externality. The main difference with the recently cited work is that a second neural network,
and thus a second optimisation, is used to estimate the common contribution at each iteration.
To stabilise convergence, particularly for large time horizons, we incorporate a fictitious time-
stepping technique. This approach allows us to efficiently handle high-dimensional problems
and capture the dynamic interaction between agents’ controls and the evolving externality.

Structure of the paper. The rest of the paper is structured as follows. In Section 2, we
describe the technological investment model in detail. Section 3 introduces the notations and
mathematical tools used throughout the analysis. In Section 4, we present the theoretical
analysis, including key assumptions, the stochastic maximum principle, and the proof of the
existence and uniqueness of the equilibrium. Section 5 details our numerical approach and
provides simulation results for a specified model.

2 Technological investment model

In this section we present and discuss the model under investigation in this article. The technical
assumptions and mathematical proofs are left to the next section. In Section 2.1 we introduce the
representative country in the economy. In Section 2.2 we describe the externality (or interaction)
process p and the notion of Nash equilibrium.

2.1 Representative country

In this section we present a representative country in the economy. To do this, we fix an external
variable p (which will be an externality variable), which we will discuss in the next section. We
assume that there is a continuum of identical (which may be heterogeneous in terms of their
parameters if they are identically and independently distributed) and atomless countries in the
economy. The representative country optimises its utility of consumption through a vector of
investments.

Capital dynamics. We consider n > 0 different types of capital kit, valued in Rn for each
time t ∈ [0, T ]. In each period, the level of each capital i ∈ {1, . . . , n} is increased by a given
investment flow ait minus capital depreciation δkit, and randomly disturbed by a Gaussian noise
whose variance depends on the level of the capital itself (i.e. the noise scales with the level of
the capital). More precisely, the dynamics of the capital vector k is described by the following
stochastic differential equation (or SDE)

dkt = (at − δkt) dt+ σ(kt)dWt, k0 = κ. (1)

where δ is a n × n diagonal matrix of depreciation rates with positive diagonal elements, and
σ(k) is an n× n diagonal matrix of volatility rates scaled by the level of capital, i.e.

σ(k) =
(
δi,jσik

i
)
i,j=1,...,n

, (2)
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where δi,j is the Kronecker symbol and κ is a positive vector of the initial capital level of the
representative country in the different technologies.

Example 2.1. In a pollution model, we can consider two types of capital (n = 2): the brown
capital k1 which pollutes the environment, and the green capital k2, which does not.

Investment. The country can invest in all types of capital. We assume that each country
faces a type of entropic penalty cost of investment

K(a) :=

n∑
i=1

ai ln(ai).

This cost prevents negative investments and bang-bang strategies.

Objective of each country. We assume that the production F : Rn ×Rd → R is a function
of capital k and of the total level of externality p in Rd. Given a stochastic trajectory of the
externality p, each country solves the optimisation problem

sup
a∈L2(F,Rn)

J [p](a) := U [p](a) + V[p](a)− θK(a), (P)

for some θ > 0. The first term

U [p](a) := E

[ ∫ T

0

u(F (kas , ps)− 1 · as)e−ρsds

]
,

denotes the expected and discounted utility derived from consumption (see remark below), where
ka is the controlled process solution of (1). The second term

V[p](a) := E
[
g(kaT , pT )e

−ρT
]
,

is the expected terminal reward. The third term

K(a) = E

[ ∫ T

0

n∑
i=1

ais ln(a
i
s)e

−ρsds

]
,

is the penalization cost of investment.

Remark 2.1. Let ct denote the level of consumption at time t ∈ [0, T ]. Using the macroeconomic
relation

F (kt, pt) = 1 · at + ct,

and substituted into the utility function, we can see that the objective of each country is simply
to maximise its actualised utility of consumption.

2.2 Externality and equilibrium

In this section we describe the externality process and the notion of equilibrium. We start with
the externality process, which is random and common to all players. We then introduce the
notion of a mean-field game solution, i.e. the Nash equilibrium condition for this mean-field
dynamic game.

Externality. The process p represents the externality faced by all the agents. It is valued in
Rd, the externality of production can be of different nature (CO2, CH4 concentration, mean sur-
face temperature, level of resource stocks, biodiversity loss, etc). We assume that the dynamics
of the externality is

dpt = Φ(et, pt)dt+ γ(pt)dW
0
t , p0 = η, et = E[ϕ(kt)|F0

t ], (3)

where γ(p) is a d× d diagonal matrix of volatility rates scaled by the level of pollution, i.e.

γ(p) =
(
δi,jγip

i
)
i,j=1,...,d

,

The mapping ϕ : Rn → Rd transforms the capital level into the externality level.
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Example 2.2. In the context of greenhouse gas emissions, ϕ can be a simple linear map

ϕ(k) = Γk, (4)

where Γ is a matrix with positive entries encoding CO2 equivalent emissions for each technology,
for each pollutant gas.

For each capital, we can associate the variable e which is the total contribution of each
country to the total level of the externality. The drift Φ : Rn ×Rd → Rd represents the average
dynamics of the externality. The dynamics of the externality is driven by a common noise W 0,
creating a dependence of all agents in the game on this source of randomness. This implies that
the coupling variable p is a common random environment for all players.

Nash equilibrium. The mean-field game problem is to find a tuple (ā, p̄) such that

ā ∈ argmax
a∈A

J [p̄](a), p̄ = pā. (N)

Let us describe this condition. Given an externality process, the objective of each country is
to find an optimal investment strategy to maximise its criterion. Once each country has found
its optimal strategy, and thus a trajectory of capital, this prescribes a new externality process
via the externality dynamics. We say that we have found a mean-field solution (or a Nash
equilibrium) if the new externality process is equal to the initial one.

3 Notations and Toolbox

In this section, we provide the main notations, Section 3.1, and a toolbox, Section 3.2, about
well-known results on stochastic differential equations.

3.1 Notations

We denote by Cn the set of functions with n continuous derivatives, and by C1,1 the set of
functions belonging to C1 with Lipschitz derivative. For a function f , the notation ∇f denotes
its gradient. If f is a Lipschitz function of the form (x, y) 7→ f(x, y) we denote by Cf,x its
Lipschitz constant with respect to the variable x. Given a vector x in Rn, we denote by |x| the
2-norm of x.

Spaces of random variables and random processes. L2(G,Rd) spaces. For a given σ-field
G, we denote L0(G,Rd) the space of Rd valued and G-measurable random variables. We denote
by L2(G,Rd) the set of X ∈ L0(G,Rd) satisfying

∥X∥L2(G,Rd) := E
[
|X|2

] 1
2 < +∞.

We denote L∞(G,Rd) the set of X ∈ L0(G,Rd) such that

∥X∥L∞(G) := ess sup
ω∈Ω

sup
i∈{1,...,d}

|Xi(ω)| < +∞.

L2(G,Rd) spaces. For a filtration G = (Gt)0≤t≤T we denote by L0(G,Rd) the space of Rd valued
G-progressively measurable random processes. We denote L2(G,Rd) the set of X ∈ L0(G,Rd),

∥X∥L2(G,Rd) := E

[∫ T

0

|Xs|2ds

] 1
2

< +∞.

S2(G,Rd) spaces. We denote S2(G,Rd) the set of X ∈ L0(G,Rd) satisfying

∥X∥S2(G,Rd) := E

[
sup

t∈[0,T ]

|Xt|2
] 1

2

< +∞.
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We define S∞(G,Rd) the set of X ∈ L0(G,Rd) such that

∥X∥S∞(G,Rd) := sup
t∈[0,T ]

∥Xt∥L∞(Gt,Rd) < +∞.

M2(G,Rd) spaces. We denote M2(G,Rd) the set of X ∈ L0(G,Rd) satisfying

∥X∥M2(G,Rd) := E

[∫ T

0

|Xs|2ds

] 1
2

< +∞.

For each space defined above, we omit the notation Rd when d = 1 in the following.

3.2 Toolbox

This section is a compilation of classical results on SDEs and BSDEs used in this article. We
present results on the existence and uniqueness of stochastic differential equations borrowed
from [31, Chapter 3-4]. This section may be skipped if the reader is reading this article for the
first time.

SDE. Consider a time horizon T > 0 and a dimension n > 0. Consider the SDE

dXt = bt(ω,Xt)dt+ σt(ω,Xt)dWt, X0 = η, (5)

with unknown X, initial condition η, drift mapping for every t ∈ R+, bt : Ω × Rd → Rd and
diffusion mapping σt : Ω× Rd → Rd×d. In the sequel, we drop the ω dependency. Assume that
the data η, b and σ satisfy the following:

1. b and σ are F measurable.

2. Assume that b and σ are Lipschitz almost surely, almost everywhere that is to say there
exists C > 0 such that for all (ω, t) ∈ Ω× [0, T ],

|bt(x1)− bt(x2)|+ |σt(x1)− σt(x2)| ≤ C|x1 − x2|,

for any x1, x2 ∈ Rd.

3. η ∈ L2(F0,Rd), bt(0) ∈ L2(F,Rd), σt(0) ∈ L2(F,Rd×d).

Theorem 3.1. There exists a unique solution X ∈ S2(F,Rd) to equation (5).

BSDE. This paragraph is dedicated to existence, uniqueness, and a priori estimates results
for a general backward stochastic differential equation

−dYt = fs(Ys, Zs)ds− ZsdWs, YT = ξ, (6)

where the unknown is (Y, Z) and the data are the driver f and the terminal condition ξ. We
start with the general n-dimensional case. We assume that

1. The driver f : [0, T ]× Ω× Rd × Rd×d → Rd is F measurable in all variables.

2. f is uniformly L-Lipschitz with respect to (y, z).

3. ξ ∈ L2(FT ,Rd) and ft(0, 0) ∈ L2(F,Rd).

Theorem 3.2. There exists a unique solution (Y,Z) ∈ S2(F,Rd) ×M2p(F,Rd×d) to equation
(6), satisfying

E

[
sup

t∈[0,T ]

|Yt|2 +

(∫ T

0

|Zs|2ds

)]
≤ E

|ξT |2 +(∫ T

0

fs(0, 0)ds

)2
 .

Remark 3.1. In the essentially bounded case, that is to say when ξ ∈ L∞(FT ,Rd) and f(0, 0) ∈
L∞(F,Rd), there exists a constant C > 0 such that

sup
t∈[0,T ]

|Yt|2 + E

[∫ T

0

|Zs|2ds

∣∣∣∣∣Ft

]
≤ C.
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4 Mathematical analysis

In this section we present the mathematical analysis of the model. In Section 4.1 we state the
main assumptions for our analysis. Then we start the proof of the main result of the article,
which is the existence and uniqueness of a Nash equilibrium. This is done in several steps.
Freezing the coupling variable, we characterise the optimal control of a representative country
using a stochastic maximum principle approach in Section 4.2. Section 4.3 is dedicated to the
study of the regularity of the optimal policy. Section 4.4 establishes the the existence and
uniqueness of a Nash equilibrium via a contraction argument. Section 4.5 provides a discussion
on the master equation associated to the mean field game model we consider in this article.

4.1 Assumptions

In this section we provide the main assumptions of this article.

Stochastic context. We fix a time horizon T > 0. We consider two complete filtered proba-
bility spaces (Ω0,F0,F0,P0) and (Ω1,F1,F1,P1), the first one carrying the Brownian motionW 0

and the second carrying the Brownian motion W . We then equip the product space Ω = Ω0×Ω1

with the completion F of the product σ-field under the product probability measure P = P0⊗P1,
the extension of P to F being still denoted by P. The right-continuous and complete augmen-
tation of the product filtration is denoted by F. In our setting, W is an idiosyncratic noise and
W 0 is the common noise.

Assumptions on the utility function. The utility function u : R∗
+ → R has the following

properties:

i) u is increasing and strictly concave.

ii) u is of class C2.

iii) u′(c) tends to +∞ when c goes to 0+.

iv) for every ε > 0, maxε≤c |u′′(c)| < +∞.

Assumptions on the production function. The production function F : Rn
+ × Rd

+ → R
satisfies:

i) F is bounded by below by a positive constant F .

ii) F is of class C1,1.

iii) F is increasing and concave with respect to its first variable.

iv) sup(k,p) |∇F (k, p)| is finite.

Assumptions on the terminal cost. We assume that the terminal cost g : Rn
+ × Rd

+ → R
satisfies:

i) g is non negative.

ii) g is increasing and concave with respect to its first variable.

iii) g is of class C1,1.

Assumptions on the function transforming the level of capital into externalities.
We assume that ϕ : Rn

+ → Rd
+ is Lipschitz, i.e. there exists Cϕ such that∣∣ϕ(k1)− ϕ(k2)

∣∣ ≤ Cϕ

∣∣k1 − k2
∣∣ , ∀k1, k2 ∈ Rn

+.
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Assumptions on the drift of the externality. We assume that Φ : Rn
+ → Rd

+ is Lipschitz,
i.e. there exist CΦ,e and CΦ,p such that∣∣Φ(e1, k1)− Φ(e2, k2)

∣∣ ≤ CΦ,e

∣∣e1 − e2
∣∣+ CΦ,p

∣∣p1 − p2
∣∣ , ∀k1, k2 ∈ Rn

+.

Examples of utility and production functions.

1. The classical Constant Relative Risk Aversion (CRRA) utility, which is often used in
economic applications, satisfies these assumptions. More precisely, for any c > 0 the
function

u(c) =

{
c1−η

1−η , if η ∈ (0, 1),

ln(c) if η = 1,

where the parameter η measures the risk aversion, satisfies the hypothesis.

2. The assumptions on the production function are more restrictive: it follows from the
required Lipschitz properties. The following example is a kind of Constant of Elastic-
ity of Substitution (CES) production function where the share parameter is replaced by
productivity coefficients depending on the externality bi(p):

F (k, p) =

(
n∑

i=1

bi(p)min
(
ki + ε,K

)γ) β
γ

,

with ε > 0, γ ∈ (0, 1], and β ∈ (0, 1). The constant K corresponds to a space con-
straint: it ensures that if the functions bi are bounded and Lipschitz, then (k, p) 7→
bi(p)min

(
ki + ε,K

)γ
is Lipschitz.

In others words, for F to satisfy the assumptions, the functions bi must be C1,1, satisfy

1

C
≤ bi(p) ≤ C,

1

C
≤ b′i(p) ≤ C,

for a constant C > 0, and the min function needs to be replaced by a smoothen version.

To see that the functions bi affect the productivity of each sector, let us consider the
simplest case: γ = 1, n = 2 and k1, k2 are less than K−ε. Then the marginal productivity
is given by

∂F

∂k1
(k, p) = β

(
b1(p)k

1 + b2(p)k
2
)β−1

b1(p),

∂F

∂k2
(k, p) = β

(
b1(p)k

1 + b2(p)k
2
)β−1

b2(p).

Therefore, if b1(p) < b2(p), then increasing by 1 unit of k2 is more profitable than increasing
by 1 unit of k1.

4.2 Stochastic maximum principle

Given a trajectory of externality p, we will use the stochastic maximum principle (see [25, Section
6.4.2]) to characterise the optimal control. For this introduce the generalised Hamiltonian of
the optimal control problem:

H(a, k, p, y, z) = [a− (δ + ρ)k]y + u(F (k, p)− a · 1)− θ

n∑
i=1

ai ln(ai) + Tr(σ(k)T z).

Theorem 4.1. Let a∗ be an admissible control and k∗ = ka
∗
be the associated controlled diffu-

sion. Suppose that there exists a solution (y∗, z∗, z0,∗) to{
−dyt = ∇kH(a∗t , k

∗
t , yt, zt)dt− ztdWt − z0t dW

0
t ,

yT = ∇kg(kT , pT ),
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such that

H(a∗t , k
∗
t , pt, y

∗
t , z

∗
t ) = max

a
H(a, k∗t , pt, y

∗
t , z

∗
t ), 0 ≤ t ≤ T, dt⊗ dP− a.s. (7)

and
(k, a) 7→ H(a, k, p, y∗t , z

∗
t ) is a concave function for almost all (t, ω). (8)

Then a∗ is an optimal control for (P). If moreover the map defined in (8) is strictly concave
for almost all (t, ω) then the maximum is unique.

The scheme of the proof is standard and can be found in [25, Section 6.4.2]. The key of the
proof relies on the concavity of the map (a, k) 7→ H(a, k, p, y, z).

Proof. Let us consider another admissible control a and its controlled process k. By definition
of the criteria we have

J [p](a)− J [p](a∗) = U [p](a)− U [p](a∗) + V[p](a)− V[p](a∗)− θ(K(a)−K(a∗)).

On the one hand, let us compute

I1 = U [p](a)− U [p](a∗)− θ(K(a)−K(a∗))

= E

[∫ T

0

(u(F (kt, pt)− at · 1)− u(F (k∗t , pt)− a∗t · 1))e−ρtdt

]

+ θE

[∫ T

0

(K(at)−K(a∗t ))e
−ρtdt

]

= E

[∫ T

0

(H(at, kt, pt, y
∗
t , z

∗
t )−H(a∗t , k

∗
t , pt, y

∗
t , z

∗
t )e

−ρtdt

]

− E

[∫ T

0

[(at − a∗t − (δ + ρ)(kt − k∗t ))y
∗
t +Tr((σ(kt)− σ(k∗t ))

T z∗t )]e
−ρtdt

]
.

On the other hand, by concavity of the terminal condition with respect to its first variable, by
the Itô formula we have

I2 = V[p](a)− V[p](a∗) ≤ e−ρTE [ ∇kg(k
∗
T , pT ) · (kT − k∗T )] = E

[
e−ρT y∗T · (kT − k∗T )

]
= E

[ ∫ T

0

e−ρt[−∇kH(a∗t , k
∗
t , pt, y

∗
t , z

∗
t )− ρy∗t ] · (kt − k∗t )dt

]

+ E

[∫ T

0

e−ρt[y∗t (at − a∗t − δ(kt − k∗t )) + Tr((σ(kt)− σ(k∗t ))
T z∗t )]dt

]
.

Finally, we have

J [p](a)− J [p](a∗) = I1 + I2

≤ E

[∫ T

0

e−ρt[H(at, kt, pt, y
∗
t , z

∗
t )−H(a∗t , k

∗
t , pt, y

∗
t , z

∗
t )]dt

]

− E

[∫ T

0

e−ρt∇kH(a∗t , k
∗
t , pt, y

∗
t , z

∗
t ) · (kt − k∗t )ds

]
≤ 0,

using (7) and the concavity of the Hamiltonian with respect to its two first variables.
Moreover, it is easy to see that if a is different from a∗ on a subset of [0, T ]×Ω with positive

measure, and the Hamiltonian is strictly concave with respect to its first two variables, then the
last inequality is strict, which provides the uniqueness of the optimal control.
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4.3 Regularity of the optimal control variable

By the stochastic maximum principle, the optimal control is a mapping a : Rn×Rd×Rn → Rn,

a(k, p, y) = argmax
α∈Rn

H(α, k, p, y, z). (9)

As we shall see, the right-hand side is independent of z, so we omit the dependence on this
variable in the left-hand side. This section is devoted to the proof of the following proposition.

Proposition 4.1. The mappings

Rn × Rd × [0, y]n ∋ (k, p, y) 7→ a(k, p, y), (10)

Rn × Rd × [0, y]n × Rn×n ∋ (k, p, y, z) 7→ ∇kH(a(k, p, y), k, p, y, z), (11)

are Lipschitz continuous.

The proof can be found at the end of this section. Let us first justify that the policy (9) is
independent on z. By direct computation it can be seen that every ᾱ ∈ Rn which satisfies the
first order condition ∇aH(ᾱ, k, p, y, z) = 0 is such that

ᾱi = exp

(
1

θ
(yi − u′(F (k, p)− 1 · ᾱ)− 1)

)
,

for all i ∈ {1, . . . , n} which is independent of z. For all (k, p, y) ∈ Rn × Rd × Rn, we define the
mapping f [k, p, y] : Rn → R,

f [k, p, y](ξ) = ξ −
n∑

i=1

exp

(
1

θ
(yi − u′(F (k, p)− ξ))− 1

)
,

and the equation
f [k, p, y](ξ) = 0. (12)

Finally, provided that there exists a unique ξ(k, p, y) solution to the last equation (which is the
purpose of the next lemma), the optimal policy defined by (9) is given by

ai(k, p, y) = exp

(
1

θ
(yi − u′(F (k, p)− ξ(k, p, y)))− 1

)
, (13)

for each i ∈ {1, . . . , n}.

Lemma 4.1. There exists a unique solution ξ(k, p, y) to equation (12), satisfying

0 < ξ(k, p, y) < F (k, p)

for each (k, p, y) ∈ Rn × Rd × Rn.

Proof. We can verify that for any (k, p, y) ∈ Rn × Rd × Rn,

f [k, p, y](0) < 0, lim
ξ→F (k,p)

f [k, p, y](ξ) = F (k, p) ≥ F > 0, (14)

since we assume that F is lower bounded. The intermediate value theorem gives the existence
of a solution to the equation (12) valued in (0, F (k, p)). The uniqueness comes from the strict
monotonicity of f [k, p, y].

From now on we define ξ as the solution of the equation (12) and the consumption strategy
is given by c(k, p, y) = F (k, p)− ξ(k, p, y) for all (k, p, y) ∈ Rn

+ × Rd
+ × Rn

+.

Lemma 4.2. For any positive real number y. The mapping

Rn
+ × Rd

+ × [0, y]n ∋ (k, p, y) 7→ c(k, p, y), (15)

is bounded below by a positive constant ηy.
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Proof. Fix (k, p, y) ∈ Rn
+ × Rd

+ × [0, y]n, by definition of ξ we have

ξ(k, p, y) ≤ exp

(
1

θ
(y − u′(F (k, p)− ξ(k, p, y)))− 1

)
.

Then using c = F − ξ, we have

c(k, p, y) ≥ F (k, p)− exp

(
1

θ
(y − u′(c(k, p, y)))− 1

)
.

We then obtain by assumption on the lower bound of F that

c(k, p, y) + exp

(
1

θ
(y − u′(c(k, p, y)))− 1

)
≥ F .

Since c+exp
(
1
θ (y − u′(c))− 1

)
goes to 0 when c tends to 0 and F > 0, then c admits a positive

bound from below, which concludes the proof.

Lemma 4.3. The function ξ is of class C1.

Proof. First observe that the mapping (ξ, k, p, y) 7→ f [k, p, y](ξ) is of class C1. Then

∂ξf [k, p, y](ξ) = 1−
n∑

i=1

1

θ
exp

(
1

θ
(yi − u′(F (k, p)− ξ))− 1

)
u′′(F (k, p)− ξ) ≥ 1.

Therefore, we can apply the implicit mapping theorem to deduce that ξ is of class C1. Moreover,

∇ξ(k, p, y) = −∂ξf [k, p, y](ξ(k, p, y))
−1∇(k,p,y)f [k, p, y](ξ(k, p, y)),

where

∇(k,p)f [k, p, y](ξ) =

n∑
i=1

1

θ
exp

(
1

θ
(yi − u′(F (k, p)− ξ))− 1

)
u′′(F (k, p)− ξ)∇(k,p)F (k, p),

and

∇yf [k, p, y](ξ) = −
(
1

θ
exp

(
1

θ
(yi − u′(F (k, p)− ξ))− 1

))
i=1,...,n

.

Corollary 4.1. For any (k, p, y) ∈ Rn
+ × Rd

+ × [0, y],

|∇kξ(k, p, y)| ≤ |∇kF (k, p)| , |∇pξ(k, p, y)| ≤ |∇pF (k, p)|

and
|∇yξ(k, p, y)u

′′(F (k, p)− ξ(k, p, y))| ≤ 1.

Finally, we prove the Proposition 4.1. We start with the mapping (10). We note that
c = F − ξ. We check that u′(c) is Lipschitz. To do this, we show that its gradient

∇(k,p,y)u
′(c) = u′′(c)∇(k,p,y)c,

is bounded. Indeed, Lemma 4.2 gives a bound by below of c. Then, we deduce that u′′(c) is
bounded. This bound and Corollary 4.1 imply that u′′(c)∇(k,p,y)c is bounded, therefore u′(c) is
Lipschitz.
By equation (13), the optimal control writes ai(k, p, y) = exp

(
1
θ (yi − u′(c(k, p, y)))− 1

)
, for

each i ∈ {1, . . . , n}, so the mapping (10) is Lipschitz.

We now turn to (11). Using equation (2), defining σ̂ such that σ̂i,j = σiδi,j , i = 1, . . . n,
j = 1, . . . n,

∇kH(a(k, p, y), k, p, y, z) = −(δ + ρ)y + diag(σ̂z) + u′(c(k, p, y))∇kF (k, p).
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The first two terms are linear, so we only need to show that the last term is Lipschitz. We have
already established that u′(c) is Lipschitz. Let us check that it is bounded. From Lemma 4.2
and the fact that u′ is decreasing and positive, we get

0 < u′(c) ≤ u′(ηy) < +∞.

On the other hand, by assumptions ∇kF (k, p) is Lipschitz and bounded. Therefore, the product
function

(k, p, y) 7→ u′(c(k, p, y))∇kF (k, p),

is Lipschitz, which ends the proof.

4.4 Existence and uniqueness of a mean-field game equilibrium

We are now in a position to tackle the mean field problem (N). By Theorem 4.1, a tuple (a, p)
is solution to (N), if and only if there exists a solution to the following system

dpt = Φ(E[ϕ(kt)|F0
t ], pt)dt+ γ(pt)dW

0
t , p0 = η,

−dyt = ∇kH(a(kt, pt, yt), kt, pt, yt, zt)dt− ztdWt − z0t dW
0
t , yT = ∇kg(kT , pT ),

dkt = (a(kt, pt, yt)− δkt)dt+ σ(kt)dWt, k0 = κ,

(16)

where a is the mapping defined in (9) and examined in the previous section (which we recall
here a(k, p, y) = argmaxα∈Rn H(α, k, p, y, z)). Let us rewrite the above system as a fixed-point
problem:

• Given k ∈ L2(F,Rn), we denote Θ1(k) the solution to the first equation,

• Given a pair (k, p) ∈ L2(F,Rn)×L2(F,Rd), we denote Θ2(k, p) the solution to the second
equation,

• Given a couple (y, p) ∈ L2(F;Rn)×L2(F,Rd), we denote Θ3(p, y) the solution to the third
equation.

Find a solution (y, z, k, p) to the system of equation (16) is then equivalent to find a fixed-point
to the mapping

Θ: L2(F,Rn) → L2(F,Rn)

defined as follow: for any k ∈ L2(F,Rn)

1. Associate p = Θ1(k),

2. Then associate (y, z, z0) = Θ2(k, p),

3. Finally set Θ(k) = Θ3(p, y).

The following propositions establish the well-posedness and the Lipschitz properties of the
maps Θi (i = 1, 2, 3). Under some appropriate assumptions the map Θ is a contraction. There-
fore, existence and uniqueness follow from Picard’s fixed point theorem.

Proposition 4.2. The mapping Θ1 : L2(F,Rn) → L2(F,Rd) is well-defined and

∥Θ1(k)−Θ1(k
′)∥L2(F,Rd) ≤

√
C1 ∥k − k′∥L2(F,Rn) ,

where C1 := CΦ,eCϕTe
(CΦ,e+2CΦ,p+C2

γ)T , with Cγ = maxi γi.

Proof. Step 1: Well-posedness of Θ1. For any k ∈ L2(F,Rn), the existence and uniqueness of
the solution of the first equation of (16) follows from the Lipschitz properties of the coefficients.
Since ∥η∥L2(Ω) < +∞, the solution belongs to L2(F,Rd). Therefore Θ1 is well defined and
completes the step.
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Step 2: Lipschitz continuity. Let us check that the map Θ1 is Lipschitz. It follows from the
Lipschitz properties of Φ and Γ. Consider k1 and k2, two elements of L2(F,Rn). For convenience
we denote pi = Θ1(k

i), ∆p = p1 − p2 and ∆k = k1 − k2. We observe that ∆p0 = 0 and

d∆pt =
(
Φ(E[ϕ(k1t )|F0

t ], p
1
t )− Φ(E[ϕ(k2t )|F0

t ], p
2
t )
)
dt+ γ(∆pt)dW

0
t .

Therefore, for any t ∈ [0, T ], Ito’s formula yields that

∥∆pt∥2L2(Ft,Rd) =E
[∫ t

0

2∆ps
(
Φ(E[ϕ(k1s)|F0

s ], p
1
s)− Φ(E[ϕ(k2s)|F0

s ], p
2
s)
)
ds

]
+ E

[∫ t

0

Tr(γ(∆ps)
T γ(∆ps))ds

]
.

Using Fubini’s theorem and the Cauchy-Schwarz inequality, we have

∥∆pt∥2L2(Ft,Rd) ≤ 2

∫ t

0

∥∆ps∥L2(Fs,Rd)

∥∥Φ(E[ϕ(k1s)|F0
s ], p

1
s)− Φ(E[ϕ(k2s)|F0

s ], p
2
s)
∥∥
L2(Fs,Rd)

ds

+ C2
γ

∫ t

0

∥∆ps∥2L2(Fs,Rd) ds.

Using the Lipschitz continuity of Φ and the fact that∥∥E[ϕ(k1s)|F0
s ]− E[ϕ(k2s)|F0

s ]
∥∥
L2(Fs,Rd)

≤
∥∥ϕ(k1s)− ϕ(k2s)

∥∥
L2(Fs,Rd)

we have

∥∆pt∥2L2(Ft,Rd) ≤2CΦ,e

∫ t

0

∥∆ps∥L2(Fs,Rd)

∥∥ϕ(k1s)− ϕ(k2s)
∥∥
L2(Fs,Rd)

ds

+ 2CΦ,p

∫ t

0

∥∆ps∥2L2(Fs,Rd) ds+ C2
γ

∫ t

0

∥∆ps∥2L2(Fs,Rd) ds.

Using the Lipschitz continuity of ϕ, we finally end up with

∥∆pt∥2L2(Ft,Rd) ≤
(
CΦ,e + 2CΦ,p + C2

γ

) ∫ t

0

∥∆ps∥2L2(Fs,Rd) ds+ CΦ,eCϕ

∫ t

0

∥∆ks∥2L2(Fs,Rd) ds.

Thus, Grönwall’s Lemma leads to

∥∆pt∥2L2(Ft,Rd) ≤ CΦ,eCϕe
(CΦ,e+2CΦ,p+C2

γ)t
∫ t

0

∥∆ks∥2L2(Fs,Rd) ds,

for any t ∈ [0, T ]. Taking the integral over time, Fubini’s theorem finally gives us

∥∆p∥2L2(F,Rd) ≤ C1 ∥∆k∥2L2(F,Rn) ,

concluding the step and the proof.

We now turn to Θ2. For ease of notation, we introduce the function υ : Rn
+ ×Rd

+ ×Rn → R,

υ(k, p, y) = u′(c(k, p, y))∇kF (k, p).

We recall that when y is bounded, υ is Lipschitz (see the end of the proof of Proposition 4.1)
and we denote Cυ,k, Cυ,p and Cυ,y its Lipschitz constants with respect to k, p and y.

Proposition 4.3. The mapping Θ2 : L2(F,Rn) × L2(F,Rd) → S2(F,Rn) × M2(F,Rn×n) ×
M2(F,Rn×d) is well-defined. There exists Cy > 0 such that for any (k, p)∥∥Θ1

2(k, p)
∥∥
S∞(F,Rn)

≤ Cy,
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where Θ1
2(k, p) denotes the first component of Θ2(k, p). In addition,∥∥Θ1

2(k
1, p1)−Θ1

2(k
2, p2)

∥∥2
L2(F,Rn)

≤ C2

∥∥k1 − k2
∥∥2
L2(F,Rn)

+ C3

∥∥p1 − p2
∥∥2
L2(F,Rd)

,

where

C2 = (C2
∇kg,k

+ TC2
υ,k)

1

ν

(
eνT − 1

)
,

C3 = (C2
∇kg,p

+ TC2
υ,p)

1

ν

(
eνT − 1

)
,

with ν = −2(δ + ρ) + C2
υ,y + C2

σ + Cυ,k + Cυ,p, with Cσ = maxi σi.

Proof. Step 1: Well-posedness of Θ2. The Lipschitz properties of the coefficients ensure well-
posedness as stated in Theorem 3.2.

Step 2: S∞ estimate. Using standard arguments, we start by linearising the BSDE. The
fundamental theorem of calculus gives us

u′(F (kt, pt)− ξ∗(kt, pt, yt)) = u′(F (kt, pt)− ξ∗(kt, pt, 0))

−
∫ 1

0

u′′(F (kt, pt)− ξ∗(kt, pt, syt))∇yξ
∗(kt, pt, syt)dsyt.

Therefore, by setting

αt = −(δ + ρ)−
∫ 1

0

u′′(F (kt, pt)− ξ∗(kt, pt, syt))∇yξ
∗(kt, pt, syt)ds∇kF (kt, pt),

we observe that y satisfies

−dyt = (u′(F (kt, pt)− ξ∗(kt, pt, 0))∇kF (kt, pt) + αtyt + diag(σ̂zt))dt− ztdWt − z0t dW
0
t .

Note that using Corollary 4.1, ∥αt∥L∞ ≤ δ + ρ+ ∥∇kF∥∞.
Let Q be the equivalent probability measure to P given by dQ = E(

∫
diag(σ̂)dW )TdP where

E(
∫
diag(σ̂)dW )T denotes the stochastic exponential associated with diag(σ̂). Note that the

Novikov’s condition is trivially satisfied since σ is assumed to be constant.
We deduce from Ito’s formula and by taking the conditional expectation under Q, that for

any t ∈ [0, T ] we have

yte
−

∫ T
t

αudu = EQ

[
∇kg(kT , pT ) +

∫ T

t

u′(F (kτ , pτ )− ξ∗(kτ , pτ , 0))∇kF (kt, pt)e
−

∫ T
τ

αududτ

∣∣∣∣Ft

]
.

We observe that all components of yt are non-negative and bounded. Indeed, α is bounded
in S∞(F), ∇kg and ∇kF are uniformly bounded and non-negative, so that

(k, p) 7→ u′(F (k, p)− ξ∗(k, p, 0)),

from the bound given in lemma 4.2 and the concavity of u. Finally, for any t ∈ [0, T ]

ess sup |yt| ≤ (∥∇kg∥∞ + Tu′(η0) ∥∇kF∥∞) e(δ+ρ+∥∇kF∥∞)T

where η0 is defined in Lemma 4.2.

Step 3: Lispchitz continuity of Θ2. Let (k1, p1) and (k2, p2) be in L2(F,Rn) × L2(F,Rd). Let
(yi, zi, z0,i) = Θ2(k

i, pi) for i ∈ {1, 2} and

∆y = y1 − y2, ∆z = z1 − z2, ∆z0 = z0,1 − z0,2, ∆p = p1 − p2, ∆k = k1 − k2.

We have

−d∆yt = (−(δ + ρ)∆yt + diag(σ̂∆zt) + ∆υt) dt−∆ztdWt −∆z0t dW
0
t ,
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with terminal condition ∆yT = ∇kg(k
1
T , p

1
T ) − ∇kg(k

2
T , p

2
T ) and where ∆υt = υ(k1t , p

1
t , y

1
t ) −

υ(k2t , p
2
t , y

2
t ). Let Λt = etν for some real parameter ν (which might be negative) to be determined.

Now by the Itô formula we have that

Λt|∆yt|2 +
∫ T

t

Λs

(
|∆zs|2 + |∆z0s |2

)
ds = ΛT |∆yT |2 −

∫ T

t

Λsν|∆ys|2ds− 2

∫ T

t

Λs∆yTs d∆ys

= |∆yT |2 −
∫ T

t

Λsν|∆ys|2ds+ 2

∫ T

t

Λs

(
−(δ + ρ)|∆ys|2 +∆yTs diag(σ̂∆zs) + ∆yTs ∆υs

)
ds−Mt,

where Mt = −
∫ T

t
Λs∆yTs ∆zsdWs −

∫ T

t
Λs∆yTs ∆z0sdW

0
s is a martingale term and we recall that

|z|2 = Tr(zT z) for any z ∈ Rn×d. By Fenchel’s and Cauchy-Schwarz inequalities we have that

∆yTs diag(σ̂∆zs) + ∆yTs ∆υs ≤
1

2
C2

σ|∆ys|2 +
1

2
|∆zs|2 + |∆ys||∆υs|

≤1

2
(2Cυ,y + C2

σ + Cυ,k + Cυ,p)|∆ys|2

+
1

2
|∆zs|2 +

1

2
(Cυ,k|∆ks|2 + Cυ,p|∆ps|2).

Combining with the previous equality yields,

Λt|∆yt|2 ≤ ΛT |∆yT |2 + (−ν − 2(δ + ρ) + 2Cυ,y + C2
σ + Cυ,k + Cυ,p)

∫ T

t

Λs|∆ys|2ds

+

∫ T

t

Λs(Cυ,k|∆ks|2 + Cυ,p|∆ps|2)ds−Mt.

Choosing ν = −2(δ + ρ) + 2Cυ,y + C2
σ + Cυ,k + Cυ,p the expression simplifies,

Λt|∆yt|2 ≤ ΛT |∆yT |2 +
∫ T

t

Λs(Cυ,k|∆ks|2 + Cυ,p|∆ps|2)ds−Mt.

Recalling that the terminal condition is Lipschitz

|∆yT |2 ≤ C2
∇kg,k

|∆kT |2 + C2
∇kg,p

|∆pT |2,

we further estimate

Λt|∆yt|2 ≤ ΛT

(
C2

∇kg,k
|∆kT |2 + C2

∇kg,p
|∆pT |2

)
+

∫ T

t

Λs(Cυ,k|∆ks|2 + Cυ,p|∆ps|2)ds−Mt.

Dividing by Λt both sides and taking the expectation yields

∥∆yt∥2L2(Ft,Rn) ≤ Λt,T

(
C2

∇kg,k
∥∆kT ∥2L2(FT ,Rn) + C2

∇kg,p
∥∆pT ∥2L2(FT ,Rd)

)
+

∫ T

t

Λt,s(C
2
υ,k∥∆ks∥2L2(Fs,Rn) + C2

υ,p∥∆ps∥2L2(Fs,Rd))ds,

where Λt,s = ΛsΛ
−1
t . Taking the integral with respect to time both sides,

∥∆yt∥2L2(F,Rn) ≤
(
(C2

∇kg,k
+ TCυ,k)∥∆k∥2L2(F,Rn) + (C2

∇kg,p
+ TCυ,p)∥∆p∥2L2(F,Rn)

)∫ T

0

Λt,Tdt.

Using that
∫ T

0
Λt,Tdt = ΛT

∫ T

0
eν(T−t)dt = 1

ν

(
eνT − 1

)
, concludes the step and the proof.

Proposition 4.4. The mapping Θ3 : L2(F,Rd)× L2(F,Rn) → L2(F,Rn), is well-defined and∥∥Θ3(p
1, y1)−Θ3(p

2, y2)
∥∥2
L2(F) ≤ C4

∥∥p1 − p2
∥∥2
L2(F) + C5

∥∥y1 − y2
∥∥2
L2(F) ,

where

C4 = Ca,pTe
(Ca,p+Ca,y+2Ca,k+C2

σ−2δ)T ,

C5 = Ca,yTe
(Ca,p+Ca,y+2Ca,k+C2

σ−2δ)T .
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Proof. Step 1: Well-posedness of Θ3. For any (p, y) ∈ L2(F,Rd)×L2(F,Rn), the existence and
uniqueness of the solution of the third equation of (16) comes from the Lipschitz properties of
the coefficients. In addition, since ∥κ∥L2(Ω) < +∞, the solution belongs in L2(F,Rn). Therefore,
Θ3 is well-defined.
Step 2: Lipschitz continuity. Let us verify that the map Θ3 is Lipschitz. It is a consequence of
the Lipschitz property of a. We denote ki = Θ3(p

i, yi) for i ∈ {1, 2} and

∆at = a(k1t , p
1
t , y

1
t )− a(k2t , p

2
t , y

2
t ).

Observe that ∆k0 = 0 and

d∆kt = (∆at − δ∆kt) dt+ σ(∆kt)dWt.

Therefore, by Itô’s formula we have

∥∆kt∥2L2(Ft,Rn) = E
[∫ t

0

2∆kTs d∆ks +

∫ t

0

Tr(σ(∆ks)
Tσ(∆ks))ds

]
= E

[∫ t

0

2∆kTs (∆at − δ∆ks) ds+

∫ t

0

Tr(σ(∆ks)
Tσ(∆ks))ds

]
.

By Fubini’s theorem, Cauchy-Schwarz inequality and linearity of σ, we have

∥∆kt∥2L2(Ft,Rn) ≤2

∫ t

0

(
∥∆ks∥L2(Fs,Rn)∥∆as∥L2(Fs,Rn) − δ∥∆ks∥2L2(Fs,Rn)

)
ds

+ C2
σ

∫ t

0

∥∆ks∥2L2(Fs,Rn)ds.

Now by the Lipschitz property of function a, we have

∥∆kt∥2L2(Ft,Rn) ≤2

∫ t

0

∥∆ks∥L2(Fs,Rn)

(
Ca,p∥∆ps∥L2(Fs,Rd) + Ca,y∥∆ys∥L2(Fs,Rn)

)
ds

+ (2Ca,k + C2
σ − 2δ)

∫ t

0

∥∆ks∥2L2(Fs,Rn)ds.

Now the Fenchel inequality yields that

∥∆kt∥2L2(Ft,Rn) ≤
∫ t

0

(
Ca,p∥∆ps∥2L2(Fs,Rd) + Ca,y∥∆ys∥2L2(Fs,Rn)

)
ds

+ (Ca,p + Ca,y + 2Ca,k + C2
σ − 2δ)

∫ t

0

∥∆ks∥2L2(Fs,Rn)ds.

By Grönwall’s Lemma we have

∥∆kt∥2L2(Ft,Rn) ≤ e(Ca,p+Ca,y+2Ca,k+C2
σ−2δ)t

∫ t

0

(
Ca,p∥∆ps∥2L2(Fs,Rd) + Ca,y∥∆ys∥2L2(Fs,Rn)

)
ds.

Taking the integral in time, we deduce that

∥∆k∥2L2(F,Rn) ≤ Te(Ca,p+Ca,y+2Ca,k+C2
σ−2δ)T

(
Ca,p∥∆p∥2L2(F,Rd) + Ca,y∥∆y∥2L2(F,Rn)

)
.

We can now establish the main result of this paper under the following condition:

C4C1 + C5(C2 + C3C1) < 1. (17)

Theorem 4.2. There exists a unique equilibrium if (17) holds.
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Proof. From Proposition 4.2, 4.3 and 4.4, and from direct computations∥∥Θ(k1)−Θ(k2)
∥∥
L2(F,Rn)

≤ (C4C1 + C5(C2 + C3C1))
1
2
∥∥k1 − k2

∥∥
L2(F,Rn)

.

The conclusion follows by a direct application of Picard’s fixed-point theorem.

We end this section with an interpretation on the constants involved in the contraction
condition (17) and then present several situations in which the contraction property occurs.

To improve the discussions readability, we recall the definition of each constant and our
notational convention: if f is a Lipschitz function of the form (x, y) 7→ f(x, y), we denote by
Cf,x its Lipschitz constant with respect to the variable x. We also recall the constants C1 to
C5,

• C1 = CΦ,eCϕTe
(CΦ,e+2CΦ,p+C2

γ)T ,

• C2 = (C2
∇kg,k

+ TC2
υ,k)

1
ν

(
eνT − 1

)
,

• C3 = (C2
∇kg,p

+ TC2
υ,p)

1
ν

(
eνT − 1

)
,

• C4 = Ca,pTe
(Ca,p+Ca,y+2Ca,k+C2

σ−2δ)T ,

• C5 = Ca,yTe
(Ca,p+Ca,y+2Ca,k+C2

σ−2δ)T ,

with ν = −2(δ + ρ) + C2
υ,y + C2

σ + Cυ,k + Cυ,p, Cγ = maxi γi and Cσ = maxi σi.

Interpretation of the constants. Constant C1. The constant C1 measures how much the
drift of the external variable Φ depends on the aggregate contribution of agents e and the level
of the external variable p. In economic terms, it captures the sensitivity of the external variable
to collective behaviour. A high C1, driven by large Lipschitz constants CΦ,e, CΦ,p or significant
stochastic intensity Cγ , indicates that the external variable is highly reactive to agents’ decisions,
which can amplify feedback effects in the system.

Constant C2 and C3. The constants C2 and C3 describe how changes in agents’ states k and
the external variable p affect their individual goals. C2 reflects the sensitivity of agents’ goals
to changes in their own states, while C3 measures how agents’ goals respond to the external
variable. These constants grow with the time horizon T and the strength of interactions between
agents and their environment, highlighting the amplified responses over longer time periods.

Constant C4 and C5. The constants C4 and C5 describe how agents’ optimal control strategies
a are influenced by the external variable p and the adjoint variable y. Both share a common
multiplicative factor:

Te(Ca,p+Ca,y+2Ca,k+C2
σ−2δ)T .

This factor represents the amplification of feedback effects over time, driven by the time horizon
T , stochastic fluctuations Cσ, and sensitivity parameters. A higher depreciation rate δ offsets
these effects, stabilising the system. The term Ca,p in C4 measures how strongly agents’ controls
respond to changes in the external variable p, while Ca,y in C5 captures the influence of adjoint
variable y on agents’ controls. Higher values of Ca,p or Ca,y indicate stronger coupling between
agents’ decisions and the system, increasing the potential for amplified feedback loops.

Together, these constants reflect the interplay between direct and indirect effects in the
system. Direct interactions are captured by C4C1, where agents’ decisions directly influence the
external variable’s dynamics. Indirect feedback effects, represented by C5(C2 +C3C1), account
for how changes in the external variable propagate through agents’ objectives and decisions. The
contraction condition holds when the amplification of interactions due to time horizon, sensitivity
parameters, and stochastic fluctuations is sufficiently small, or when stabilising factors such as
depreciation effectively limit the propagation of feedback in the system.
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Discussion on the contraction. We can identify three main regimes that helps the con-
traction to hold. We mean by ”help” that a combination of the following regime might lead to
contraction.

Small time horizon. As expected, if the time horizon T is small enough, then the contraction
condition holds. This is a standard requirements to establish the well-posedness and uniqueness
of FBSDEs.

Small interaction and large production. Small interactions helps to get contraction. If the
sensitivity with respect to the aggregate contribution of agents of the drift of the external
variable is small, meaning that Cϕ,e is small, then C1 is small. In addition, if the production
is large, we expect that the sensitivity of the marginal production with respect to k to be
small. Using the Corollary 4.1 and its proof, we deduce that Cυ,k is small when ∥∇kF∥∞ and
C∇kF,k are small. If moreover C∇kg,k is small, then the constant C2 is small, ensuring that the
contraction condition holds.

Small sensibility of the control by large regularization. The contraction condition can be satisfied
for small enough values of the constants C4 and C5, induced by small enough values of the
constants Ca,y and Ca,p. The latter corresponds to low sensibility of the feedback control with
respect to the adjoint y and the externality p. Recalling that the feedback control is given by

ai(k, p, y) = exp

(
1

θ
(yi − u′(F (k, p)− ξ(k, p, y)))− 1

)
,

and yi for each i ∈ {1, . . . , d} is bounded by Proposition 4.3, the Lipschitz constant Ca,y can be
as small as desired for large values of the regularisation parameter θ. The same reasoning applies
for the constant Ca,p. The function F is Lipschitz with respect to p and by the second inequality
of Corollary 4.1, ξ is Lipschitz with respect to p. Since the consumption c = F (k, p)−ξ(k, p, y) is
bounded from below, the derivative u′ is Lipschitz. Then the larger the constant θ, the smaller
the constant Ca,y.

4.5 Link with the master equation

Mean field games can be studied using the master equation. It is a partial differential equation
defined on an infinite dimensional space where its solution should be the value of the game. The
well-posedness of this equation motivates the need to develop sharper existence and uniqueness
results for the FBSDE system. Indeed, if existence and uniqueness can be ensured for the
solutions of the system, then one can define the master field as follows:

U(t, k, p,m)

= E

[∫ T

t

(u(cτ ) +K(a(kτ , pτ , yτ )) e
−ρτdτ + g(kT , pT )e

−ρ(T−t)

∣∣∣∣∣ kt = k, pt = p,Pκ = m

]
,

with cτ = F (kτ , pτ ) − a(kτ , pτ , yτ ) · 1 and (kτ , pτ , yτ )τ∈[t,T ] being the unique (strong) solution
to

dpτ = Φ(E[ϕ(kτ )|F0
τ ], pτ )dτ + γ(pτ )dW

0
τ , pt = p,

−dyτ = ∇kH(a(kτ , pτ , yτ ), kτ , pτ , yτ , zτ )dτ − zτdWτ − z0τdW
0
τ , yT = ∇kg(kT , pT ),

dkτ = (a(kτ , pτ , yτ )− δkτ )dτ + kτσdWτ , kt = κ,

with Pκ the law of κ and where a is the optimal investment policy defined in (9). If U is regular
enough, it is expected that it is solution of the following master equation:

∂tU − ρU +H(k, p,∇kU) + ∆k

(
σ(k)

2
U

)
+∆p

(
γ(p)

2
U

)
+

∫
Rn

+

Dk
δU

δm
DqHdm+

∫
Rn

+

divk

(
Dk

δU

δm

)
σ

2
dm = 0,
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where
H(k, p,∇U) = sup

a∈Rn

{u(F (k, p)− 1 · a) +∇kU(a− δk)−K(a)} .

The sens of the derivative with respect to the probability measure m needs to be specified. We
refer to [5] for such definitions. The author introduced a notion of monotone solutions, which
he used in a similar framework in paragraph 5.2 of the same paper.

Comment on the framework. We end this section with a comparison of our framework with
the study [24]. In the latter work, the authors obtain existence and uniqueness for a mean-field
game problem with one external variable by studying the master equation. In order to prove
existence and uniqueness of the master equation in the long run (i.e. for any finite time horizon
T > 0), they consider a monotonous regime, which we do not encounter in our study.

5 Numerical simulations

This section is dedicated to numerical resolution. We describe the numerical method in Section
5.1. We specify the model in Section 5.2. This example is concerned with an economy with two
types of capital: a brown capital with high productivity but high exposure to climate change
and a green capital with low productivity but insensible to climate change. We discuss the
numerical results at the end of the section.

5.1 Algorithm

To solve Problem (P), we rely on a fixed-point method that fixes the pollution p: Once p is
fixed, the problem is still in high dimension and we use a neural network to approximate the
optimal control. Then it is possible to solve the Pontryagin optimality equations given by (16)
by discretizing the problem in time and adapting to the mean field case one of the algorithms
developed in [16].
We do not follow this approach, but use a direct one as proposed in [13]: Let NT be a positive
integer, let ∆t = T

NT
and tn = n∆t, n = 0, . . . , NT . At each fixed-point iteration j of the

algorithm, assuming we have an approximation Rj−1
t of E[ϕ(kt)|F0

t ], the computation consists
of two parts:

1. First, we approximate the control at each time tn by a single feedforward network

aξ : [0, T ]× Rd × Rn −→ Rn
+

with parameters ξ, taking time as input as in [14]. Then we solve:

ξ∗j = argmax
ξ

∆t

NT−1∑
i=0

E
[(
u(F (kjti , p

j
ti)− 1 · aξ(ti, pjti , k

j
ti))− θK(aξ(ti, p

j
ti , k

j
ti))
)
e−ρti

]
+ E

[
g(kjT , p

j
T )e

−ρT
]
, (18)

where for i = 1, . . . , NT − 1,

pjti+1
=pjti +Φ(Rj−1

ti , pjti)∆t+ γ(pjti)(W
0
ti+1

−W 0
ti),

kjti+1
=kjti + (aξ(ti, p

j
ti , k

j
ti)− δkjti)∆t+ σ(kjti)(Wti+1

−Wti),

and pj0 = η, kj0 = κ,

2. Then we estimate Rj
t . Introducing a second feedforward network

bξ̂ : [0, T ]× Rd → Rd,
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with parameters ξ̂, we solve

ξ̂∗j = argmax
ξ̂

NT∑
i=1

E[
(
bξ̂(ti, p

j
ti)− ϕ(kjti)

)2
], (19)

and we set

Rj
t = bξ̂

∗
j (t, pjt ). (20)

The algorithm is stopped when
∑NT

i=1 E[(p
j+1
ti − pjti)

2] < ϵ.
In practice, in order to avoid oscillations during iterations when T is high, we use a fictitious
version of the algorithm (see for example [9]) and we replace equation (20) by

Rj
t =

1

j + 1

j∑
k=0

bξ̂
∗
k(t, pkt ), (21)

with bξ̂
∗
0 = 0.

To solve the equations (18), (19), we use the ADAM gradient descent algorithm [20] in Tensorflow
[1] with the tanh activation function, a learning rate equal to 10−3, 3 hidden layers of 20 neurons
each.

5.2 Numerical results

We have used the parameters in Table 1 below for the simulation. We consider two sectors of
activity (n = 2): a brown one source of pollution and a green one. The utility function is a
power function and the production function is the limit of a Constant Elasticity of Substitution
(CES) production function when the substitution parameter goes to 1, i.e. we consider the limit
of (

b1(p)(k
1)γ + b2(k

2)γ
) β

γ ,

when γ tends to 1, where β belongs to (0, 1), k1 represents the capital level in the brown sector
and k2 in the green sector. The coefficients b1(p) and b2 are the productivity coefficients for
each sector: we assume that the green sector is not affected by the environmental variable, while
the brown sector is negatively affected by it. The function b1 is a logistic function. We consider
a Dirac mass as the initial distribution of capital.

Parameters Value
δ 0.1
σ 0.04
σ0 0.1
u(c) c0.8

ρ 0.1
F(k,p) (b1(p)k

1 + b2k
2)0.3

b1(p) 1/ (1 + exp (0.5p− 0.1))
b2 0.4

g(k, p) u(F (k, p))e−ρT /ρ

ε(a) −0.1
∑2

i=1 a
i ln(ai)

m0 δ(0.2,0.2)
γ0 0.15

Φ(e, p) 0.3e− 0.1p
ξ(k) 0.5k1

Table 1: Model parameters

Before providing a detailed analysis, we will briefly introduce Figures 1, 2, 3, and 4. Figure
1 shows the evolution over time of the pollution level, the productivity coefficient b1(p) of the
brown sector as well as the productivity coefficient b2 of the green sector, the average production
and consumption for two pollution scenarios.
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Figure 1: Two realisations of the pollution process.

We observe an increase in average production, which leads to a corresponding rise in average
consumption. This growth results in higher pollution levels, causing a decline in the brown
productivity coefficient b1(p).

Figures 2 and 3 below, show the investment distributions (on the left) and the capital
distributions (on the right) as a function of time.
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Figure 2: Distributions of the investment at (on the left) and the capital kt (on the right) for
time 5, 10, and 20.
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Figure 3: Distributions of the investment at (on the left) and of the capital kt (on the right) for
time 20, 30, and 45.

Figure 4 illustrates the 5%, 95% quantiles, and the mean of the pollution process. The
widening spread between the quantiles highlights the significant impact of common noise, which
initially increases before stabilizing. Similarly, pollution levels rise and eventually stabilize.
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Figure 4: Quantiles 5%, 95% and mean of the pollution process

Discussions on the outputs. Examining the pollution dynamics illustrated in Figure 1, we
observe a rapid increase in pollution in both scenarios, driven by the swift expansion of the
brown sector. This trend can be attributed to the productivity coefficients: Figure 1 highlights
the fact that, at first, the brown sector’s productivity coefficient, b1(p), is bigger than the green
sector’s productivity coefficient, b2 (represented by the red line in the figure). Consequently,
agents are initially incentivized to invest in the brown sector, as depicted in Figure 2.

At time t = 10, there is a shift as countries begin investing in the green sector, despite the
brown sector still appearing more attractive. This shift reflects agents’ expectations of increasing
pollution, which would eventually render the brown sector less competitive. As a result, it
becomes advantageous to develop the green sector, marking the beginning of a transition.

Returning to the pollution process, its volatility grows over time. This is linked to the rising
pollution levels and the scaling of the volatility rate with these levels. By time t = 10, random
shocks result in the pollution trajectories of the two scenarios diverging. Consequently, the
optimal investment strategies also differ. Figures 2 and 3 reveal that the scenario with higher
pollution levels (the orange scenario) allocates more investment to the green sector. These
differing policies lead to diverging capital distributions: by time t = 45, the brown sector in
the blue scenario is approximately twice as developed as in the orange scenario, whereas the
green sector shows the opposite pattern. In summary, higher pollution levels encourage greater
development of the green sector, leading to slower pollution growth in the orange scenario
compared to the blue one. This dynamic is reflected in the pollution drift, which is higher in
the blue scenario. Figure 4 further supports that there is a stabilisation effect due to the drift
in equation (3) since the pollution process appears to converge toward a steady state.

Finally, we note that the random shocks influencing the pollution process in the orange
scenario have had a negative impact on production and consumption levels compared to the
blue scenario.
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