
P1-KAN: AN EFFECTIVE KOLMOGOROV-ARNOLD NETWORK WITH
APPLICATION TO HYDRAULIC VALLEY OPTIMIZATION

XAVIER WARIN

Abstract. A new Kolmogorov-Arnold network (KAN) is proposed to approximate potentially irregular func-
tions in high dimensions. We provide error bounds for this approximation, assuming that the Kolmogorov-
Arnold expansion functions are sufficiently smooth. When the function is only continuous, we also provide
universal approximation theorems. We show that it outperforms multilayer perceptrons in terms of accu-
racy and convergence speed. We also compare it with several proposed KAN networks: it outperforms all
networks for irregular functions and achieves similar accuracy to the original spline-based KAN network for
smooth functions. Finally, we compare some of the KAN networks in optimizing a French hydraulic valley.

1. Introduction

Kolmogorov-Arnold Networks [18], based on the Arnold-Kolmogorov representation theorem, have recently
been proposed as an alternative to multilayer perceptrons for approximating functions in high dimensions.
Arnold and Kolmogorov showed long ago [14] that a multivariate continuous smooth function f on a bounded
domain can be written as a finite composition of the sum of continuous functions of a single variable. More
precisely, if f is smooth on [0, 1]n, then

f(x) =
2n+1∑
i=1

ψi

 n∑
j=1

Φi,j(xj)

 ,(1)

where Φi,j : [0, 1] −→ R and ψi : R −→ R.
As the 1D functions can be very irregular or even fractal, it has been shown that they may not be learnable in
practice [10, 19]. To overcome this limitation, [18] propose to extend this representation. First, they propose
not to stick to 2n+ 1 terms in the outer sum in (1) and to define a KAN lth layer as an operator ψl

m,q from
[0, 1]m to Rq:

(ψl
m,q(x))k =

m∑
j=1

Φl,k,j(xj), for k = 1, . . . , q.(2)

Second, by stacking the layers, i.e., composing the operator ψl, they define the KAN operator from [0, 1]m
to Rd:

K(x) = (ψL
nL−1,d ◦ ψL−1

nL−2,nL−1
◦ . . . ◦ ψ1

n0,n1
◦ ψ0

m,n0
)(x)

Since all ψ functions are one-dimensional, many classical methods are available to propose an easy-to-
implement approximation. In their proposed implementation, [18] use B-splines (see for example [5]) as-
sociated with the SILU activation function to approximate the ψ function: the spline coefficients and the
multiplicative coefficient of the SILU function are learned using a classical stochastic gradient algorithm as
done with MLPs.
This network has been rapidly tested, replacing MLPs in transformers [29] for example, and in various fields:

1



2 XAVIER WARIN

the medical sector in [13], vision [6, 16], time series [26]. Strengths and weaknesses of this approach compared
to MLPs are discussed in [30] and, depending on its use, its superiority to MLPs is not always obvious [22, 15].
Following this first article, different evolutions of this architecture are proposed to address different prob-
lems: [7] proposes an evolution of the algorithm to replace LSTM in time series, [28] for Graph Collaborative
Filtering, [3] for convolutional networks, [1] in mechanics.
The original spline-based algorithm has several drawbacks. The first disadvantage of this approach is that
the spline approximation is expensive, at least in the original algorithm proposed. The second is that the
output of a layer may not be in the grid initially chosen for the following layer. Finally, since the Kolmogorov
representation theorem may involve a very irregular function, one may wonder whether it is interesting to
use a rather high-order approximation such as a spline.
To address the first point, many other approximations based on classical numerical analysis have been pro-
posed using: wavelets [4], radial basis [17, 25] which reduces the computation time by 3, Chebyshev polynomi-
als [24] and many others. An interesting representation that leads to a very effective layer is the ReLU-KAN
[20] [23], which is based only on the ReLU function, matrix addition and multiplication, and divides the
computation time by 20.
To address the second point, some use a sigmoid activation function [24] to obtain an output in the range
[0, 1], but this approach is clearly very ineffective. Others attempt to adapt the support of the basis functions
by trying to learn them [18], but this adaptation often fails.
Concerned by the possibility of KANs to approximate high-dimensional functions, especially for stochastic
optimization purposes in [8],[27], we have developed the P1-KAN network, borrowing some interesting fea-
tures from the ReLU-KAN, but clearly defining the support of the layer function and avoiding the network
adaptation proposed in [18]. In the first part of the article, we describe our architecture and we give error
bounds assuming that the functions in the expansion (1) are smooth enough. We also provide universal
approximation theorems to deal with the general case of continuous functions. In the second part, we com-
pare it with MLPs, Spline-KAN, Radial basis KAN, and ReLU-KAN on function approximation using either
smooth or very irregular functions in different dimensions. Finally, we test the Spline-KAN and the P1-KAN
to optimize a French hydraulic valley, comparing them with classical perceptrons.

2. The P1-KAN Networks

We will first explain the main features of the method, and then go into detail about the algorithm and
why P1-KAN is different from other KAN networks.

2.1. The P1-KAN Layers. The first possible layer uses a regular grid, while the second one uses a grid
adapting to the data.

2.1.1. The P1-KAN Layer with a Regular Lattice.
We assume that layer l is an operator with support Gl = (xl, x̄l) ∈ Rd0×2 and with values in Rd1 . As for
the classical KAN layers, a number of meshes per direction P (assumed constant per layer to simplify the
notations) are used to discretize [xl

1, x̄
l
1] × . . .× [xl

d0
, x̄l

d0
], giving the mesh vertices (x̂l

j,p)1≤p≤P −1 in ]xl
j , x̄

l
j [

for j = 1, . . . , d0. Set x̂l
j,0 = xl

j , x̂l
j,P = x̄l

j , the function Φl,k,j in (2) is defined using a P1 finite element
method (see figure 1): for x ∈ [xl

j , x̄
l
j ],

Φl,k,j(x) =
P∑

p=0
al,k,j

p Ψl,j
p (x)



P1-KAN: AN EFFECTIVE KOLMOGOROV-ARNOLD NETWORK WITH APPLICATION TO HYDRAULIC VALLEY OPTIMIZATION3

Figure 1. Uniform P1 basis functions on [0, 1] with P = 5.

where (al,k,j
p )p=0,P are trainable variables and (Ψl,j

p )p=0,P is the basis of the shape function Ψl,j
p with compact

support in each interval [x̂l
j,p−1, x̂

l
j,p+1] for p = 1, . . . , P − 1 and defined as:

Ψl,j
p (x) =


x−x̂l

j,p−1
x̂l

j,p
−x̂l

j,p−1
x ∈ [x̂l

j,p−1, x̂
l
j,p]

x̂l
j,p+1−x

x̂l
j,p+1−x̂l

j,p

x ∈ [x̂l
j,p, x̂

l
j,p+1]

such that Ψl,j
p (x̂l

j,q) = δq,p,

for p = 1, . . . , P −1. Similarly, Ψl,j
0 (or Ψl,j

P ) is defined as a continuous piecewise linear function with support
[xl

j , x̂
l
j,1] (or [x̂l

j,P −1, x̄
l
j ]) and such that Ψl,j

0 (xl
j) = 1 (or Ψl,j

P (x̄l
j) = 1). Unlike other networks, the P1-KAN

layer, which is theoretically described as an operator from Rd0 to Rd1 by the equation (2), takes as input not
only a sample x ∈ Rd0 but also the description of the support (xl

j , x̄
l
j)j=1,d0 .

In this version of the layer, the grid is uniform on [xl
j , x̄

l
j ], and the vertices are generated for each direction

j for 0 ≤ p ≤ P by

x̂l
j,p = xl

j + p
x̄l

j − xl
j

P
.

The operator estimating the value function associated to the layer on the hypercube Gl is given by:

κ̂l,P
d0,d1

(x,Gl)k =
d0∑

j=1

P∑
p=0

al,k,j
p Ψl,j

p (xj), for k = 1, . . . , d1.(3)

The tensor Al
d0,d1

= (al,k,j
p )0≤p≤P,1≤j≤d0,1≤k≤d1 are the trainable variables of the network for layer l.

As output, the layer returns the values of κ̂l,P
d0,d1

(x,Gl) in Rd1 and the lattice Gl+1 = [Gl+1, Ḡl+1] obtained
from the possible κ̂l,P

d0,d1
(x,Gl) values. Due to the use of the P1 finite element approximation, this output

lattice is exactly obtained from the Al
d0,d1

tensor by:

Gl+1
k =

d0∑
j=1

min
0≤p≤P

al,k,j
p

Ḡl+1
k =

d0∑
j=1

max
0≤p≤P

al,k,j
p ,



4 XAVIER WARIN

for 1 ≤ k ≤ d1.
Then the global layer as an operator from Rd0 × Rd0×2 to Rd1 × Rd1×2 is defined by:

κl,P
d0,d1

(x,Gl) = (κ̂l,P
d0,d1

(x,Gl), Gl+1).(4)

2.1.2. The P1-KAN Layer with an Adapting Lattice.
In this version of the layer, the vertices in ]xl

j , x̄
l
j [ are initially generated randomly uniformly and their values

are trained to adapt to the data. This is done by defining for 1 ≤ p < P increasing values in ]0, 1[ by
∑p

k=1
ek∑P

k=1
ek

where e1, . . . , eP are positive random variables. This set of values is then used to define the grid points in
]xl

j , x̄
l
j [ by an affine transformation.

In detail, the vertices in ]xl
j , x̄

l
j [ are generated for each direction j for 1 ≤ p < P by

x̂l
j,p = xl

j + (x̄l
j − xl

j)
∑p

k=1 e
yl,k,j∑P

k=1 e
yl,k,j

,

where the matrix Y l
d0

= (yl,p,j)1≤p≤P,1≤j≤d0 has elements in R. The tensorAl
d0,d1

= (al,k,j
p )0≤p≤P,1≤j≤d0,1≤k≤d1

and Y l
d0

are the trainable variables of the layer.

2.1.3. Importance of Adaptation. To illustrate the importance of adaptation, we minimize the mean squared
error in one dimension of our P1-KAN layer approximation, denoted fP (x), with respect to the one-
dimensional function f(x) = x81x<0.45 + (0.9 − x)81x≥0.45 on [0, 1] for different values of P . In Figure
2, we plot fP , f and the vertices of the lattice with and without adaptation. As expected, adaptation in-
creases the number of points in areas where the gradient is the highest (see remark 2.1). The mean squared
error obtained after optimization is given in Table 1. The cost of a calculation using adaptation is less than
twice the cost of a calculation without adaptation.



P1-KAN: AN EFFECTIVE KOLMOGOROV-ARNOLD NETWORK WITH APPLICATION TO HYDRAULIC VALLEY OPTIMIZATION5

P = 5 No adaptation P = 5 Adaptation P = 10 No adaptation

P = 10 Adaptation P = 20 No adaptation P = 20 Adaptation

Figure 2. Reference function and approximation with or without adaptation. Vertices on
the x-axis.

P Error without adaptation Error with adaptation
5 0.1545 0.00492
10 0.0737 3.55E-4
20 4.7E-4 5.22E-5

Table 1. Mean squared error.

2.2. The Global P1-KAN Network. As shown in the previous section, the P1-KAN layer inputs x values
and a hypercube, and it outputs the values obtained by the operator and a hypercube. Therefore, it is natural
to stack the layers without using any grid adaptation or sigmoid function to send the output of the layer back
to a known bounded domain. The P1-KAN network takes as the initial hypercube used for the first layer
the hypercube corresponding to the bounded domain where we want to approximate the unknown function.
Supposing that the number of neurons is equal to N , the number of inside layers is L, the global operator
for x ∈ Rn is

K(x) = κ̂L,P
N,1 ◦ κL−1,P

N,N ◦ . . . ◦ κ0,P
n,N (x, [0, 1]n),(5)

where the κl,P are defined in (4) , κ̂L,P in (3) and the parameters to optimize are θ = A := A0
n,N ∪ A1

N,N ∪
. . . ∪ AL

N,d for the P1-KAN network without adaptation, and θ = A ∪ Y 0
n ∪ Y 1

N ∪ . . . ∪ Y L
N for the P1-KAN



6 XAVIER WARIN

with adaptation.
The approximation space spanned by the P1-KAN parametrized by θ is then:

N L,N,P
n = {fθ(x) = κ̂L,P

N,1 ◦ κL−1,P
N,N ◦ · · · ◦ κ0,P

n,N (x, [0, 1]n)with θ ∈ RQ},

where Q = (P + 1)(nN + (L− 1)N2 +N) for the P1-KAN without adaptation and Q = (P + 1)(nN + (L−
1)N2 +N) + (P − 1)(n+ LN) with adaptation.
An implementation in Pytorch is available at https://fime-lab.org/warin-xavier.

2.3. Convergence theorems. As the P1-KAN networks are based on a classical method in numerical
analysis, an approximation error can be estimated.
Let us define the interpolation operator Π[a,b]

P of a function f defined on [a, b] ⊂ R, with a step h = b−a
P by

Π[a,b]
P (f)(x) =

P∑
i=0

f(a+ ih)Ψi(x),

where Ψ0(x) = max(1 − x−a
h , 0), ΨP (x) = max( x−b+h

h , 0), and for i = 1, . . . , P − 1,

Ψi(x) =
{

x−(a+(i−1)h)
h x ∈ [a+ (i− 1)h, a+ ih]

(a+(i+1)h)−x
h x ∈ [a+ ih, a+ (i+ 1)h].

For a set of Lipschitz functions fi : [0, 1] −→ R for i = 1, . . . , n, we denote

µ({fi}i=1,n) :=[µ({fi}i=1,n), µ̄({fi}i=1,n)]

:=[ min
x∈[0,1]n

n∑
i=1

fi(xi), max
x∈[0,1]n

n∑
i=1

fi(xi)],

which is well defined by continuity on a compact.

Proposition 2.1. Supposing that the (ψi)i=1,...,2n+1 and the (Φi,j)i=1,...,2n+1,j=1,...,n in the Kolmogorov-
Arnold expansion (1) are K-Lipschitz. For h > 0 given, let us define

P = ⌊ 1
h

⌋ + 1,

P̂i = ⌊
µ̄({Π[0,1](Φi,j)}j=1,n) − µ({Π[0,1](Φi,j)}j=1,n)

h
⌋ + 1,

for i = 1, . . . 2n+ 1, then there exists a constant C such that

sup
x∈[0,1]n

|f(x) −
2n+1∑
i=1

Πµ({Π[0,1]
P

(Φi,j)}j=1,...,n)
P̂i

(ψi)(
n∑

j=1
Π[0,1]

P (Φi,j)(xj))| ≤ Ch.

Proof. By classical estimates on P1 interpolation on Lipschitz functions, there exists D such that

sup
x∈[0,1]

|Π[0,1]
P (Φi,j)(x) − Φi,j(x)| ≤ Dh.(6)

https://fime-lab.org/warin-xavier/


P1-KAN: AN EFFECTIVE KOLMOGOROV-ARNOLD NETWORK WITH APPLICATION TO HYDRAULIC VALLEY OPTIMIZATION7

Then

A =|f(x) −
2n+1∑
i=1

Πµ({Π[0,1]
P

(Φi,j)}j=1,...,n)
Pi

(ψi)(
n∑

j=1
Π[0,1]

P (Φi,j)(xj))|

≤|f(x) −
2n+1∑
i=1

ψi(
n∑

j=1
Π[0,1]

P (Φi,j)(xj))| + |
2n+1∑
i=1

(ψi − Πµ({Π[0,1]
P

(Φi,j)}j=1,...,n)
Pi

(ψi))(
n∑

j=1
Π[0,1]

P (Φi,j)(xj))|

≤K
2n+1∑
i=1

|
n∑

j=1
Π[0,1]

P (Φi,j)(xj) − Φi,j(xj)| + (2n+ 1)Dh

≤(2n+ 1)D(Kn+ 1)h.

using (6). □

Proposition 2.2. Under the conditions of Proposition 2.1, the P1-KAN without adaptation defined by (5)
with L ≥ 1 and N ≥ 2n+ 1 satisfies:

min
g∈N L,N

n,1

sup
x∈[0,1]d

|f(x) − g(x)| ≤ ch.

Proof. As the identity and the zero functions can be generated by the functions Ψl,j
p in (2),

min
g∈N L,N

n,d

sup
x∈[0,1]d

|f(x) − g(x)| ≤ min
g∈N 1,2n+1

n,d

sup
x∈[0,1]d

|f(x) − g(x)|

≤ sup
x∈[0,1]d

|f(x) −
2n+1∑
i=1

Πµ({Π[0,1]
P

(Φi,j)}1,...,d)
P̂i

(ψi)(
n∑

j=1
Π[0,1]

P (Φi,j)(xj))|

≤Ch,

by Proposition 2.1. □

These results can be extended to the case where the functions in the Kolmogorov expansion are more
regular.

Proposition 2.3. Suppose that the (ψi)i=1,...,2n+1 and the (Φi,j)i=1,...,2n+1,j=1,...,n in the Kolmogorov-Arnold
expansion (1) are C1 with K-Lipschitz derivatives. The P1-KAN without adaptation defined by (5) with L ≥ 1
and N ≥ 2n + 1 and a number of meshes defined by P and P̂i for i = 1, . . . , N as in Proposition 2.1, then
there exists a constant C such that

min
g∈N L,N

m,d

sup
x∈[0,1]d

|f(x) − g(x)| ≤ Ch2.

Remark 2.1. When the function to interpolate is, for example, C1, the interpolation error is directly related
to the maximum of its derivative (Theorem 7.2 [21]). As a consequence, reducing the size of the mesh locally
where the gradient is the highest allows us to achieve a smaller global error. This explains the behavior of
the P1-KAN layer with adaptation in section 2.1.3.

In the general case, where the Kolmogorov-Arnold expansion functions are not smooth, a universal ap-
proximation theorem is given:

Theorem 2.1. The space spanned by N L,N,P
n letting N vary for L ≥ 1, P > 1 is dense in C0([0, 1]n) with

the sup norm when adaptation is used.



8 XAVIER WARIN

Proof. As usual, it is sufficient to show the result by fixing P = 2 and L = 1. Using [12], for all functions
f ∈ C0([0, 1]n), there exist N , A ∈ RN , B ∈ RN×n, C ∈ RN such that:

sup
x∈[0,1]n

|f(x) −
N∑

i=1
Ai max(Bix+ Ci, 0)| ≤ ϵ,

where Bi is the row vector defined by (Bi,j)j=1,n. It is clear that one can find κ̂0,2
n,N defined by (3) such that

κ̂0,2
n,N (x, [0, 1]n)i = Bix + Ci for i = 1, . . . , N . For each i on G1

i = [infx∈[0,1]n Bix + Ci, supx∈[0,1]n Bix + Ci],
gi(x) = AiReLU(x) is either linear, or 0 ∈ G1

i
o so gi(x) can be generated by a κ̂1,2

N,1(x,G1)i using adaptation
so that x̂1

i,1 = 0 when 0 ∈ G1
i

o. □

When adaptation is not used, the ReLU function cannot directly be generated as 0 is generally not in the
lattice. The ReLU function is therefore uniformly approximated by piecewise linear functions by increasing
P , which gives the second theorem:

Theorem 2.2. The space spanned by N L,N,P
n letting N and P vary for L ≥ 1 is dense in C0([0, 1]n) with

the sup norm when adaptation is not used.

3. Numerical Results for Function Approximation

In this section, we compare the classical feedforward network with Spline-KAN [18], Fast-KAN [17], ReLU-
KAN [17], and P1-KAN for the approximation of two types of functions defined on [0, 1]n.

Figure 3. Function A in 2D. Figure 4. Function B in 2D.

A The first function is smooth but very fast oscillating with increasing dimension and is defined for
x ∈ [0, 1]n by:

f(x) = cos
(

n∑
i=1

iyi

)
,

where y = 0.5 + 2x−1√
n

. The function in 2D is shown in Figure 3.



P1-KAN: AN EFFECTIVE KOLMOGOROV-ARNOLD NETWORK WITH APPLICATION TO HYDRAULIC VALLEY OPTIMIZATION9

B The second function is very irregular and is given as

f(x) = n

(
n∏

i=1
yi + 2

(
4

n∏
i=1

xi − ⌊4
n∏

i=1
xi⌋

)
− 1
)
,

where y := 2 (4x− ⌊4x⌋) − 1 and for x ∈ Rn, ⌊x⌋ := (⌊xi⌋)i=1,n. The function is shown in 2D in
Figure 4.

To approximate a function f with a neural network κ, we use the classical quadratic loss function defined as:

L = E[(f(X) − κ(X))2],

where X is a uniform random variable on [0, 1]n. Using a stochastic gradient algorithm with the ADAM
optimizer, a learning rate of 10−3, and a batch size of 1000, we minimize the loss L. The MLPs use a ReLU
activation function, with either 2 layers with 10, 20, 40 neurons for each layer or 3 layers with 10, 20, 40, 80,
160 neurons: In each case, the MLPs are optimized by varying the number of neurons and layers, and only the
result that gives the smallest loss during the iterations is kept for the plots. The different KAN networks are
compared using the same parametrization (number of hidden layers, number of neurons, number of meshes
used for the 1D functions). The ReLU-KAN has an additional parameter k, which we keep at 3 as suggested
in the original article. For all plots, every 100 gradient iterations, the loss is calculated more accurately using
105 samples, giving a series of log-losses plotted using a moving average window of 10 results.
ReLU-KAN is very efficient in terms of computation time as it can be broken down into a few operations
involving only the ReLU function, matrix addition, and multiplication. On an 11th generation Intel(R)
Core(TM) i7-11850H @ 2.50GHz, using the same parametrization of the KAN nets, the P1-KAN with adap-
tation computation time is between 1.5 and 2 times slower than the ReLU-KAN, while the P1-KAN without
adaptation gives similar computing times. For the spline version of the KAN originally from [18], we use the
efficient Pytorch KAN implementation. For the Fast-KAN [17], we use the Pytorch implementation.

3.1. Results for the A Function. The results in dimension 6 shown in Figure 5 on a single run seem to
indicate that the original Spline-KAN network converges faster than the P1-KAN network with adaptation,
which is the second most effective network. In general, the ReLU-KAN network converges at least as well
as the best feedforward network, while the Fast-KAN is the least effective network. The P1-KAN without
adaptation is less effective than the P1-KAN with adaptation.

https://github.com/Blealtan/efficient-KANh
https://github.com/Blealtan/efficient-KANh
https://github.com/ZiyaoLi/fast-KAN


10 XAVIER WARIN

2 hidden layers of 10 neurons, P = 5. 3 hidden layers of 10 neurons, P = 5.

2 hidden layers of 10 neurons, P = 10. 3 hidden layers of 10 neurons, P = 10.

2 hidden layers of 10 neurons, P = 20. 3 hidden layers of 10 neurons, P = 20.

Figure 5. Results in dimension 6 for function A.



P1-KAN: AN EFFECTIVE KOLMOGOROV-ARNOLD NETWORK WITH APPLICATION TO HYDRAULIC VALLEY OPTIMIZATION11

In dimension 12, as shown in Figure 6, the Spline-KAN and the P1-KAN with adaptation again give the
best results. The Fast-KAN and the ReLU-KAN fail, while the feedforward network seems to converge very
slowly and its accuracy remains limited. Notice that the P1-KANs give good results when P is small, but do
not give any results when P is too large. Again, adaptation of the P1-KAN gives far better results.

2 hidden layers of 10 neurons, P = 5. 3 hidden layers of 10 neurons, P = 5.

2 hidden layers of 10 neurons, P = 10. 3 hidden layers of 10 neurons, P = 10.

Figure 6. Results in dimension 12 for function A.

As these graphs are obtained with one run, we provide in Table 2 the average results and standard deviation
obtained from 10 runs of the P1-KANs and the Spline-KAN. The best results obtained by the P1-KAN with
adaptation and the Spline-KAN are very similar. The Spline-KAN allows the use of higher P values.



12 XAVIER WARIN

Method Number of Layers Number of Neurons P Average Std
Spline-KAN 2 10 5 6.31E-03 1.84E-02
Spline-KAN 2 10 10 3.95E-03 8.59E-03
Spline-KAN 2 10 20 5.08E-04 4.69E-04
Spline-KAN 3 10 5 2.50E-04 2.81E-04
Spline-KAN 3 10 10 1.55E-03 2.04E-03
Spline-KAN 3 10 20 5.00E-01 1.50E+00

P1-KAN no adapt 2 10 5 1.80E-01 2.17E-01
P1-KAN no adapt 2 10 10 4.50E+00 1.49E+00
P1-KAN no adapt 2 10 20 5.00E+00 7.51E-03
P1-KAN no adapt 3 10 5 2.70E-02 2.25E-02
P1-KAN no adapt 3 10 10 4.51E+00 1.49E+00
P1-KAN no adapt 3 10 20 5.00E+00 5.38E-03

P1-KAN 2 10 5 1.75E-03 2.15E-03
P1-KAN 2 10 10 4.00E+00 2.00E+00
P1-KAN 2 10 20 5.00E+00 1.62E-02
P1-KAN 3 10 5 2.33E-04 1.34E-04
P1-KAN 3 10 10 3.50E+00 2.29E+00
P1-KAN 3 10 20 5.00E+00 1.15E-02

Table 2. Results obtained from 10 runs of the Spline-KAN and P1-KAN networks (with
and without adaptation) in dimension 12: Average value and standard deviation obtained
are given.

3.2. Results for the B Function. In dimension 2, as shown in Figure 7, we see that the feedforward
network lags behind the KAN networks. By taking high values of P , the P1-KAN network is the only
network that gives very good results. The Spline-KAN is the second-best network.



P1-KAN: AN EFFECTIVE KOLMOGOROV-ARNOLD NETWORK WITH APPLICATION TO HYDRAULIC VALLEY OPTIMIZATION13

2 hidden layers of 10 neurons, P = 5. 3 hidden layers of 10 neurons, P = 5.

2 hidden layers of 10 neurons, P = 10. 3 hidden layers of 10 neurons, P = 10.

2 hidden layers of 10 neurons, P = 20. 3 hidden layers of 10 neurons, P = 20.

Figure 7. Results in dimension 2 for function B.



14 XAVIER WARIN

Finally, if we go up to dimension 5, we see that the ReLU-KAN network can diverge. The P1-KAN
network is the only one that gives acceptable results by using 2 or 3 hidden layers of 10 neurons and P = 20.

2 hidden layers of 10 neurons, P = 10 3 hidden layers of 10 neurons, P = 10

2 hidden layers of 10 neurons, P = 20 3 hidden layers of 10 neurons, P = 20

Figure 8. Results in dimension 5 for function B

Results in Table 3 indicate that P1-KAN with adaptation is far better than the two other KANs. The
Spline-KAN and the P1-KAN without adaptation give similar results in this case.



P1-KAN: AN EFFECTIVE KOLMOGOROV-ARNOLD NETWORK WITH APPLICATION TO HYDRAULIC VALLEY OPTIMIZATION15

Method Number of Layers Number of Neurons P Average Std
Spline-KAN 2 10 5 1.16E+00 6.13E-02
Spline-KAN 2 10 20 9.12E-01 1.06E-01
Spline-KAN 3 10 5 1.17E+00 5.92E-02
Spline-KAN 3 10 10 1.07E+00 8.43E-02
Spline-KAN 3 10 20 8.65E-01 9.93E-02

P1-KAN no adapt 2 10 5 1.27E+00 3.06E-02
P1-KAN no adapt 2 10 20 1.01E+00 9.51E-02
P1-KAN no adapt 3 10 5 1.20E+00 2.74E-02
P1-KAN no adapt 3 10 10 1.10E+00 4.13E-02
P1-KAN no adapt 3 10 20 8.50E-01 5.40E-02

P1-KAN 2 10 5 1.25E+00 6.52E-02
P1-KAN 2 10 20 2.58E-01 8.04E-02
P1-KAN 3 10 5 1.23E+00 6.90E-02
P1-KAN 3 10 10 9.94E-01 2.15E-01
P1-KAN 3 10 20 2.12E-01 2.61E-02

Table 3. Results obtained from 10 runs of the Spline-KAN and P1-KAN networks in di-
mension 5: Average value and standard deviation obtained are given for the irregular case.

4. Application to Hydraulic Valley Optimization

Hydraulic valley optimization in countries with large valleys, such as France, Brazil, or Norway, is tra-
ditionally achieved using methods based on dynamic programming [2]. The objective to be maximized is
the profit obtained by selling the electricity produced by the turbines of some interconnected reservoirs.
These profits are therefore linked to some price scenarios, and the different reservoirs and turbines have to
respect some constraints, either physical (size of the lake, availability of the turbines, etc.) or environmental
(minimum flooding for fish, agriculture, minimum lake level for leisure activities, etc.), while facing the un-
certainties linked to the inflows.
The optimization step is generally the week, i.e., for each hour of a week, anticipative controls are computed,
assuming that all uncertainties (inflows, prices) are known at the beginning of the week. Using dynamic
programming type methods, Bellman values are computed at the beginning of each week, maximizing the
gain in expectation. Here, we test neural networks by comparing the results obtained with those obtained
using traditional methods in production.

We suppose here that decisions are taken every week to turbine water using production units. During
week i ∈ [1, 52], time is discretized with three time steps per day. At the beginning of the week, turbining
decisions are taken for each unit for each time step ti,j , for j = 0, . . . , 20 according to a flow equation given
in Section 4.1. We take the convention ti = ti,0. The energy generated and the function to maximize are
given in Section 4.2.

4.1. The Flow Equation During a Week. We suppose that the valley is composed of N̂ reservoirs and
Ñ is the number of production units operating. A production unit l of a reservoir m is numbered U l,m for
l = 1, . . . , Ñ(l). Therefore Ñ(l) is the number of production units of the reservoir l.
A reservoir r receives water:

• due to inflow Ir (rain, uncontrolled rivers, etc.),



16 XAVIER WARIN

• from one of the Nu(r) upstream controlled reservoirs: either because an upstream reservoir is over-
flowing, or because a production unit number U l,m associated with an upstream reservoir l is oper-
ating. w(r, k) for k = 1, . . . , Nu(r) is the number of the kth reservoir above reservoir r.

A reservoir releases water into one of its downstream reservoirs:
• when it is overflowing,
• when one of its production units Ur,m is activated to generate power, releasing water to another

reservoir.
The flow equation for the volume Ṽ r

i,j+1 of a reservoir r is given in week i at time ti,j+1 from the volume V r
i,j

at the previous date without taking into account the overflow by:

Ṽ r
i,j+1 = V r

i,j + Ir
i,j +

Nu(r)∑
k=1

(
O

w(r,k)
i,j +

Ñ(w(r,k))∑
l=1

TUw(r,k),l

i,j ∆i,j

)
−

Ñ(r)∑
k=1

TUr,k

i,j ∆i,j

where:
• ∆i,j = ti,j+1 − ti,j is the time step,
• Ok

i,j is the volume of water overflowed by the upstream lake k,
• T k

i,j is the water turbined from the production unit k per time unit.

The reservoir r has a primary constraint that cannot be violated: 0 ≤ V r
i,j ≤ V̄ r for all i, j and the volume

of water overflowed satisfies Or
i,j = (Ṽ r

i,j+1 − V̄ r)+, so that

V r
i,j+1 = min(Ṽ r

i,j+1, V̄
r).

Environmental constraints are added but can be violated:
• W r

i,j ≤ V r
i,j ≤ W̄ r

i,j , for all i, j where W r and W̄ r are given,
• T k

i,j ≤ T k
i,j where T k is also given for each production unit k.

Moreover, the maximum turbining for a production unit k associated with a reservoir r is a function of the
water level in the reservoir r, giving the constraints that cannot be violated:

T k
i,j ≤ T̄ k(V r

i,j),

where T̄ k are given functions associated with the production unit.

4.2. Expected Gain to Maximize. We denote T = (T k
i,j)i=1,...52,j=0...20,k=1,...,Ñ where the T k

i,j are func-
tions of the available information at the beginning of week i, assuming that the (Ir

i,j)j=0,20,r=1,...,N̂ , (Sti,j )j=0,20
are known. Each production unit k associated with lake r transforms the volume turbined T per unit time
into power by a function ϕk(T, V r) which is an increasing function of the level of the reservoir.
The expected gain is given by selling the electricity at a price St and the function to maximize is given over
52 weeks by:

J(T ) = G(T ) − ϵξ(T ),

with the gain given as

G(T ) =
N̂∑

r=1

Ñ(r)∑
k=1

52∑
i=1

20∑
j=0

E[Sti,jϕ
Ur,k

(TUr,k

i,j , V r
i,j)∆i,j ],



P1-KAN: AN EFFECTIVE KOLMOGOROV-ARNOLD NETWORK WITH APPLICATION TO HYDRAULIC VALLEY OPTIMIZATION17

the volume violated by

ξ(T ) =
N̂∑

r=1

52∑
i=1

20∑
j=0

(
E[(W r

i,j − V r
i,j)+ + (V r

i,j − W̄ r
i,j)+] + ∆i,j

Ñ(r)∑
k=1

E[(TUr,k

i,j − TUr,k

i,j )+]
)

where ϵ is a penalty factor.

4.3. Parametrization of the Neural Networks. We use 52 neural networks ϕ parametrized by (θi)i=1,...,52
for the problem (one per week). As input for the network i corresponding to week i, we take:

• the volume of each lake V = (V k
i,0)k=1,...,N̂ at the beginning of the week (at date ti,0),

• an inflow scenario for week i for all the reservoirs: I = (Ik
i,j)j=0,...,20,k=1,...,N̂ ,

• a price scenario for week i: S = (Sti,j
)j=0,...,20.

Using a sigmoid function as the activation function for the output layer, the neural network outputs ϕθi(V, I, S) ∈
[0, 1]Ñ×20. As in [27], the turbining control of each production unit at each date ti,j , j = 0, . . . , 20 is obtained
from its maximum allowed (T̄ k

i,j(V r
i,j))j=0,...,20,k=1,...,Ñ by

T̃ θi,k
i,j = T̄ k

i,j(V r
i,j)ϕθi(V, I, S)k,j , for i = 1, . . . , 52, j = 0, . . . , 20, k = 1, . . . , Ñ.

Setting T̃ θ = (T̃ θi,k
i,j )i=1,...,52,j=0,...,20,k=1,...,Ñ , θ = (θi)i=1,...,52, we are left to calculate

θ∗ = argmax
θ

G(T̃ θ) − ϵξ(T̃ θ).(7)

We take ϵ = 5 × 10−3. Classically, we solve (7) using the Adam stochastic gradient algorithm with a learning
rate equal to 10−3. The batch size is taken equal to 2000. The number of inflow scenarios is limited (equal
to 42) and a scenario generator allows us to build as many scenarios as we wish to avoid over-fitting. Price
scenarios are generated by a software calculating marginal prices associated with the global electrical network.
The MLP uses the GeLU activation function [11] which seems to give slightly better results than the ReLU
function. The P1-KAN network with adaptation is used.

4.4. The Test Case and the Results. The structure of the valley is given in Figure 9: the green squares
represent the reservoirs while the yellow circles represent the production units. This valley is hard to optimize
with classical methods based on dynamic programming due to its characteristics.



18 XAVIER WARIN

Figure 9.
Structure of the
valley

Figure 10. Convergence (NbL: number of layers, NbN:
number of neurons)

Using 60,000 gradient iterations and a rolling window of 50 successive results, the convergence plot in
Figure 10 indicates that the Spline-KAN and P1-KAN networks converge faster than the MPL, but the P1-
KAN optimizes better. The MLP seems to be able to get a result better than the Spline-KAN. The iteration
time is very similar on the NVIDIA H100 GPU for the different architectures: most of the computation is
not related to the evaluation of the control by the networks.

The software in production, based on dynamic programming (DP), uses linear programming resolution to
solve transition problems during the week (see Chapter 6 [9] for a description of the resolution using Bellman
cuts). It only sees the historical inflows (duplicated three times) and 126 price scenarios. Penalties are tuned
and settled specifically depending on the type of constraint violation. In Table 4, we present the gain function
obtained and the volume of constraint violations with the scenarios used in production.

Method G ξ
DP 209.6 1198

P1-KAN 208.2 661
Spline-KAN 207.3 680
MLP GeLU 205.7 800

Table 4. Expected gains G in millions of Euros, and violations in 106m3.

The approach using neural networks is far more robust as it is obtained using far more scenarios. Gains are
very slightly below those obtained by the software in production, but the constraints are much less violated.



P1-KAN: AN EFFECTIVE KOLMOGOROV-ARNOLD NETWORK WITH APPLICATION TO HYDRAULIC VALLEY OPTIMIZATION19

As the optimization by the software in production only takes two hours on fewer than 10 CPUs, the approach
using machine learning, which takes two weeks to train, is not competitive but provides a reference and allows
us to address some constraints that are impossible to handle with dynamic programming methods.

5. Conclusion

The P1-KAN is an excellent network with proven convergence properties for approximating functions.
When the function to be approximated is smooth, it gives similar results to the Spline-KAN, but it is
most effective when the function to be approximated is irregular. Using different networks in stochastic
optimization on a real case, results confirm that the P1-KAN with adaptation leads to the most effective
approach.



20 XAVIER WARIN

References
[1] Diab W Abueidda, Panos Pantidis, and Mostafa E Mobasher. Deepokan: Deep operator network based on kolmogorov

arnold networks for mechanics problems. arXiv preprint arXiv:2405.19143, 2024.
[2] Richard Bellman. Dynamic programming and stochastic control processes. Information and control, 1(3):228–239, 1958.
[3] Alexander Dylan Bodner, Antonio Santiago Tepsich, Jack Natan Spolski, and Santiago Pourteau. Convolutional kolmogorov-

arnold networks. arXiv preprint arXiv:2406.13155, 2024.
[4] Zavareh Bozorgasl and Hao Chen. Wav-kan: Wavelet kolmogorov-arnold networks. arXiv preprint arXiv:2405.12832, 2024.
[5] Arindam Chaudhuri. B-splines. arXiv preprint arXiv:2108.06617, 2021.
[6] Minjong Cheon. Demonstrating the efficacy of kolmogorov-arnold networks in vision tasks. arXiv preprint arXiv:2406.14916,

2024.
[7] Remi Genet and Hugo Inzirillo. Tkan: Temporal kolmogorov-arnold networks. arXiv preprint arXiv:2405.07344, 2024.
[8] Maximilien Germain, Huyên Pham, Xavier Warin, et al. Neural networks-based algorithms for stochastic control and pdes

in finance. arXiv preprint arXiv:2101.08068, 2021.
[9] Hugo Gevret, Nicolas Langrené, Jerome Lelong, Rafael D Lobato, Thomas Ouillon, Xavier Warin, and Aditya Maheshwari.

STochastic OPTimization library in C++. PhD thesis, EDF Lab, 2018.
[10] Federico Girosi and Tomaso Poggio. Representation properties of networks: Kolmogorov’s theorem is irrelevant. Neural

Computation, 1(4):465–469, 1989.
[11] Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint arXiv:1606.08415, 2016.
[12] Kurt Hornik, Maxwell Stinchcombe, and Halbert White. Universal approximation of an unknown mapping and its derivatives

using multilayer feedforward networks. Neural networks, 3(5):551–560, 1990.
[13] William Knottenbelt, Zeyu Gao, Rebecca Wray, Woody Zhidong Zhang, Jiashuai Liu, and Mireia Crispin-Ortuzar. Coxkan:

Kolmogorov-arnold networks for interpretable, high-performance survival analysis. arXiv preprint arXiv:2409.04290, 2024.
[14] Andrei Nikolaevich Kolmogorov. On the representation of continuous functions of several variables by superpositions of

continuous functions of a smaller number of variables. American Mathematical Society, 1961.
[15] Tran Xuan Hieu Le, Thi Diem Tran, Hoai Luan Pham, Vu Trung Duong Le, Tuan Hai Vu, Van Tinh Nguyen, Yasuhiko

Nakashima, et al. Exploring the limitations of kolmogorov-arnold networks in classification: Insights to software training
and hardware implementation. arXiv preprint arXiv:2407.17790, 2024.

[16] Chenxin Li, Xinyu Liu, Wuyang Li, Cheng Wang, Hengyu Liu, and Yixuan Yuan. U-kan makes strong backbone for medical
image segmentation and generation. arXiv preprint arXiv:2406.02918, 2024.

[17] Ziyao Li. Kolmogorov-arnold networks are radial basis function networks. 2024.
[18] Ziming Liu, Yixuan Wang, Sachin Vaidya, Fabian Ruehle, James Halverson, Marin Soljačić, Thomas Y Hou, and Max

Tegmark. Kan: Kolmogorov-arnold networks. arXiv preprint arXiv:2404.19756, 2024.
[19] Tomaso Poggio, Andrzej Banburski, and Qianli Liao. Theoretical issues in deep networks. Proceedings of the National

Academy of Sciences, 117(48):30039–30045, 2020.
[20] Qi Qiu, Tao Zhu, Helin Gong, Liming Chen, and Huansheng Ning. Relu-kan: New kolmogorov-arnold networks that only

need matrix addition, dot multiplication, and relu. arXiv preprint arXiv:2406.02075, 2024.
[21] Alfio Maria Quarteroni, Riccardo Sacco, and Fausto Saleri. Méthodes Numériques: Algorithmes, analyse et applications.

Springer Science & Business Media, 2007.
[22] Haoran Shen, Chen Zeng, Jiahui Wang, and Qiao Wang. Reduced effectiveness of kolmogorov-arnold networks on functions

with noise. arXiv preprint arXiv:2407.14882, 2024.
[23] Chi Chiu So and Siu Pang Yung. Higher-order-relu-kans (hrkans) for solving physics-informed neural networks (pinns) more

accurately, robustly and faster. arXiv preprint arXiv:2409.14248, 2024.
[24] Sidharth SS. Chebyshev polynomial-based kolmogorov-arnold networks: An efficient architecture for nonlinear function

approximation. arXiv preprint arXiv:2405.07200, 2024.
[25] Hoang-Thang Ta. Bsrbf-kan: A combination of b-splines and radial basic functions in kolmogorov-arnold networks. arXiv

preprint arXiv:2406.11173, 2024.
[26] Cristian J Vaca-Rubio, Luis Blanco, Roberto Pereira, and Màrius Caus. Kolmogorov-arnold networks (kans) for time series

analysis. arXiv preprint arXiv:2405.08790, 2024.
[27] Xavier Warin. Reservoir optimization and machine learning methods. EURO Journal on Computational Optimization,

11:100068, 2023.
[28] Jinfeng Xu, Zheyu Chen, Jinze Li, Shuo Yang, Wei Wang, Xiping Hu, and Edith C-H Ngai. Fourierkan-gcf: Fourier

kolmogorov-arnold network–an effective and efficient feature transformation for graph collaborative filtering. arXiv preprint
arXiv:2406.01034, 2024.

[29] Xingyi Yang and Xinchao Wang. Kolmogorov-arnold transformer. arXiv preprint arXiv:2409.10594, 2024.
[30] Runpeng Yu, Weihao Yu, and Xinchao Wang. Kan or mlp: A fairer comparison. arXiv preprint arXiv:2407.16674, 2024.



P1-KAN: AN EFFECTIVE KOLMOGOROV-ARNOLD NETWORK WITH APPLICATION TO HYDRAULIC VALLEY OPTIMIZATION21

Xavier Warin, EDF Lab Paris-Saclay and FiMe, Laboratoire de Finance des Marchés de l’Energie, 91120 Palaiseau,
France

Email address: xavier.warin@edf.fr


	1. Introduction
	2. The P1-KAN Networks
	2.1. The P1-KAN Layers
	2.2. The Global P1-KAN Network
	2.3. Convergence theorems

	3. Numerical Results for Function Approximation
	3.1. Results for the A Function
	3.2. Results for the B Function

	4. Application to Hydraulic Valley Optimization
	4.1. The Flow Equation During a Week
	4.2. Expected Gain to Maximize
	4.3. Parametrization of the Neural Networks
	4.4. The Test Case and the Results

	5. Conclusion
	References

