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Abstract5

We study news neural networks to approximate function of distributions in a probability space. Two6

classes of neural networks based on quantile and moment approximation are proposed to learn these7

functions and are theoretically supported by universal approximation theorems. By mixing the quantile8

and moment features in other new networks, we develop schemes that outperform existing networks on9

numerical test cases involving univariate distributions. For bivariate distributions, the moment neural10

network outperforms all other networks.11

1 Introduction12

The deep neural networks have been successfully used to solve high dimensional PDEs either by solving the13

PDE using physics informed methods, or by using backward stochastic differential equations (see [2], [6] for14

an overview). Recently the mean field game and control theory has allowed the formalization of problems15

involving large populations of interacting agents. The solution of such problems is a function depending16

on the probability distribution of the population and can be obtained by solving a PDE in the Wasserstein17

space of probability measures (called the Master equation) or by solving BSDEs of McKean-Vlasov (MKV)18

(see [3, 4] ). In this case, the resulting PDE is infinite dimensional and must be reduced to a (high) finite19

dimensional problem to be tractable.20

To solve such problems, [11] has developed two schemes approximating functions depending on both X21

a random variable and µ a probability distribution, where X ∼ µ. The first scheme is based on a bin22

representation of the density and the second uses a neural network to automatically extract the key features23

of the distribution. In both cases, these key features and the X values are used as input to a neural network24

permitting to approximate the value function. The first approach is the bin network and the second one25

is the cylinder network. Both schemes have been successfully applied to various toy cases in the case of26

one-dimensional distributions and used to solve the master equation using its semi-lagrangian representation27

in [10]. As we explain in the next section, the X dependence on the functional is not relevant for testing the28

various networks developed, and we focus in this article only on the dependence on the distribution.29

In this article we propose new different networks to approximate functions depending on distributions:30

• The first one, limited to one-dimensional distributions, uses the quantile of the distribution as key31

features : the resulting scheme gives the quantile network scheme.32

• The second ones uses the moments of the distribution as key features and leads to the moment network33

scheme.34

• Finally, the two previous features can be mixed to take advantage of the first two networks.35

We give some universal approximation theorems for the first two networks. We test the developed networks36

on functions of univariate and bivariate distributions, where possible. We compare the proposed networks37

with the bin network and the cylinder network and show that:38
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• The moment network or the quantile network outperform the cylinder network and the bin network39

in the case of univariate distributions: the best solution obtained by the two networks always gives40

better results (on our tests) than the cylinder network and the bin network.41

• By combining quantile and moment, we obtain a neural network that always outperforms the cylinder42

and the bin networks.43

• In the case of bivariate distributions, the bin network fails and the moment network outperforms all44

other networks.45

The structure of the article is as follows. In a first section, we formalize our problem as a minimization46

problem on the distribution space using a formal neural network. We give the general methodology for47

sampling distributions in the general multivariate case, and show how to solve the previous minimization48

problem using a stochastic gradient method. The second section is dedicated to the different proposed neural49

networks. The last one is dedicated to numerical results for univariate and bivariate distributions. A final50

conclusion is given.51

Notations. Denote by P2(Rd) the Wasserstein space of square integrable probability measures equipped52

with the 2-Wasserstein distance W2. Given some µ ∈ P2(Rd), and ϕ a measurable function on Rd with53

quadratic growth condition, hence in L2(µ), we set: EX∼µ[ϕ(X)] :=
∫
ϕ(x)µ(dx).54

2 Learning distribution functions55

Given a function V on P2(Rd), valued on Rp, we want to approximate the infinite-dimensional mapping

V : µ ∈ P2(Rd) 7−→ V (µ) ∈ Rp,

called the distribution function, by a map N constructed from suitable classes of neural networks. The distri-
bution network N takes input µ a probability measure and outputs N (µ). The quality of this approximation
is measured by the error:

L(N ) :=

∫
P2(Rd)

∣∣V(µ)−N (µ)
∣∣2ν(dµ) (2.1)

where ν is a probability measure on P2(Rd), called the training measure. The distribution function V is
learned by minimizing the loss function over the parameters of the neural network operator N .
In the article [11], the authors learn what they call a mean-field function, a function V̂ depending on both
µ and x. The network is a function N̂ that takes as input µ a probability measure and x in the support of
µ, and outputs N̂ (µ)(x). The solution is found by minimizing:

L̂(N̂ ) :=

∫
P2(Rd)

EX∼µ

∣∣V̂ (X,µ)− N̂ (µ)(X)
∣∣2ν(dµ). (2.2)

The resolution of the equation (2.2) is more general than the resolution of the equation (2.1), but in fact56

the result is simply obtained by concatenating x and the representation of the distribution µ as input to the57

neural network, similarly as suggested in [5]. Therefore we focus on the resolution of the problem (2.1).58

In the following, we explain how to sample distributions and how to generate samples for a given distribution59

in the multivariate case. Then we explain the global methodology used to train the neural networks. This60

methodology is used for all the networks developed in the next sections.61

2.1 Sampling distribution on a compact set62

To learn a function of a distribution µ with support in K = [K1, K̄1]× . . .× [Kd, K̄d] ⊂ Rd, we must be able
to ”generate” distributions and, having chosen the distribution µ , to efficiently sample X ∼ µ in Rd.
As done in [11], we use a bin representation but propose a different algorithm to tackle the multivariate
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case. By tensorization, a multivariate bin representation for a lattice (J1, . . . , Jd) is given, for (j1, . . . , jd) ∈
[1, J1]× . . .× [1, Jd], by

Bin(j1, . . . , jd) =

d∏
i=1

[Ki + (ji − 1)
K̄i −Ki

Ji
,Ki + ji

K̄i −Ki

Ji
].

• First, we generate a distribution µ by sampling e1, . . . , e∏d
i=1 Ji

, positive random variables according

to an exponential law, and set for (j1, . . . , jd) ∈ [1, J1]× . . .× [1, Jd]

p(j1, . . . , jd) =
ej1+j2J1+...jd

∏d−1
i=1 Ji∑∏d

i=1 Ji

i=1 ei

which gives a constant per bin probability measure where the probability of sampling in Bin(j1, . . . , jd)63

is given by p(j1, . . . , jd).64

• Now that we have chosen µ, we can generate N samples of d dimensional coordinates (jn1 , . . . , j
n
d ) ∈

[1, J1]× . . .× [1, Jd] for n ∈ [1, N ] such that

proba[(jn1 , . . . , j
n
d ) = (j1, . . . , jd)] = p(j1, . . . , jd).

Finally, we sample Y n ∼ U([0, 1]d) for n = 1, N , and set

Xn =(Xn
1 , . . . , X

n
d ),

where Xn
i = Ki + (jni − 1 + Y n

i )
K̄i −Ki

Ji
, for i = 1, . . . , d.

Remark 2.1. This procedure allows to generate points according to a constant density function per bin.65

In dimension one, it is equivalent to the algorithm proposed in [11] which generates points with a linear66

representation of the cumulative distribution function.67

2.2 The training methodolody68

Since the equation (2.1) is infinite dimensional, we need to introduce a discretization of the measure. We
note RK(µ) := (RK

k (µ))k=1,...,K the K features estimated from the law µ. The features selected depend on
the method developed and will be detailed in the following sections.
The neural network N (µ) := Φθ(R

K(µ)) is such that Φθ is an operator from RK to Rp depending on some
parameters θ and we use a gradient descent algorithm (ADAM [8]) with Tensorflow software [1] to minimize
the loss

L̄(θ) :=

∫
P2(Rd)

∣∣V(µ)− Φθ(R
K(µ))

∣∣2ν(dµ) (2.3)

with respect to the parameters θ.69

At each iteration of the stochastic gradient,70

• M distributions (µm)m=1,M are generated and for each µm, Xm,n ∼ µm are generated for n = 1, . . . , N ,71

following the methodology given in section 2.1.72

• TheK features representing the law are estimated from theN samples for a given estimatorRK,N (µm) :=73

(RK,N
k ((Xm,n)n=1,N ))k=1,...,K .74

The discretized version of the loss function (2.3) is then

L̃(θ) :=
1

M

M∑
m=1

∣∣V (µm)− Φθ(R
K,N (µm))

∣∣2.
The learning rate associated with the gradient method is equal to 5× 10−3 in all the experiments.75
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3 The networks76

3.1 The quantile network for one dimensional distribution77

Let D2(R) be the subset of probability measures µ in P2(R) admitting a density function pµ with respect to
the Lebesgue measure λ on R. Fixing K as a bounded segment in R, we want to approximate the functions
of the distributions with support in K.
For a distribution µ, we note Fµ its cumulative distribution function and we note Qµ the quantile function
defined as Qµ(p) = inf{x ∈ K : p ≤ Fµ(x)}. In the sequel, we also use the notation QX for Qµ if X ∼ µ.
Choosing K > 0, the main characteristics of the distribution µ are given by

QK
µ = (Qµ(

k

K + 1
))k=1,K

which lies on DK := {Q := (qk)k=1,K : q1 < · · · < qK}.
A quantile network is thus an operator on D2(R) in the form

NQ(µ) = Φθ(Q
K
µ ),

so setting RK(µ) = QK
µ in equation (2.3).78

Let us denote by DC1(K) the subset of elements µ in D2(R) with support in K, with continuously derivable79

density functions pµ. We get the following universal approximation theorem:80

Theorem 3.1. Let K = [K, K̄] be a bounded segment in R, V a continuous function from P2(R) to R. Then,
for all ε > 0, there exists K ∈ N∗, and Φ a neural network on RK with values in R such that∣∣V (µ)− Φ(QK

µ )
∣∣ ≤ ε, ∀µ ∈ DC1(K).

Proof. The proof is very similar to the proof of theorem 2.1 in [11]. The only difference is the modification of
step one in the proof. From the quantile representation of the density function, we get the following density
step approximation:

pQµ,K(x) =
1

K(QK
µ,k+1 −QK

µ,k)
, for x ∈]QK

µ,k, Q
K
µ,k+1], 0 ≤ k ≤ K

where QK
µ,k = QK

µ ( k
K+1 ), for k = 1, . . . ,K, QK

µ,0 = K , QK
µ,K+1 = K̄.81

For µ ∈ DC1(K) with density pµ, denote by µ̂K = LD(pQµ,K) the probability measure with density represen-82

tation pQµ,K .83

Since µ, µ̂K are supported on the compact set K, they lie in P1(Rd) the set of probability measures with84

finite first moment. From the Kantorovich-Rubinstein dual representation of the 1-Wasserstein distance, we85

have86

W1(µ, µ̂
K) = sup

ϕ

∫
K
ϕ(x)(pµ(x)− pQµ,K(x))dx,

where the supremum is taken over all Lipschitz continuous functions ϕ on K with Lipschitz constant bounded
by 1, and where we can assume w.l.o.g. that ϕ(x0) = 0 for some fixed point x0 in K.
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Noting p̄µk := 1
(QK

µ,k+1−QK
µ,k)

∫ QK
µ,k+1

QK
µ,k

pµ(s)ds = pµ(x̃k) with x̃k ∈ [QK
µ,k, Q

K
µ,k+1] due to mean value theorem:

W1(µ, µ̂
K) ≤ sup

ϕ

K∑
k=1

∫ QK
µ,k+1

QK
µ,k

|ϕ(x)||
(
pµ(x)− 1

K(QK
µ,k+1 −QK

µ,k)

)
|dx

≤ diam(K)

K∑
k=1

∫ QK
µ,k+1

QK
µ,k

|
(
pµ(x)− 1

K(QK
µ,k+1 −QK

µ,k)

)
|dx

= diam(K)

K∑
k=1

∫ QK
µ,k+1

QK
µ,k

|pµ(x)− p̄µk |dx

= diam(K)

K∑
k=1

(1p̄µ
k<ϵ + 1p̄µ

k≥ϵ)

∫ QK
µ,k+1

QK
µ,k

|pµ(x)− p̄µk |dx (3.1)

where we used that |ϕ(x)| ≤ |x− x0| ≤ diam(K).
Then :

K∑
k=1

1p̄µ
k<ϵ

∫ QK
µ,k+1

QK
µ,k

|pµ(x)− p̄µk |dx ≤
K∑

k=1

1p̄µ
k<ϵ

∫ QK
µ,k+1

QK
µ,k

(pµ(x) + p̄µk)dx

=

K∑
k=1

1p̄µ
k<ϵ(Q

K
µ,k+1 −QK

µ,k)2p̄
µ
k ≤ 2ϵ (3.2)

Notice that if pµk ≥ ϵ, QK
µ,k+1−QK

µ,k ≤ 1
ϵK and again due to mean value theorem and noting C = supy p

µ′
(y):

K∑
k=1

1p̄µ
k≥ϵ

∫ QK
µ,k+1

QK
µ,k

|pµ(x)− p̄µk |dx =

K∑
k=1

1p̄µ
k≥ϵ

∫ QK
µ,k+1

QK
µ,k

|pµ(x)− pµk(x̃k)|dx

≤C

K∑
k=1

1p̄µ
k≥ϵ

∫ QK
µ,k+1

QK
µ,k

|x− x̃k|dx

≤C

K∑
k=1

1p̄µ
k≥ϵ(Q

K
µ,k+1 −QK

µ,k)
2

≤C

K∑
k=1

(QK
µ,k+1 −QK

µ,k)
1

ϵK
= C

1

ϵK
(3.3)

Pluging equations (3.2), (3.3) in (3.1) gives:

W1(µ, µ̂
K) ≤ diam(K)(2ϵ+ C

1

ϵK
)

For ϵ given, it is possible to have K high enough to get W1(µ, µ̂
K) ≤ diam(K)3ϵ and noting that

W2(µ, µ̂
K) ≤

√
diam(K)W1(µ, µ̂K) by Hölder inequality, we get that W2(µ, µ̂

K) ≤ diam(K)
√
3ϵ.

Therefore we have shown that

sup
µ∈DC1 (K)

W2(µ, µ̂
K) → 0, as K → ∞.

Then we use the same argument as in [11] to get that, for a given ϵ, it is possible to set K such that

|V (µ)− V (µ̂K)| ≤ ε

2
, ∀ µ ∈ DC1(K).

At last using a classical universal theorem, we can conclude as in Step 2 of [11].87

88
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3.2 The moment network89

Let D2(Rd) be the subset of probability measures µ in P2(Rd) that admit a density function pµ with respect
to the Lebesgue measure λd on Rd. Fixing K as a bounded rectangle in Rd, we want to approximate the
function of the distribution with support in K. By choosing K > 0, the main features of the distribution µ
are approximated by choosing the lowest moments of the distribution so:

MK
µ = (EX∼µ[

∏
i=1,...,d

Xki
i ])∑d

i=1 ki≤K

with values in RK̂ , with K̂ = #{p ∈ Nd/
∑d

i=1 pi ≤ K}.90

Remark 3.2. Since the support of the distribution is bounded all moments are well defined.91

A moment network is an operator on D2(Rd) in the form

NQ(µ) = Φθ(M
K
µ ),

so setting RK̂(µ) = MK
µ in the equation (2.3).92

Remark 3.3. This approach is closely related to the moment problem which consists in determining a93

distribution from its moments if they exist. If the support of the distribution is [0,∞[, this is the Stieltjes94

moment problem, and if the support is R, this is the Hamburger moment problem. If µ is a positive measure95

with all moments defined, we say that µ is a solution to the moment problem. If the solution to the moment96

problem is unique, the moment problem is called determinate. Otherwise the moment problem is said to be97

indeterminate. In our case, where the support is compact, this problem is known as the Haussdorf moment98

problem and it is determinate. The connection with the moment problem and the reconstruction of an99

approximation of the quantile has been studied for example in [9].100

We now give a universal approximation theorem for this neural network:101

Theorem 3.4. Let K be a bounded rectangle in Rd, and V be a continuous function from P2(K) into Rp,

then, for all ε > 0, there exists K and Ψ a neural network from RK̂ to Rp such that∣∣V (µ)−Ψ(MK
µ )

∣∣ ≤ ε ∀µ ∈ P(K)

Proof. By the density of the cylindrical polynomial function with respect to distribution functions, see

Lemma 3.12 in [7], for all ε > 0, there exists K ∈ N∗, P a linear function from RK̂ into Rp, s.t.∣∣V (µ)− P (MK
µ )

∣∣ ≤ ε

2
, ∀µ ∈ P(K).

Note that since K is bounded, MK
µ is in a compact Y and we use the classical universal approximation

theorem for finite-dimensional functions to obtain the existence of a feedforward neural network Ψ on RK̂

such that ∣∣P (x)−Ψ(x)
∣∣ ≤ ε

2
, ∀x ∈ Y.

We conclude that for all µ ∈ P(K),∣∣V (µ)−Ψ(MK
µ )

∣∣
≤

∣∣V (µ)− P (MK
µ )

∣∣+ ∣∣P (MK
µ )−Ψ(MK

µ )
∣∣ ≤ ε.

102
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4 Numerical tests103

4.1 Univariate case104

All functions are tested with the developed networks, and the results are compared with those obtained105

using the bin and cylinder methods in [11]. In dimension one, we propose to learn the following functions V106

with support in [−2, 2].107

A. The moment case

V (µ) = EX∼µ[X]EX∼µ[X
4]− EX∼µ[X

2]

B. The pure quantile case

V (µ) = Qµ(q)

and we take q = 0.7.108

C. The quantile-moment case

V (µ) = EX∼µ[X
3](1 +Qµ(q))

taking q = 0.9.109

D. The quantile-superquantile case

V (µ) = EX∼µ[X/X > Qµ(q)] +Qµ(q)

and we take q = 0.3.110

All distribution features are estimated with N = 200000 samples, and the distribution is sampled using the111

method in the section 2.1 using J1 = 400 bins. During the training, M = 20 distributions (the batch size)112

are used. All curves plot the MSE obtained during gradient iterations as follows : every 100 iterations, the113

MSE is estimated using 1000 distributions and the results are plotted using a window averaging the estimates114

over 20 consecutive iterations. The ReLU activation function is used for all networks. Similar results are115

obtained using the tanh activation function. The quantile, and moment networks (and the networks derived116

from these features) use 2 hidden layers with 20 neurons. The cylinder network, which uses 2 networks, has117

3 layers and 20 neurons for the ”inner” network and 2 layers with 20 neurons for the ”outer” network (see118

[11]).119
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Case A Case B

Case C Case D

Figure 1: Quantile network convergence depending on the number of quantiles.

The neural network seems to be less accurate for functions involving moments (cases A and C) (see figure120

1). A number of quantiles equal to 200 seems to be sufficient to obtain a good accuracy.121
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Case A Case B

Case C Case D

Figure 2: Moment network convergence depending on the number of moments.

In contrast to the quantile networks, the results are not surprisingly better when the functional to be122

approximated is mainly a function of the moments (see Figure 2). In case A, it is optimal to use a small123

number of moments, since the functional is only a function of moments with degrees less than 5.124

Since the best network depends on the case, we can develop new networks based on moments and quantiles:125

• A first one uses a concatenation of the features of the two proposed networks. Using the same notation
as in the section 3,

NQM (µ) = Φθ(M
KM

µ ,QKQ

µ ),

where now KM is the number of moments retained in the approximation and KQ is the number of126

quantiles. This neural network is the moment and quantile network. The results obtained for this127

network are shown in Figure 3. Overall, it seems that a moment number of KM = 7 and a quantile128

number of KQ = 200 is a good choice.129
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Case A Case B

Case C Case D

Figure 3: Moment and quantile network convergence depending on KM and KQ.

• In a second one, instead of concatenating some moments expectations and quantiles, we can take some130

quantiles of the moments by defining:131

LKM ,KQ
µ =

[
Q∏

i=1,...,d X
k̃i
i /X∼µ

(
k̂

KQ + 1
)
]∑d

i=1 k̃i≤KM ,1≤k̂≤KQ

A quantile of moments network is an operator on D2(Rd) in the form

NQ(µ) = Φθ(L
KM ,KQ
µ ),

thus setting RK(µ) = LKM ,KQ
µ in the equation (2.3). The results for this network are shown in the132

figure 4. The convergence seems to be good in all cases, but we observe that this convergence is less133

regular than with the previous neural network.134
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Case A Case B

Case C Case D

Figure 4: Quantile of moments network convergence.

Remark 4.1. We have also tested networks based on superquantiles or superquantiles of moments.135

• Defining for one-dimensional distributions

V K
µ =

[
EX∼µ[X ≥ Qµ(

k̂

K + 1
)]
]
0≤k̂≤K

,

a superquantile network is an operator on D2(Rd) in the form

NQ(µ) = Φθ(V
K
µ ),

• and defining for potentially multivariate distributions:

SKM ,KQ
µ =

[
EX∼µ[

∏
i=1,...,d

X k̃i
i /

∏
i=1,...,d

X k̃i
i ≥ Q∏

i=1,...,d X
k̃i
i /X∼µ

(
k̂

KQ + 1
)]
]∑d

i=1 k̃i≤KM ,0≤k̂≤KQ
,

a superquantile of moment network is an operator on D2(Rd) in the form

NQ(µ) = Φθ(S
KM ,KQ
µ ).
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Both neural networks give good results but never better than the cylinder network. We don’t report them.136

We now compare all the networks together on the figure 5 using137

• K = 200 quantiles for the quantile network,138

• K = 10 moments for the moment network,139

• KM = 7 moments and KQ = 200 quantiles for the ”quantile of moments” and ”moment and quantile”140

networks,141

• 200 bins for the bin network.142

Overall, the ”moment and quantile” network and the ”quantile of moments” network seem to be the best143

choices.144

Case A Case B

Case C Case D

Figure 5: Convergence of the different networks in 1D.

Finally, we compare the different networks, taking for all networks 3 layers and 40 neurons.145
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Case A Case B

Case C Case D

Figure 6: Convergence of the different networks in 1D taking 3 layers and 40 neurons.

The results for the bin network are improved, but the conclusions remain the same.146

4.2 Bivariate case147

We assume that the support is in [−2, 2]2. For a distribution µ ∈ P2(Rd), (j,m) ∈ N∗ × N∗, we note F̂µ,j,m148

the cumulative distribution function of Xj
1X

m
2 where X ∼ µ and Q̂µ,j,m(p) = inf{x ∈ R : p ≤ F̂µ,j,m(x)}.149

We define the following test cases:150

A. The moment case

V (µ) =

2∑
i=1

[
EX∼µi

[X]EX∼µi
[X4]− EX∼µi

[X2]
]
.

B. The quantile-superquantile case

V (µ) =

2∑
i=1

[EX∼µi [X/X > Qµi(q)] +Qµi(q)]+

EX∼µ[X1X2/X1X2 > Q̂µ,1,1(q)]

with q = 0.7.151
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C. The quantile moment case

V (µ) =(1 +Qµ1
(q))EX∼µ1

[X3] + EX∼µ2
[X3]+

Q̂µ,2,1(q) + Q̂µ,1,2(q)

with q = 0.9.152

D. The quantile-superquantile marginal case

V (µ) =

2∑
i=1

[EX∼µi
[X/X > Qµi

(qi)] +Qµi
(qi)]

with q = (0.6, 0.3).153

E. The quantile-cross-superquantile case

V (µ) =EX∼µ[X2/X2 > Qµ1(q)] +Qµ1(q)

with q = 0.2.154

F. The quantile marginal case

V (µ) =Qµ1(q) +Qµ2(q)

with q = 0.8.155

We test the bin network, the cylinder network, the moment network, and the quantile of moments network156

on the different cases. The bin network fails in all the test cases with a number of layers equal to 2 or 3 and157

a number of neurons taken equal to 20, 40 and 80. As for the other networks, we keep the same number158

of layers and neurons as in the previous section. For the moment network we use K = 7, while for the159

quantile of moment network we use KM = 5 and KQ = 200. The distribution features are estimated using160

N = 400000 samples, and we take (J1, J2) = (200, 200) to sample a given distribution.161
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Case A Case B

Case C Case D

Case E Case F

Figure 7: Convergence of the different networks in 2D.

The tests are shown in figure 7. In all cases, the moment network gives the best results. We observe a162

loss not as good as in dimension one for the case C.163
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5 Conclusion164

New networks have been developed to learn functions of distributions: some of them outperform the existing165

ones. In all cases, the best networks are based on some moments of the distribution. For univariate distri-166

butions, it is optimal to add some information, for example based on quantiles, to get an effective scheme167

on all the test cases. For bivariate distributions, it is sufficient to take the expectation of the moments to168

get the best scheme. Using this moment scheme, the resolution of the PDE in Wasserstein space becomes169

possible in the multivariate case.170
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[7] X. Guo, H. Pham, and X. Wei. “Itô’s formula for flows of semimartingales”. In: arXiv: 2010.05288187

(2022).188

[8] Diederik P Kingma and Jimmy Ba. “Adam: A method for stochastic optimization”. In: arXiv preprint189

arXiv:1412.6980 (2014).190

[9] Robert M Mnatsakanov and Artak S Hakobyan. “Recovery of distributions via moments”. In: Lecture191

Notes-Monograph Series (2009), pp. 252–265.192

[10] Huyên Pham and Xavier Warin. “Mean-field neural networks-based algorithms for McKean-Vlasov193

control problems”. In: arXiv preprint arXiv:2212.11518 (2022).194

[11] Huyên Pham and Xavier Warin. “Mean-field neural networks: learning mappings on Wasserstein195

space”. In: arXiv preprint arXiv:2210.15179 (2022).196

16


	Introduction
	Learning distribution functions
	Sampling distribution on a compact set
	The training methodolody

	The networks
	The quantile network for one dimensional distribution
	The moment network

	Numerical tests
	Univariate case
	Bivariate case

	Conclusion

