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Abstract

Optimization of storage using neural networks is now commonly achieved by solving a single opti-
mization problem. We first show that this approach allows solving high-dimensional storage problems,
but is limited by memory issues. We propose a modification of this algorithm based on the dynamic
programming principle and propose neural networks that outperform classical feedforward networks
to approximate the Bellman values of the problem. Finally, we study the stochastic linear case and
show that Bellman values in storage problems can be accurately approximated using conditional cuts
computed by a very recent neural network proposed by the author. This new approximation method
combines linear problem solving by a linear programming solver with a neural network approximation
of the Bellman values.

1 Introduction

In industry, reservoirs are storage facilities used to manage a stock of fuel in order to satisfy a particular
objective function. For example, hydraulic reservoirs use water to generate electricity and the manager’s
goal is to supply energy to meet a demand at the lowest cost. Gas storage is a special case of storage
where the objective is to maximize profits by buying and selling gas on the market. Another example of
storage is batteries, where electricity is directly injected or withdrawn, leading to systems that can be
valued directly on the market or used to secure a global electrical system.
Traditional dynamic programming methods are generally used when the number of storage sites is small.
This dynamic programming method applied to a dynamical system breaks it down in time into a sequence
of simpler problems. It provides, at a given time, the value of the system for optimal decisions taken
from that time and from a state variable, which is a set of parameters that fully describe the system.
This value is called the Bellman value of the system and is therefore a function of time and other
state variables. In the case we face, the state of the system is fully described by a purely controlled
deterministic state, the stock level in the storage, and the stochastic state (the uncertainties in the
sequel). This state of the system is supposed to be Markovian, meaning that what happens at a time
t+ 1 depends only on the state at time t.
Gas storage is often optimized and hedged using this type of approach [War12]: the storage level is
discretized on a grid, and Bellman values are calculated by regression using either the Bellman values at
the following time step [TVR01] or the cash generated at the following dates according to the classical
Longstaff Schwartz approach [LS01]. These regressions are coupled with linear interpolation of the
Bellman values or cash generated at different points on the grid. The method can only be used for
non-linear problems in low dimension for two reasons. The most obvious one is the computational time,
which explodes with the dimension, and computer clusters are needed to cope with this computational
cost even with a number of reservoirs limited to 3 or 4. The second reason, which is in fact the first
limiting one, is the need to store in memory the Bellman values needed by the software. This has led to
the development of algorithms that split the Bellman values into the memory of the different nodes of the
computer cluster (see [MVW07] and the StOpt library [Gev+18] for a recent implementation). But even
with this kind of approach, it is difficult to optimize problems with more than 4 or 5 reservoirs. Another
pitfall that managers encounter even in dimension one, as it is the case for the optimization of gas storage
facing the gas market, is the loss of concavity observed due to the regressions and interpolations in the
calculation of conditional expectations, even when the solution is known to be concave with respect to

∗EDF R&D, FiME xavier.warin at edf.fr

1

mailto:xavier.warin at edf.fr


the storage level.
In most countries with a large number of dams, dynamic programming methods are not used directly
and the Stochastic Dual Dynamic Programming (SDDP) method [PP91] is generally used to manage the
dams using a cut approximation of Bellman values, which are concave, for a linear objective function,
with respect to the level of water in the reservoirs. Transition problems are solved using LP solvers
with Bellman cuts as upper bounds on the final value. When uncertainties need to be incorporated into
the state, breaking the concavity of the Bellman values, trees are often introduced and cuts need to be
generated at each node of the tree, as explained in [PP91]. Another approach is to generate conditional
cuts using regressions [AW20]. In all cases, forward passes (exploring the possible uncertainties and the
levels of memory visited) and backward passes (adding cuts at the levels visited in the forward pass) give
an iterative method that converges [Sha11]. An advantage of this method is that since cuts are used to
generate an approximation to the Bellman values, concavity with respect to the storage level is preserved,
and the marginal cost of the system (i.e., the derivative of the Bellman value with respect to the storage
level) decreases with the storage level. However, the method can be very slow to converge when the
number of transition steps is large, and it can only be used for linear or special quadratic problems.
The use of neural networks to optimize reservoir management is old, as it was first used for gas storage in
[BE+06], at a time when no public automatic differentiation software using neural networks was available,
and the maximization of the profit generated by the storage had to be achieved using a gradient method
that explicitly calculated the gradients. In this paper, feedforward networks are used to approximate
the control (gas injection - withdrawal) at each time step and the solution obtained is compared with
the solution obtained using a tree method. This part of the previous article was largely ignored by
the scientific community at the time. More recently, this type of control representation has been used to
solve BSDE problems [HJW18], leading to much work on this approach. Using the dynamic programming
principle, [Bac+21] proposed two algorithms using neural networks and gave some numerical results for
the valuation of a storage :

• The first, ”Control Learning by Performance Iteration”, has a Longstaff-Schwartz flavor: the control
at the current time is approximated by a neural network, and the controls computed at the previous
time iterations (so at the next time steps, since the process is backward) are reused to estimate the
expectation of the objective function, starting from a randomized initial state at the current time.
In practice, this method can only be used for a very small number of time steps N, as the cost
of recalculating the objective function using the previously calculated controls is in O(N2). This
approach has recently been successfully applied to deterministic control problems with very high
order schemes to reduce the number of time steps used [BWP22]. On our test cases the method is
not applicable.

• The second method ”Hybrid now” consists in computing the control at the current time step by a
first optimization by neural networks and then estimating the Bellman values at the current time
step by regression by a second optimization problem using a second feedforward network.

Finally, in a very recent article, [Cur+21] studies the valuation and hedging of a gas storage using a
single optimization approximating the control at each time step using feedforward neural networks as in
[BE+06]. They also propose to ”merge” the network between different time steps (i.e. to introduce a
dependence on time in a network shared between different time steps). This kind of approach merging all
time steps (so using a single neural network shared between all time steps) is the one proposed in [FMW20]
for risk evaluation or [CWNMW19] for BSDE resolution: they show that it gives better stabilized results
on these problems.
The present article first studies the ”Global Valuation” method (GV) of one or more storages using the
global approach used in [BE+06] and [Cur+21] testing different formulations and network to represent
the control.
This type of solution is impossible to use on real problems that involve optimization, for example, on
the global year on an hourly basis for a storage, or on the global year even on a daily basis when many
storages are interconnected: this is the case, for example, for the valuation of a large number of batteries
with a management that has an impact on the price of electricity.
In this case, we have to split the problem and use in a second section a modification of the ”hybrid now”
scheme, which solves the problem backwards, but estimates the control not on a single time step, but for
a whole period. This scheme is called the ”Global Split Dynamic Programming” (GSDP) method, and
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the ”hybrid now” scheme is a special case where the transition problem is solved on a single time step.
This scheme is studied on some difficult test cases and the use of near-optimal network to represent the
Bellman values is studied.
The GV method and the GSDP method are effective when non inter-temporal constraints have to be
handled. In the last section, we develop a methodology to handle intertemporal constraints in the
special linear case: we develop a new algorithm GMCSDP to solve stochastic linear problems using a
dynamic programming approach based on LP resolutions, as the SDDP method does, but with only a
single backward pass. The Benders cuts approximating the Bellman values are generated using the new
GroupMax neural network proposed in [War23].
The main results of this article are as follows:

• When the underlying process of the problem is Markovian, it is possible to optimize reservoirs very
accurately with simple feedforward networks with a small number of layers and neurons for controls
even in high dimension using the GV method. However, it is necessary to use a network for each
time step and the ”merged” network must be avoided as it leads to very poor results when the case
is stochastic. When the underlying process is not Markovian, we propose a combination of a LSTM
network with classical feedforward networks to solve the problem. We show the effectiveness of the
methodology.

• The use of the GSDP method results in a loss of optimality due to the calculation of Bellman values
by regression with classical feed-forward networks. This loss of optimality is greatly increased when
we use the ”hybrid now” scheme. We show that with a single reservoir, it is possible to obtain
reasonable results with a feedforward network by increasing the number of layers and neurons.
Using 5 or 10 reservoirs optimized together, we show that the feedforward network is not effective
for estimating Bellman values. To use the GSDP method in high dimension, we develop a network
inspired by [AXK17] and show that it gives reasonable results in all dimensions tested, even with a
small number of layers and neurons. When the problem is concave with respect to the storage level,
we show that the network proposed in [AXK17] can be used to obtain good results while preserving
concavity, and we show that this network is outperformed by an extension of the new GroupMax
network proposed in [War23].

• The GMCSDP method allows solving stochastic linear problems with inter-temporal constraints,
but only in low and medium dimension.

In the whole article we will focus on a maximization of the profit of management in expectation. This
choice is driven by the fact that, in practice, it is the main concern associated with this type of man-
agement. The introduction of hedging strategies as proposed in [Cur+21] leads to the need to use a
risk function to discriminate an optimal strategy. Another important point related to this choice is the
fact that we can implement multi-storage optimization problems that can be easily reduced to a single-
storage optimization, allowing to obtain a reference by the classical dynamic programming approach
using regressions. Thus, we can verify that neural networks are indeed capable of solving problems of
high dimension.

2 The global approach for storage optimization

First, for convenience, recall that a feedforward network with K hidden layers and m neurons is an
operator ϕ : Rd0 −→ Rd1 defined by the following recurrence:

z0 =x ∈ Rd0 , (1)

zi+1 =ρ(σizi + bi), 0 ≤ i < K, (2)

ϕ(x) =ρ̂(σKzK + bK), (3)

where :

• σ1 ∈ Rm×d0 , σi ∈ Rm×m for i = 1, . . . ,K − 1, σK ∈ Rd1×m,

• bi ∈ Rm, for i = 0, . . . ,K − 1, bK ∈ Rd1 ,
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• ρ, ρ̂ are non linear activation functions (Elu, Relu, tanh etc..) applied component wise.

The set θ of the network parameters is defined by the set of all matrix and vector coefficients of σi, bi,
i = 0, . . . ,K.
First, we test different approximations and formulations for a linear storage problem. Retaining the
best formulation, we then extend our tests to higher dimensions by considering a nonlinear problem that
combines the management of different reservoirs.

2.1 On a linear problem in dimension one

Suppose we manage a storage (gas storage, battery) on a commodity market (gas, electricity) where the
commodity follows the HJM model

dF (t, T )

F (t, T )
= e−a(T−t)σdWt (4)

where Wt is a one-dimensional Brownian motion defined on a probability space (Ω,F ,P). The spot price
is then St = F (t, t). The characteristics of the storage are the withdrawal CW and injection CI rates
(both positive) during a time step ∆t, its maximum capacity QMax, and its initial inventory QInit.
The reservoir manager wants to maximize the expected profit associated with filling the reservoir by
buying the commodity when prices are low and emptying the reservoir to sell the commodity when prices
are high. We then define the objective function for N optimization dates ti = i∆t, for i = 0, . . . , N − 1:

J(U) = −E[
N−1∑
i=0

Stiui], (5)

where U = (ui)i=0,N−1 is in the set U of the non anticipative admissible strategies such that:

0 ≤ Qj := Qinit +

j−1∑
i=0

ui ≤ QMax, for j = 0, . . . , N,

−CW ≤ ui ≤ CI , for j = 0, . . . , N − 1. (6)

We want to maximize the expected gain associated with storage management:

J∗ = sup
U∈U

J(U). (7)

Let us define Q as the reservoir level. There are many ways to deal with the constraints imposed on
the level of the storage (Q must remain positive and below Qmax): among them, clipping the control,
penalizing the objective function are possible, but the best approach (we won’t report results on less
effective approaches) consists in using the [Cur+21] approach. First we introduce for a given i in 0, . . . , N−
1:

Ĉi
I = ((Qi + CI) ∧Qmax)−Qi, Ĉi

W = Qi − ((Qi − CW ) ∨ 0). (8)

Since the problem is Markov in (S,Q), we can introduce as in [BE+06] a feed-forward network ϕθii with
parameters θi per time step i as an operator from R2 to [0, 1] (using a sigmoid activation function at the
output and a tanh activation function for hidden layers) such that the control is approximated by:

−Ĉi
W + (Ĉi

W + Ĉi
I)ϕ

θi
i .

Noting θ = (θi)i=0,N−1, we approximate the optimal reservoir management by solving :

θ∗ = argmin
θ

E[
N−1∑
i=0

Sti(−Ĉi
W + (Ĉi

W + Ĉi
I)ϕ

θi
i (Sti , Qi))], (9)

where Qi follows (6), Ĉ
i
W and Ĉi

I are given by (8), and the dynamics of F follows (4).
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A second version classically consists of introducing a single neural network ϕ (”merged” network) with
parameters θ as a function of (t, F,Q) and modifying the optimization (9) as follows:

θ∗ = argmin
θ

E[
N−1∑
i=0

Sti

(
− Ĉi

W + (Ĉi
W + Ĉi

I)ϕ
θ(ti, Sti , Qi)

)
]. (10)

We use a classical stochastic gradient descent ADAM method in Tensorflow [Aba+15] and use nor-
malized data for F and Q as input to the neural network.
For the test case, we assume that we are optimizing a storage for N = 365 days with one deci-
sion per day (∆t = 1). The price parameters (expressed in days) are σ = 0.08, a = 0.01. The
initial forward curve has seasonal and weekly variations, as in the energy market, and is given by
F (0, T ) = 30 + 5 cos( 2πTN ) + cos( 2πT7 ). For the reservoir we take CW = 10, CI = 5, QMax = 100,
QInit = 50. A reference is computed using the StOpt library [Gev+18] by dynamic programming with
adaptive linear regression [BW12] and cash flow interpolations as exposed in [War12]. The optimization
uses 100 basis functions and 106 trajectories to optimize the regression control. The parameters are taken
such that the problem is hard to solve by dynamic programming using regressions. Since the solution
is bang bang [BE+06], we use 20 grid points to discretize the storage and only bang bang controls are
tested leading to a very fast estimation. Then a simulation is performed using the Bellman values ob-
tained in the optimization. The value obtained in the optimization is equal to 4938, while the value in
the simulation, taken as a reference, is equal to 4932.

Prices Optimal storage trajectories

Figure 1: 10 spot and optimal management trajectories.

Using 2 hidden layers with 11 neurons, we train the problems (9) and (10) using a minibatch of size
200, 100000 iterations for the gradient descent, and an initial learning rate equal to 2×10−3. The results
obtained after training with 200000 trajectories are given in the table 1 using 10 runs. Minimal/Maximal
is the minimal/maximal value obtained on the 10 runs, while Average is the average value obtained.

Maximal Minimal Average Min diff with DP
One network per day (9) 4925 4914 4922 7
A singe network (10) 3944 1795 3702 988

Table 1: Neural network valuation with 10 runs.

Results are excellent with a network by day but very poor with a single network. The results with
a single network don’t change while increasing the number of layers and neurons. Using a network per
time step, we can check that the results remain very good in all cases while decreasing the volatility σ.
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2.2 Linear problem increasing the dimension

To get a linear problem in a higher dimension, we assume that we have M similar storages to manage,
each with a strategy (uj0, . . . , u

j
N−1) for j = 1, . . . ,M . We note Qi = (Qj

i )j=1,...,M , where Qj
i is the level

in storage j at time ti, U = ((uji )i=0,N−1)j=1,M and the function to maximize is given by:

JM (U) = −E[
M∑
j=1

N−1∑
i=0

Stiu
j
i ], (11)

and

JM,∗ = sup
U∈U

JM (U), (12)

where all strategies satisfy a flow equation similar to (3).

Similarly to the previous section, we introduce a neural network per time step depending on the
current prices and the different storage levels. The network with parameters θi per time step i, as an
operator from R1+M to RM , approximates the controls (u1i , . . . , u

M
i ) using the same activation functions

as in the previous section. It leads to optimize:

θ∗ = argmin
θ

E[
N−1∑
i=0

Sti(−Ĉi
W + (Ĉi

W + Ĉi
I)ϕ

θi
i (Sti , Qi)).1M ], (13)

where now the Ĉi
W and Ĉi

I are now vectors in RM with each component satisfying an equation similar to
(8).

In this section, we test two networks:

• First, the classical feedforward network ϕ previously introduced,

• Secondly, since the solution is symmetric, we test the DeepSet network [Zah+17] (with the same
parameters for the number of layers and neurons as originally proposed by the authors) allowing to
impose that the control satisfies the symmetry:

ul(S,Q1, . . . , Ql, . . . , Qm, . . . , QM ) = um(S,Q1, . . . , Qm, . . . , Ql, . . . , QM ),

for all (Q1, . . . , QM ) state positions in the storages. This network has proven to be more effective
than feedforward networks, but mainly for very high-dimensional PDEs arising from a special
approximation of mean-field problems [Ger+22].

Remark 2.1. Since the storage have the same characteristics, the global value of the set of storages is
the same if, for example, storages i and j permute their levels Qi and Qj. This invariance by permutation
of the storage level allows us to search for symmetric control.

We further assume that, at the initial date, all storages have the same state: then solving (12) is equivalent
to solving the problem for one storage and we have JM,∗ = MJ1,∗. For each storage, we take the same
storage characteristics as before. The training and simulation parameters are the same as in the previous
section except that the number of neurons used is 10+M . The table 2 shows the results obtained by the
two networks. The results obtained by the classical feedforward networks are already optimal, and the
DeepSet networks are not interesting in such small dimensions.

Network M Maximal Minimal Average Min diff with DP
feedforward 3 4926 4915 4921 6
feedforward 10 4931 4918 4925 1
DeepSet 3 4896 4882 4889 35
DeepSet 10 4904 4891 4896 28

Table 2: Neural network valuation divided by the dimension in the linear case. 10 runs.
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2.3 Results on a non linear case

To get reference results for a non-linear case, we now assume that the price is no longer exogenous and
that the impact is proportional to P

M , which leads to a modification of the function to maximize:

JM (U) = −E[
M∑
j=1

N−1∑
i=0

(Sti +
P

M

M∑
l=1

uli)u
j
i ]. (14)

This kind of modeling of a price impact is necessary, for example, in battery management, when the
amount of energy managed represents a fairly large fraction of the energy available in the market.
Using the same methodology as before, taking P = 0.2 and the same parameters as in the previous
sections, we can first for M = 1 obtain a reference with a very thin discretization of the command and
the grid storage using dynamic programming with the StOpt library. The value obtained by classical
regression is equal to 3802 in optimization and a value in simulation, taken as a reference, is equal to
3796.

The solution of (12) again satisfies JM,∗ =MJ1,∗ and we give JM,∗

M obtained by the previously defined
feed forward network for this non linear case in the table 3.

M Maximal Minimal Average Min diff with DP
1 3794 3780 3788 7
5 3799 3789 3794 2
10 3797 3784 3791 5

Table 3: Neural network valuation with ten run divided by the dimension in the non linear case.

Again, the results are very good in dimension 1 to 10 for this very stochastic case, as shown in the
table 3: the error with respect to the reference computed by dynamic programming is nearly zero and
hardly distinguishable from the Monte Carlo error associated with the reference. Therefore, the GV
method provides results comparable in accuracy to very efficient dynamic programming methods.

2.4 Extension in the non Markovian case

If the price, or more generally the uncertainties, are not Markovian, it is possible to extend the previous
feedforward network to deal with this feature.
Since the optimal control, at a time t, is a function of the entire history of the price (Su)u≤t and the
current position in the storage, the idea is to use a recurrent network such as a LSTM network [HS97]
to deal with the price dependence. At each time step, the output of the LSTM network (with the price
as input) and the position in the storage are used as inputs to a feedforward network that provides the
control. The figure 2 shows an unrolled version of the LSTM connected to the feedforward at each time
step.

Figure 2: Unrolled LSTM with feedforward to approximate control.

To test this network we now assume that the future price (4) is replaced by (15).

dF (t, T )

F (t, T )
=

3∑
i=1

e−ai(T−t)σidW
i
t , (15)

7



where now Wt = (W 1
t ,W

2
t ,W

3
t ) is a three dimensional Brownian motion.

We still consider the linear problem (5) with the same characteristics as before, but using the parame-
ters (σ1, σ2, σ3) = (0.04, 0.028, 0.023) and (a1, a2, a3) = (0.01, 0.005, 0.0033). In the table 4, we compare
the results obtained with the feedforward that takes as input the three risk factors of the price model
(σi

∫ t

0
e−ai(t−s)dW i

s)i=1,3 and the stock level with the results obtained with the LSTM feedforward, where
the LSTM network takes as input the price history and has as output 50 units. Using dynamic program-
ming with the StOpt library, we were able to obtain a value of 4300, achieving an optimization regression
with the [BW12] method in dimension 3 with 107 trajectories and 103 meshes. We were unable to refine
the results due to memory constraints.

Network M Maximal Minimal Average
feedforward 1 4332 4322 4328
feedforward 5 4333 4320 4327
feedforward 10 4334 4318 4329

LSTM-feedforward 1 4285 4277 4280
LSTM-feedforward 5 4284 4273 4279
LSTM-feedforward 10 4285 4268 4279

Table 4: Neural network valuation divided by the dimension in the linear case for the non Markovian
case (10 runs).

Remark 2.2. The LSTM method is not needed in this simple case because we can increase the state by
taking 3 future values with different maturities to recover a Markov state.

The results are very good with a very small loss of accuracy compared to the feedforward network.
We note that the results obtained with the feedforward networks are slightly better than the results
obtained with our not converged classical regression method. Here, the feedforward neural network
methodology provides even better results than classical dynamic programming methods. The proposed
LSTM feedforward network also gives accurate results, but slightly below the dynamic programming
results using regression.

3 Global Split Dynamic Programming method

The global method proposed in the previous section is very effective but may be impossible to implement
when the number of dates is too large: memory problems appear and another approach has to be used.
This leads to the development of a combination of the Hybrid-Now method of [Bac+21] and the global
method of [BE+06]. Suppose that the objective function is:

J(U) = E[
N−1∑
i=0

f(ti, Sti , Ui)], (16)

where the control Ui is a vector of size M , with flow constraints as in (6) but applied to the control
component by component. We assume that St is Markov.
Suppose that we want to solve (12) and that we divide the N dates in N =

∑L
l=1 N̂l with N̂l ∈ N∗ for

l = 1, . . . , L.
The idea is to use the dynamic programming principle to replace the previous global optimization by L
backward optimizations where each optimization l is achieved on N̂l time steps. Then an optimization
on the period [t(

∑l−1
j=1 N̂j)−1, t(

∑l
j=1 N̂j)−1] allows us to obtain the Bellman values for each possible state

at time t(
∑l−1

j=1 N̂j)−1. This Bellman value is then used if l > 1 as the final value of the optimization on

[t(
∑l−2

j=1 N̂j)−1, t(
∑l−1

j=1 N̂j)−1].

The algorithm 1 allows to solve the problem (12).
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Algorithm 1: GSDP method

Output: Estimates the Bellman values at dates t0, t∑l̃
l=1 N̂l

, for l̃ = 1, L− 1, and all optimal

controls.
ĩ = N
V BL = 0
for l = L, . . . , 1 do

ĩ = ĩ− N̂l

Introduce N̂l feedforward networks ϕθkk on RM+1 with values in RM with sigmoid activation
at the output,

θ∗ := (θ∗0 , . . . , θ
∗
N̂l−1

) = argmin
θ

E[
N̂l−1∑
i=0

f(t̃i+i, Stĩ+i
, Uθ

i ) + V Bl(Sĩ+N̂l
, QN̂l

)], (17)

such that Q0 ∼ U [0, Qmax]
M and for 0 ≤ i < N̂l:

Ĉi
I = ((Qi + CI) ∧Qmax)−Qi, Ĉi

W = Qi − ((Qi − CW ) ∨ 0)

Uθ
i = −Ĉi

W + (Ĉi
W + Ĉi

I)ϕ
θi
i (Stĩ+i

, Qi), Qi+1 = Qi + Uθ
i . (18)

Introduce a neural network ψκ with identity output activation function with parameters κ,

κ∗ = argmin
κ

E[
( N̂l−1∑

i=0

f(t̃i+i, Stĩ+i
, Uθ∗

i ) + V Bl(Sĩ+N̂l
, QN̂l

)− ψκ(Stĩ
, Q0)

)2
], (19)

where (18) is satisfied and Q0 ∼ U [0, Qmax]
M .

V Bl−1 = ψκ∗

Remark 3.1. In this method it is necessary to obtain a representation of the Bellman values at each
date t(

∑l−1
j=1 N̂j)−1. In the proposed algorithm these Bellman values are estimated by introducing another

neural network that is optimized by solving the equation (19).

In this algorithm the use of a feedforward to solve (19) may seem natural, as it was proposed for the
hydrid-now method in [Bac+21]. We take our linear test case in dimension 1 and test the use of this
network for ψκ to solve (19) for different number of L values (only N̂0 can be different from the N̂l for
l > 0, which are all equal :N̂l = N̂m for l > 0 and m > 0). As for the neural networks used for the control
in (17), we keep the same characteristics as in the previous sections.
Using different numbers of neurons and layers to approximate the Bellman values, in the table 5 we give
the results obtained with the best of 3 runs with 100000 gradient iterations with an initial learning rate
equal to 5×10−3, still using the ADAM method. The activation function ρ in (3) is a Relu function, since
it gives better results than the tanh activation function, and it gives similar results to the Elu activation
function.

L m L̃ solution Min diff with DP
4 11 2 4900 32
13 11 2 4816 116
53 11 2 4389 543
4 30 3 4899 33
13 30 3 4834 98
53 30 3 4633 299

Table 5: GSDP method for the one dimensional linear case using a feedforward network using a number
of neurons m, and a number of layers L̃ to solve (19). We take the best result out of 10 runs.

There is a loss of optimality increasing as L increases. For L = 53 we need to use at least 3 layers and
30 neurons to avoid too much loss of accuracy and keep acceptable results. Using more layers or neurons
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can improve the results very slightly and now we take 5 layers with 20 neurons for this feedforward
network. We now test the previous linear case and the non linear one from sections 2.2 and 2.3 keeping
L = 53 and letting the dimension increase. We report the results in the table 6.

Test case M max min average min error
Linear 1 4651 4543 4606 280
Linear 5 4352 4252 4179 579
Linear 10 2547 1831 2151 1248

Non linear 1 3687 3646 3664 108
Nonlinear 5 3074 2122 2529 721
Nonlinear 10 2039 1379 1165 1756

Table 6: Feedforward network results JM,∗

M with the GSDP method for linear and non linear cases with
5 layers, 20 neurons for (19), L = 53 and varying the dimension M . We use 10 runs and report the best
(max), the worst (min) results, and finally the error for the best result obtained.

The deterioration of the result obtained with the dimension is obvious and even in dimension 5 the
error obtained is far too important.

Remark 3.2. The Hybrid-Now method is the limit case when L = 365: since the results are already bad
for L = 53, we can say that the method is ineffective to optimize real storage for a whole year.

The treatment of storage levels must be made different from the treatment of uncertainty, and it leads
to the development of more adapted networks. We propose to use three different networks.

3.1 A first network ψA preserving concavity

Since in this case, the solution is concave with respect to the stock level in the storage we can use a
modification of the [AXK17] network given by the recursion (20). Suppose that the input to the neural
network is x̃ = (x, y) ∈ Rd0

where we have concavity in y ∈ Rk,

ui+1 =ρ̃(W̃iui + b̃i),

zi+1 =ρ([W
(z)
i ⊗ (W

(zu)
i ui + b

(z)
i )]+zi+

W
(y)
i (y ◦ (W (yu)

i ui + b
(y)
i )) +W

(u)
i ui + bi), for i ≤ K

ψA =zK+1, u0 = x, z0 = 0, (20)

where ρ is a concave non increasing activation function which we take to be equal to minus Relu, ◦
denotes the Hadamard product, ⊗ is applied between a matrix A ∈ Rm×n and a vector B ∈ Rn such
that A ⊗ B ∈ Rm×n and (A ⊗ B)i,j = Ai,jBj . As noted in [AXK17], the concavity of the solution is
given by the properties of ρ and the fact that the weight before zi is positive in (20). Using mx neurons
for the non-concave part of the function and my neural networks for the convex part of the network,

W̃0 ∈ Rmx×d0−k, W̃i ∈ Rmx×mx for i > 0, W
(zu)
i ∈ Rmy×mx for i > 0, W

(z)
i ∈ Rmy×my for j < K,

W
(z)
K ∈ R1×my as the output is a scalar function. We don’t go into detail about the size of the different

matrices W (y), W (yu), W (u) and the different biases that are obvious.
In all experiments, ρ̃ is the ReLU activation function.

3.2 A second network ψAD removing the concavity constraints

In a natural way, we modify the previous neural network by removing the concavity constraints that lead
to:

ui+1 =ρ̃(W̃iui + b̃i),

zi+1 =ρ(W
(z)
i (zi ◦ (W (zu)

i ui + b
(z)
i ))+

W
(y)
i (y ◦ (W (yu)

i ui + b
(y)
i )) +W

(u)
i ui + bi), for i ≤ K,

ψAD =zK+1, u0 = x, z0 = 0. (21)
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This gives us a neural network that can be used for non concave/convex problems. In all experiments ρ̃
and ρ are ReLU activation functions.

3.3 The GroupMax network ψGM using cuts when the solution is concave

The GroupMax is a recently developed neural network [War23] that combines the ideas in [ALG19],
[TB21], and those in [AXK17], but allows cuts to represent a concave solution. If the function is concave
only with respect to y, the following neural network is suggested in [War23] and generates cuts conditional
on x:

u0 =x, z0 = 0,

ui+1 =ρ̃(W̃iui + b̃i),

zi+1 =ρ([W
(z)
i ⊗ (W

(zu)
i ui + b

(z)
i )]+zi+

W
(y)
i (y ◦ (W (yu)

i ui + b
(y)
i )) +W

(u)
i ui + bi), for i ≤ K − 1,

ψGM (x, y) =ρ̂([W
(z)
K ⊗ (W

(zu)
K uK + b

(z)
K )]+zK+

W
(y)
K (y ◦ (W (yu)

K uK + b
(y)
K )) +W

(u)
K uK + bK), (22)

where all the matrices involved have the same size as the matrices in (21) except that the matrix W
(z)
K

is in Rmy×my .
In (22), the ρ̃ is a classical activation function like ReLU and in order to get conditional cuts to approx-
imate the solution, we take ρ̂ as an activation function working on the whole vector:

ρ̂(x) = min
i=1,...,d

xi for x ∈ Rd .

The ρ is defined by grouping the elements of the vector as in the GroupSort neural network [ALG19].
Assuming x ∈ Rmy , G ≤ my ∈ N∗ the group size such that m̃ =

my

G ∈ N∗ is the number of groups, ρ

maps Rmy to Rm̃ such that:

ρ(x)i = min
j=1,...,G

x(i−1)G+j , for i = 1, . . . , m̃.

In [War23], it is shown that this network generates conditional cuts with respect to x. In all experiments,
ρ̃ is a ReLU activation function.

3.4 Numerical results

We test the three networks on the linear and the non linear case. It is obvious that in the linear case, the
Bellman value is concave with respect to the storage level. In the non linear case, the concavity is still
present [GLP15]. All the Bellman values obtained by the three networks are not very sensitive to the
number of layers and neurons. For the three networks used to approximate the Bellman values, we take
mx = 10 and 3 hidden layers, taking my = 20 for the first two networks and my = 40 for the GroupMax
network. We keep the same parameters as in the previous sections to estimate the controls.
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M Network max min average min error
1 ϕA 4679 4618 4645 252
1 ϕAD 4798 4738 4771 133
1 ϕGM 4810 4777 4795 122
5 ϕA 4352 3949 4179 579
5 ϕAD 4482 4318 4399 449
5 ϕGM 4641 4519 4601 290
10 ϕA 4027 3724 4027 904
10 ϕAD 4151 3890 4031 780
10 ϕGM 4425 4316 4351 506

Table 7: Result JM,∗

M of the Linear case with the GSDP method with L=53 for the different networks.
10 runs.

M Network max min average min error
1 ϕA 3585 3540 3558 210
1 ϕAD 3687 3646 3664 108
1 ϕGM 3688 3663 3676 107
5 ϕA 3444 3206 3412 351
5 ϕAD 3538 3278 3434 257
5 ϕGM 3633 3589 3614 162
10 ϕA 3456 3044 3288 339
10 ϕAD 3389 3308 3205 406
10 ϕGM 3556 3482 3556 239

Table 8: Result JM,∗

M on the Non Linear case with the GSDP method with L=53 for the different networks.
10 runs.

As the dimensionM increases, the variance of the results obtained increases. The GroupMax is clearly
superior to the other networks. The results are better, the loss of accuracy decreases more slowly with
the dimension and the variance of the results obtained is much lower than with the other networks.
We conclude that it is optimal to use a number L as small as possible. When the problem is not concave
with respect to the storage levels, the ϕAD network is the best, and when the problem is concave, the
cut methodology given by the GroupMax network ϕGM is the best choice.
We have shown that we are able to efficiently optimize joint reservoirs even with a large number of stocks
and in the non Markovian case. To circumvent the memory limitation of the GV method, the GSDP
method can be used but the neural network used to approximate the Bellman values has to be chosen
carefully while keeping the number of global sub-resolutions as small as possible. Depending on the
concavity of the Bellman values, a neural network may be preferred over the other. All these methods
are effective as long as the position in the storage is not constrained to be discrete and as long as there
are no inter-temporal constraints.
When it is crucial to take these inter-temporal constraints into account, other methods can be proposed
in the simpler linear case, as we develop in the next section.

4 GroupMax Cut Split Dynamic Programming (GMCSDP) method

High-dimensional reservoir management is often accomplished using a linear stochastic model. Using a
hazard decision framework, solving the problem is based on a stochastic model where uncertainties are
revealed for a period [t, t+∆t[ and decisions are made on each of the P sub-intervals δt of ∆t. This type of
model is often used to optimize, for example, energy producing assets with inter-temporal constraints on
the period [t, t+∆t[. For example, uncertainties are to be revealed every week (time step ∆t). Then the
dynamic programming approach is used with a weekly time step, and the optimal orders during the week
for each hour (time step δt) are computed either using a deterministic dynamic programming approach
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(if the coupling between assets is not too difficult to account for) or using a linear programming solver if
the problem is linear.
If the problem is linear, using the fact that the Bellman values are concave with respect to the storage
levels, on each interval [tj , tj+1] where tj = j∆t, for j = 1, . . . , N , injection/withdrawal decisions are
made at each date tj + kδt, k = 0, . . . , P − 1, starting from a level in the reservoirs Q = (Q1, . . . , QM )
at date tj . This optimization is solved using an LP problem with end conditions given by cuts of the
Bellman values (called Benders cuts) at date tj+1 (see for example the recent article by [Lec+20] for
details in the SDDP approach). Since the Bellman values are generally not concave with respect to the
uncertainties, the cuts are conditional on the uncertainty level. These cuts are often given at the nodes
of a scenario tree [PP91] and can also be computed by regressions as in [AW20].

• When the dimension is low, starting point in the reservoirs for the LP problems are derived by
exploring a grid, and a single backward pass is achieved. This is a dynamic programming method.

• As the dimension increases, an iterative process of backward pass and forward exploration simu-
lations is used. The forward pass allows the reservoir levels of interest to be revealed and then
exploited during the subsequent backward pass, which adds new cuts. This iterative procedure is
called SDDP [PP91].

The two methods are developed in open source libraries such as StOpt [Gev+18] using regressions and
trees. These methods are very popular because they allow to handle difficult constraints. These con-
straints are taken into account by the LP solver used to solve the transition problems.

Remark 4.1. The nonlinear transition problem with a quadratic concave cost function with respect to
the control and the reservoir level can also be solved by a quadratic solver using the same methodology,
but at a higher cost.

As mentioned in the introduction, convergence can be very slow and the stopping criterion be can be
difficult to implement, especially when the Bellman values are not concave with respect to the uncertain-
ties.
The use of dynamic programming methods to estimate the cuts on a lattice suffers from both compu-
tational time and memory requirements. We propose to use the GroupMax network to estimate the
Bellman values by cuts.
Suppose that we want to solve equation the following equation

J∗ = sup
U=(U0,UN−1)∈U

N−1∑
i=0

E[f(ti, Ui, Sti)],

U ≤Ui ≤ Ū , with Ui ∈ Rp, i = 0, N − 1,

X0 =X̃ ∈ Rq,

Xi+1 =Xi +Ai(Si)Ui +Bi(Si) ∈ Rq, i = 0, N − 1,

X ≤Xi ≤ X̄, i = 0, N, (23)

where f is linear or quadratic concave with respect to U , St is a discrete time Markov process in Rd, Ai

a function from Rd to Rq×p, Bi function from Rd in Rq for i = 0, N − 1.
In a water storage optimization problem, Si would represent stochastic inflows and the electricity price
at sub-interval [ti, ti+1[, while Xi would represent the storage level at each date of [ti, ti+1[ depending
on the turbine commands Ui at [ti, ti+1[ and the inflows giving the flow equation involving Xi above.
f would be, as before, a linear function of the command Ui where the coefficients are a function of the
electricity price as in equation (5).
Based on the dynamic programming principle and using the GroupMax network, we propose to use the
algorithm 2 to optimize (23), where the Bellman values are estimated by cuts.
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Algorithm 2: GMCSDP method

Output:
V BN−1 = 0
for i = N − 1, 1 do

Introduced a GroupMax neural network ψGM,θ(S,X) with parameter θ

θ∗ = argmin
θ

E[(ψGM,θ(Sti−1
, X)−Q(Sti , X))2],

where

Q(Sti , X) = max
U∈Rp

f(ti, Sti , U) + ξ,

ξ ≤V Bi(Sti , X̃), (24)

X̃ =X +Ai(Sti)U +Bi(Sti),

X ≤X̃ ≤ X̄,

U ≤U ≤ Ū ,

with X ∼ U([X, X̄]), Sti−1
sampled from S0 and Sti sampled from Sti−1

.

V Bi−1(s, x) = ψGM,θ∗
(s, x)

Optimize first time step:

max
U∈Rp

f(0, S0, U) + ξ,

ξ ≤V B0(S0, X̃),

X̃ =X0 +A0(S0)U +B0(S0),

X ≤X̃ ≤ X̄,

U ≤U ≤ Ū .

To test the algorithm, we suppose that the problem is linear, given by (12), (11) with the flow
equation (6). The characteristics of the storages are unchanged. The initial forward curve is given by
F (0, T ) = 30+4 cos( 2πT7 ). The price model is still given by (4) but with the parameters σ = 0.3, a = 0.16.
We take N = 42 and the optimization by the dynamic programming method using the property that the
optimal control are bang bang gives a value of 3426 while the value obtained in forward using the optimal
control is 3424.

Remark 4.2. In this test, at each time step, the transition problem involves only one subtime step, and
one can easily test the commands to find the optimal one and obtain the optimal asset value with a simple
dynamic programming algorithm using the StOpt library and the Longstaff Schwarz method.

Using the algorithm 2, in a first test case we use a GroupMax network with 2 layers (one hidden layer)
and a group size equal to 2. The ADAM stochastic gradient descent is used with a batch size of 200, a
number of gradient iterations of 15000, and an initial learning rate of 5×10−3, decreasing to 10−4. Local
optimizations are done with the Coin LP solver. Results for J∗

M are given in the table 9.
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M my max min average min error
1 8 3362 3317 3335 61
1 10 3370 3321 3349 53
1 12 3355 3334 3345 69
3 8 3207 3113 3163 218
3 10 3225 3173 3202 200
3 12 3233 3166 3194 192
5 8 3063 2758 2913 360
5 10 3012 2729 2885 411
5 12 3052 2799 2980 371

Table 9: GMCSDP results on 10 runs for J∗

M . Reference is SDP with regressions.

The accuracy decreases as the dimension increases, while the variance of the result obtained increases.
We don’t see any clear differences using different values of my, except perhaps in dimension 3, where
increasing my seems to give slightly better results.

Remark 4.3. Since the time induced by the LP solving is strongly related to the number of cuts used, we
limit the number of layers to 2 (K = 1, which allows to have my2

my
2 cuts using my neurons). We keep

mx equal to 8. As shown in [War23], it is necessary to increase the number of layers to get high accuracy,
but this leads to very time-consuming problems to solve. This increase in the computational cost of the
LP is due to the fact that the equation (24) adds a constraint for each cut of the terminal Bellman value.
A reduction of the computational cost would be possible by pruning (eliminating) the inactive constraints
[PAA12], which are numerous (see graphs of cuts in [War23]).

At last we take a smaller test case, using a storage with CI = 10 × 1M , CW = 20 × 1M , QMax =
100 × 1M , Qinit = 50 × 1M . We keep the same parameters σ = 0.3, a = 0.16 for the price model. The
forward curve is F (0, T ) = 30 + 4 cos( 2πT4 ) and N = 8. We test the influence of the number of neurons
my, the group size G, and test a number of layers K equal to 2 or even 3 in low dimension. We take
mx = 6. The results are given in the table 10. The reference value is 1818.

M K my G Solution Error
1 2 9 3 1803 15
1 2 10 2 1807 11
1 2 12 2 1809 9
1 3 10 5 1790 28
2 2 9 3 1795 23
2 2 10 2 1797 21
2 2 12 2 1794 24
2 3 10 5 1780 38
3 2 9 3 1753 65
3 2 10 2 1767 51
3 2 12 2 1774 44
4 2 9 3 1728 89
4 2 10 2 1736 82
4 2 12 2 1727 91

Table 10: GMCSDP best results on 10 runs for J∗

M . Reference is SDP with regressions.

We observe the same behavior as in the previous case: the results are very accurate in dimension one
and there is a degradation as we increase the dimension. We test three layers in the special case where
my = 10, G = 5 in low dimension, which significantly increases the computation time, but with results
slightly below those obtained with two layers. Changing the group size and the number of neurons with
three layers remains too costly even in this simple test case. Using a group size of 3 instead of 2 with 2
layers doesn’t seem to change the results much. Therefore, the proposed approach seems to be limited
to low or medium dimensions, and in order to use it efficiently, two layers with 10 or 12 neurons and a
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group size of 2 seems to be optimal.

In real industrial problems, constraints between storage reduce the volatility of the system and con-
vergence should be easier to achieve. This approach allows to avoid the memory cost due to the storage
of the Bellman functions and only the computing time remains a constraint: the elimination of inactive
cuts, the parallelization by threads and MPI should allow to efficiently reduce this computational cost.

5 Conclusion

We have proposed an effective method to optimize reservoirs with new neural networks even in high
dimension without inter-temporal constraints, allowing to circumvent the limitation of the Global Value
method. We have also proposed a method that could be used to optimize linear problems taking into
account the inter-temporal constraints in a multistage stochastic framework: the results indicate that
a very high number of cuts must be used to approximate Bellman values, limiting the potential of the
method. Pruning methods could be used to reduce the time taken by the linear programming solvers, then
allowing more than 2 layers in the GroupMax network with different group size and number of neurons.
The method can be used to solve low or medium dimensional problems. Nevertheless, the nonlinear case
with inter temporal constraints remains a challenge for neural networks: classical penalties, usually added
to the objective functions to impose these difficult constraints, tend to give bad results by smoothing the
solution.
Another open question is the possibility of solving this type of problem with neural networks when the
stock in the reservoir is constrained to take only discrete values.
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