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REGRESSION MONTE CARLO FOR MICROGRID MANAGEMENT

CLEMENCE ALASSEUR 1, ALESSANDRO BALATA 2, SAHAR BEN AZIZA 3, ADITYA
MAHESHWARI 4, PETER TANKOV 5 AND XAVIER WARIN 6

Abstract. We study an islanded microgrid system designed to supply a small village with the
power produced by photovoltaic panels, wind turbines and a diesel generator. A battery storage
system device is used to shift power from times of high renewable production to times of high
demand. We build on the mathematical model introduced in [14] and optimize the diesel con-
sumption under a “no-blackout” constraint. We introduce a methodology to solve microgrid man-
agement problem using different variants of Regression Monte Carlo algorithms and use numerical
simulations to infer results about the optimal design of the grid.

1. INTRODUCTION

A Microgrid is a network of loads and energy generating units that often include renewable sources
like photovoltaic (PV) panels and wind turbines alongside more traditional forms of thermal electricity
production. These microgrids can be part of the main grid or isolated. Communities in rural areas of the
world have long now enjoyed the installation of isolated microgrid systems that provide a reliable and often
environment-friendly source of electricity to meet their power needs.

The elementary purpose of a microgrid is to provide a continuous electricity supply from the variable
power produced by renewable generators while minimizing the installation and running costs. In this kind
of systems, the uncertainty of both, the load and the renewable production is high and its negative effect on
the system stability can be mitigated by including a battery energy storage system in the microgrid. Energy
storage devices ensure power quality, including frequency and voltage regulation (see [12]) and provide
backup power in case of any contingency. A dispatchable unit in the form of diesel generator is also used
as a backup solution and to provide baseload power.

In this paper, we consider a traditional microgrid serving a small group of customers in islanded mode,
meaning that the network is not connected to the main national grid. The system consists of an intermittent
renewable generator unit, a conventional dispatchable generator, and a battery storage system. Both the
load and the intermittent renewable production are stochastic, and we use a stochastic differential equation
(SDE) to model directly the residual demand, that is, the difference between the load and the renewable
production. We then set up a stochastic optimization problem, whose goal is to minimize the cost of using
the diesel generator plus the cost of curtailing renewable energy in case of excess production, subject to
the constraint of ensuring reliable energy supply. A regression Monte Carlo method from the mathematical
finance literature is used to solve this stochastic optimization problem numerically. Three variants of the
regression algorithm, called grid discretization, Regress now and Regress later are proposed and compared
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in this paper. The numerical examples illustrate the performance of the optimal policies, provide insights
on the optimal sizing of the battery, and compare the policies obtained by stochastic optimization to the
industry standard, which uses deterministic policies.

The optimization problem arising from the search for a cost-effective control strategy has been exten-
sively studied. Three recent survey papers [15,20,21] summarize different methods used for optimal usage,
expansion and voltage control for the microgrids. Heymann et. al. [13,14] transform the optimization prob-
lem associated with the microgrid management into an optimal control framework and solve it using the
corresponding Hamilton Jacobi Bellman equation. Besides proposing an optimal strategy, the authors also
compare the solution of the deterministic and stochastic representation of the problem. However, similarly
to most PDE methods, this approach suffers from the curse of dimensionality and as a result, it is difficult
to scale. The main contribution of this paper is to solve the microgrid control problem using Regression
Monte Carlo algorithms. In contrast to existing approaches, the method used in this paper is more easily
scalable and works well in moderately large dimensions [5]. It is fair to mention here that the problem
we study in the following is however low dimensional as it displays one source of randomness and one
degenerate controlled process.

Identifying the optimal mix, the size and the placement of different components in the microgrid is
an important challenge to its large scale use. The papers [17, 18] use mixed-integer linear programming
to address the design problem and test their model on a real data set from a microgrid in Alaska. In a
similar work, [19] studied the economically optimal mix of PV, wind, batteries and diesel for rural areas in
Nigeria. In [11], optimal battery storage sizing is deduced from the autocorrelation structure of renewable
production forecast errors. In this paper, we propose an alternative approach for the optimal sizing of the
battery energy storage system, assuming stochastic load dynamics and fixed lifetime of the battery. Our
in-depth analysis of the system behavior leads to practical guidelines for the design and control of islanded
microgrids.

Finally, several authors [7–9] used stochastic control techniques to determine optimal operation strate-
gies for wind production – storage systems with access to energy markets. In contract to these papers, in
the present study, energy prices appear only as constant penalty factors in the cost functional, and the main
focus is on the stable operation of the microgrid without blackouts.

The rest of the paper is organized as follows: In section 2 we describe the microgrid model and introduce
the different components of the system, in section 3 we translate the problem of managing the microgrid in
a stochastic optimization problem and present the dynamic programming equation that we intend to solve
numerically. Section 4 introduces the numerical algorithms used to solve the control problem, we give a
general framework for solving the dynamic programming equation and we then provide three algorithms
for the approximation of conditional expectations. In section 5 we illustrate the results of the numerical
experiments, identify the best algorithm among those we studied and then employ it to analyze the system
behavior. We conclude with section 6 where the estimated policy for the stochastic problem is compared,
in an appropriate manner, with a deterministically trained one; the aim is to provide evidence that industry-
widespread deterministic approaches underperform stochastic methods.

2. MODEL DESCRIPTION

In this section, we will discuss the topology of the microgrid, its operation, components and their re-
spective dynamics. Although we discuss a simplified microgrid model, more complicated typologies can
be studied using straightforward generalizations of the methods presented in this paper.

Consider a microgrid serving a small, isolated village; most of the power to the village is supplied by
generating units whose output has zero marginal cost, is intermittent and uncontrolled. Additional power is
supplied by a controlled generator whose operations come alongside a cost for the microgrid owner (either
the community itself or a power utility). Often the intermittent units include PV panels and wind turbines,
while the controlled unit is often a diesel generator. In order to fully exploit the free power generated by
the renewable units at times when production exceeds the demand, microgrids are equipped with energy
storage devices. These can be represented by a battery energy storage system.

The introduction of the battery in the system not only allows for inter-temporal transfer of energy from
times when demand is low, to times when it is higher, but also introduces an element of strategic behavior
that can be employed by the system controller, to minimize the operational costs. Without an energy
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storage, diesel had to be run at all times demand exceeded production. When a battery is installed, intensity
and timing of output from the diesel generator can be adjusted to move the level of charge of the battery
towards the most cost effective levels.

In figure 1 we propose a schematic description of the system which might help the readers to famil-
iarize themselves with the microgrid, whose components are described more in depth in the following
subsections.

Remark 1. Note that for convenience, in the following, we will work in discrete time only. This setting is
not restrictive as in reality measurements of the systems are repeated at a given, finite, frequency. We also
consider a finite optimization horizon represented by the number of periods over which we want to optimize
the system operations indicated by T

FIGURE 1. The figure above shows an example of microgrid topology that contains all the ele-
ments in our model. The network is arranged as follows: photovoltaic panels and wind turbines
provide renewable generation, a diesel generator provides dispatchable power for the village and a
battery storage system is used to inject or withdraw energy.

2.1. Residual Demand

Consider two stochastic processes Lt and Rt, the former represents the demand/load and the latter
the production through the renewable generators. Notice that both processes are uncontrolled and they
represent, respectively, the unconditional withdrawal and injection of power in the system (constant during
time step). For the purpose of managing the microgrid, the controller is interested only in the net effect of
the two processes denoted by the process Xt:

Xt “ Lt ´Rt ; t P t0, 1, . . . , T u. (1)

Remark 2. The state variable Xt represents the residual demand of power at each time t, such that for
Xt ą 0, we should provide power through the battery or diesel generator and for Xt ă 0 we can store the
extra power in the battery.

For simplicity, we model the residual demand as an AR(1) process, the discrete equivalent of an Orn-
stein–Uhlenbeck process. In practical applications we expect Xt to be an R-valued mean reverting process
with many different sources of noise and time dependent random parameters; our choice of using an AR(1)
avoids the cumbersome notation coming from multiple noise sources still providing scope for generaliza-
tion. The process Xt is driven by the following difference equation, starting from an initial point X0 “ x0:

Xt`1 “ Xt ` bpΛt ´Xtq∆t` σ
?

∆t ξt ; t P t0, 1, . . . , T u (2)

where ξt „ Np0, 1q, ∆t is the amount of time before new information is acquired, b is the mean reversion
speed, σ the volatility of the process and Λt is the mean reversion level (typically deterministic function of
time).

Remark 3. In real applications the deterministic function Λt should represent the best forecast available
for future residual demand at the time of the estimation of the policy.
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2.2. Diesel generator

The Diesel generator represents the controlled dispatchable unit. The state of the generator is repre-
sented by mt “ t0, 1u. If mt “ 0 then the diesel generator is OFF, while it is ON when mt “ 1. When
the engine is ON, it produces a power output denoted by dt P rdmin, dmaxs at time t, for dmin ą 0.

Notice that, in addition, when the engine is turned ON, an extra amount of fuel is burned in order for the
generator to warm up and reach working regime. We model the cost of burning extra fuel with a switching
cost K that is paid every time the switch changes from 0 to 1. The fuel consumption of the diesel generator
is modeled by an increasing function ρpdtq which maps the power dt produced during one time step into
the quantity of diesel necessary for such output. Denoting by Pt the price of fuel at time t, the cost of
producing dt KW of power at one time step is Ptρpdtq; for simplicity we take a constant price of the fuel
Pt “ p. Two examples of efficiency functions ρ are described in figure 2.

(A) ρpdq “ pd´6q3`63`d
10

(B) ρpdq “ d0.9

FIGURE 2. The panels above show two examples of efficiency function (liters/KW), on the left
ρpdq “ pd´6q3`63`d

10
, typical of a generator designed to operate at medium regime, on the right

ρpdq “ d0.9, typical of a generator designed to operate a full capacity.

2.3. Dynamics of the Battery

The storage device is directly connected to the microgrid and therefore its output is equal to the imbal-
ance between demand Xt and diesel generator output dt, when this is allowed by the physical constraint.
The battery therefore is discharged in case of insufficiency of the diesel output and charged when the diesel
generator and renewables provide a surplus of power.

Let us denote the state of charge of the battery at time t as Idt and its maximum capacity as Imax. If the
power rating of the battery is given by Bmax and Bmin, where Bmax and Bmin represent respectively the
maximum and minimum output with Bmin ă 0 ă Bmax, its power output Bdt at time t is defined as:

Bdt “
Idt ´ Imax

∆t
_
`

Bmin _ pXt ´ dtq ^B
max

˘

^
Idt
∆t

. (3)

Intuitively, Bdt ă 0 refers to the charging of the battery and Bdt ą 0 refers to the supply of power from the
battery. The inner terms in equation (3) capture the constraints due to maximum power output/input to the
battery and the outer terms capture the effect of the capacity constraints on the power output of the battery.

Notice then that an energy storage has a limited amount of capacity after which it can not be charged
further, as well as an “empty” level below which no more power can be provided from the battery. The
dynamics of the controlled process Idt is described by the following equation:

Idt`1 “ Idt ´B
d
t ∆t, t P t0, 1, . . . , T ´ 1u, Id0 “ w0 (4)

here Idt P r0, Imaxs and Bdt P rB
min, Bmaxs. For simplicity we assume that the battery is 100% efficient.

Notice that we used superscript d on Bd and Id to highlight the dependence of these processes on the
controlled diesel output dt.
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Intuition tells us that the bigger the battery, the less diesel will be needed to run the operations of the
microgrid. This is true because a bigger battery would allow to store for later use a bigger proportion of
the excess power produced by the renewables. Batteries however are very expensive, and the cost per KWh
of capacity scales almost linearly for the kind of devices we consider in this paper (parallel connection of
smaller batteries), hence it is important to find the optimal size of battery for the needs of each specific
microgrid.

2.4. Management of the Microgrid

The purpose of the microgrid is to provide a cheap and reliable source of power supply to at least
match the demand. Therefore, we search for a control policy for the diesel generator which minimizes the
operating cost and produces enough electricity to match the residual demand. In order to assess how well
we are doing in supplying electricity, we introduce the controlled imbalance process St defined as follows:

St “ Xt ´B
d
t ´ dt t P r0, T s (5)

Ideally, the owner of the Microgrid would like to have St “ 0 @ t. This situation represents the perfect
balance of demand and generation. When St ą 0 we observe a blackout, residual demand is greater than
the production meaning that some loads are automatically disconnected from the system. The situation
St ă 0 is defined as a curtailment of renewable resources and takes place when we have a surplus of
electricity.

We treat the two scenarios, blackout and curtailment asymmetrically. To ensure no-blackout St ď 0 and
regular supply of power, we impose a constraint on the set of admissible controls:

St ď 0

i.e. dt ě Xt ´B
d
t .

(6)

However, for St ă 0 i.e. surplus of electricity, we penalize the microgrid using a proportional cost
denoted by C. Large penalty would lead to low level of curtailment and can be thought of as a parameter
in the subsequent optimization problem.

A rigorous mathematical description of the microgrid management problem follows in section 3.

3. STOCHASTIC OPTIMIZATION PROBLEM

We state now the stochastic control problem for the diesel generator operating in a microgrid system
as described in section 2. In practice we seek a control that minimizes the cost of diesel usage pρpdq, the
switching cost K and the curtailment cost C|St|1tStă0u, under the no black-out constraint St ď 0.

Note that, given the type of control we have on the diesel generator, we can frame the optimization
problem as a special case of stochastic control problems known as optimal switching problems.

Let us denote by pFtqtě0 the filtration generated by the random variables tξtutě0, which represent the
only randomness in the system, that is, we define Ft “ σpξi, i ă tq for t ě 1, and F0 to be the trivial
σ-field. We require the control process pdtqtě0 to be adapted to this filtration or, in other words, no future
information should be used to determine its value. Under this assumption, the residual demand process
pXsq

t
s“0, the state of charge process pIds q

t
s“0 and the current regime mt, become adapted to pFtqtě0. The

objective of the controller is to minimize the following cost functional

E

«

T´1
ÿ

s“0

1tms´ms´1“1uK` pρpdsq ` C|Ss|1tSsă0u ` gpI
d
T q

ff

,

with the convention m´1 “ 0, where g is a terminal condition which might be linked with situations
where the battery has been rented and has to be returned with the same level of charge otherwise a penalty
might be applied. The minimization is carried out over the set of admissible strategies U, containing all
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pFtqtě0-adapted controls pdtqtě0 such that

dt ě Xt ´B
d
t @t (7)

dt P rdmin, dmaxs Y t0u. (8)

Bdt “
Idt ´ Imax

∆t
_
`

Bmin _ pXt ´ dtq ^B
max

˘

^
Idt
∆t

(9)

where (7) represents the no-blackout constraints translated for the power produced by the diesel generator,
(8) represents the minimum and maximum power output of the generator and (9) models the physical
constraints of the battery: maximum input/output power and maximum capacity.

Since the state dynamics is Markovian, the optimal control is of feedback type and can be computed
using the dynamic programming approach (see [3, Chapter 8]). To formulate this approach, we define the
pathwise value Jt starting from time t, given by

Jt “

T´1
ÿ

s“t

1tms´ms´1“1uK` pρpdsq ` C|Ss|1tSsă0u ` gpI
d
T q. (10)

The value function is then defined as follows.

V pt, x, w,mq “ min
dPUt

!

E
”

Jt

ˇ

ˇ

ˇ
Xt “ x, Idt “ w,mt´1 “ m

ı)

, (11)

where the class Ut contains admissible controls “starting from time t”: processes pdsqT´1
s“t adapted to the

filtration Fts :“ σpξu, t ď u ă s and satisfying the constraints (7), (8) and (9) between t and T ´ 1.
The dynamic programming principle associated to (11), decomposes the problem on a single interval

into two optimal control problems: an optimal switching problem between being in the regime ON or
OFF, and another absolutely continuous control problem assuming the regime is ON. The equation reads
as follows:

V pt, x, w,mq “ min
d

´

1t1d‰0´m“1uK` pρpdq ` C|S|1tSă0u ` Cpt, x, w; dq
¯

, (12)

subject to d ě x´B, d P rdmin, dmaxs Y t0u, (13)

where B “
w ´ Imax

∆t
_
`

Bmin _ px´ dq ^Bmax
˘

^
w

∆t
and S “ x´B ´ d (14)

and Cpt, x, w; dq “ ErV pt` 1, Xt`1, It`1,1d‰0q|Xt “ x, It “ ws. (15)

In order to ensure that the set of admissible controls is nonempty we introduce the following assumption:

Assumption 1. The diesel generator is powerful enough to supply demand at all times, i.e there is always
a control d that satisfies the blackout constraint.

Remark 4. We enforce assumption 1 by redefining the residual demand process with a truncated version
of (1), such that X̃t “ minpXt, Xmaxq is the residual demand. In practice this is reasonable because the
maximum power that could be required from the microgrid is known apriori and the diesel generator is
generally sized to the maximum capacity installed on the system. For the sake of notational simplicity, we
will drop the „ on the variable X̃t from the following sections.

Note that (12) provides a direct technique to solve problem (11), iterating backward in time from a
known terminal condition and solving a static, one period, optimization problem at each time step. The
only difficulty in this procedure lies in the estimation of conditional expectations of future value function,
which can not be computed exactly. In the next section 4 we will focus on the numerical solution of (11).
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4. NUMERICAL RESOLUTION

In this section we describe the algorithm which we want to employ in the solution of the energy man-
agement problem for the Microgrid system described in section 3. The main mathematical difficulty comes
from the approximation of conditional expectations in (12), which we will tackle using a family of methods
called Regression Monte Carlo. For our purposes we assume that the one step optimization problem can
be solved either by extensive search, or by any more efficient method preferred by the reader. Here we
discretize the set of possible controls into a finite collection, as a result the optimization is straightforward.

The algorithm we propose fully exploits the dynamic programming formulation (12): we start gener-
ating a set of simulations (scenarios) of the process X , which we will refer to as training points, then we
optimize our policy so that it performs well, on average (weighted on the probability of each scenario), on
the different scenarios.

In practice, we initialize the value function at last time step in the backward procedure to be equal to
the terminal condition g. We then iterate backward in time and at each time step over each training point
we choose the control that minimizes the sum of one step cost function and the estimated conditional
expectation of the future costs C̃pt, x, w,m; dq. Note that, as expected, the conditional expectation is a
function of time, the state of the system px,wq and the state of the diesel generator, represented by the
ON/OFF switch m and the control d.

As the iteration reaches the initial time point we collect a set of optimal actions for each time step and
many different scenarios; in addition, since the problem is Markovian, we can summarize such strategies
in the form of control maps: best action at each time t given a pair of state variables pXt, Itq and state of
the diesel generator mt. We propose three different techniques to compute C̃ in section 4.1.

A fair assessment of the quality of the control policies approximated by the algorithm just introduced is
obtained by running a number of forward Monte Carlo simulations of the residual demand, controlling the
system using such policies and then taking the average performance.

We give a general description of the pseudo code in algorithm 1.

Remark 5. Notice that it is typical of Regression Monte Carlo algorithms to provide the optimal policy
only implicitly, in the form of minimizer of an explicit parameterized function. The outputs of the algorithm
are therefore the parameters (regression coefficients) of such function.

4.1. Regression for continuation value

In this section we present the numerical techniques we use to estimate conditional expectations Cpt, x, w,m; dq
in algorithm 1. These techniques belong to the realm of Regression Monte Carlo methods, and in partic-
ular these specifications allow to deal with degenerate controlled processes (the inventory). We focus on
two main variants: a two dimensional approximation of the conditional expectation and a discretisation
technique which considers a collection of one dimensional approximations.

In particular, we test three algorithms: Grid Discretisation, Regress Now and Regress Later. Grid
Discretization is characterized by a one dimensional projection in the residual demand dimension repeated
at different inventory points. Regress Now/Later, on the other hand, use a two dimensional regression in
residual demand and inventory. Moreover, while Grid Discretization and Regress Now require projection
of the value function at t` 1 on Ft measurable basis functions, Regress Later requires an Ft`1 projection.
For details on these techniques see [2] for regress later, [4, 22] for GD and [6] for 2D regress now. Note
that in the three algorithms we repeat the regression approximation for both values of m. An open source
platform has also been developed to numerically solve wide variety of stochastic optimization problems
in [10].

Let us denote by tXj
t u
M
j“1 the collection of training points at time t, similar notation is used for the

inventory tIjt u
M
j“1.

4.1.1. Grid Discretisation

Grid discretisation is characterized by a one dimensional approximation of the conditional expectation
repeated at different levels of inventory. Let ΥI “ tw0 “ 0, . . . , wD “ Imaxu be a discretisation of the
state space of the inventory and tXj

t u
M,N
j“1,t“1 be generated from a forward simulation of the dynamics of
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Algorithm 1 Regression Monte Carlo algorithm for Microgrid management
input: number of basis K, number of training points M , discretisation of the inventory D, time-steps N .
1: optimization:
2: if Inventory discretisation then
3: Generate a customary grid tw0, . . . , wDu points over the domain of It.
4: Simulate tXj

t u
M 1,N
j,t“1 according to its dynamics where M 1 “M{pD ` 1q;

5: Define tXj
t , I

j
t u
M
j“1 as cross product of tXj

t u
M 1

j“1 and twjuDj“0 for @t

6: if Regression 2D then
7: if Regress Later then
8: Generate tXj

t , I
j
t u
M,N
j,t“1 accordingly to a distribution µ;

9: if Regress Now then
10: Generate tXj

t u
M,N
j,t“1 according to its dynamics and tIjt u

M,N
j,t“1 according to a distribution µ;

11: Initialize the value function V pN,Xj
N , I

j
N , 1q “ V pN,Xj

N , I
j
N , 0q “ gpIjN q, @j “ 1, . . . , M ;

12: for t “ N to 1 do
13: Compute the approximated continuation value C̃ using Algorithms 3 or 2
14: for j “ 1 to M do
15: for m “ 0 to 1 do
16: F “ C̃pXj

t , I
j
t ; 0, 0q

17:

V pt,Xj
t , I

j
t ,mq “

$

’

&

’

%

´

min
dPUtzt0u

!

pρpdq ` C|St|1tStă0u ` C̃pXj
t , I

j
t ; 1, dq

)

`K1tm“0u

¯

^ F if 0 P Ut

min
dPUt

!

pρpdq ` C|St|1tStă0u ` C̃pXj
t , I

j
t ; 1, dq

)

`K1tm“0u otherwise

18: simulation:
19: initialize processes
20: for t “ 1 to N ´ 1 do
21: for j “ 1 to M do
22: F1 “ C̃pXj

t , I
j
t ; 0, 0q

23: F2 “ min
dPUtzt0u

!

pρpdq ` C|St|1tStă0u ` C̃pXj
t , I

j
t ; 1, dq

)

`K1
tmj

t“0u

24: mj
t`1 “ 1tp0RUtq or p0PUt and F2ăF1qu

25: if mj
t`1 “ 1 then

26: dt “ argmin
dPUt

!

pρpdq ` C|St|1tStă0u ` C̃pXj
t , I

j
t ; 1, dq

)

27: compute Xj
t`1 and Ijt`1 “ Ijt ´B

d
t ∆t

28: Jjt`1 “ Jjt ` pρpdtq ` C|St|1tStă0u `K1tmt`1´mt“1u

29: V p0, x, w,mq “ 1
M

řM
j“1pJ

j
N ` gpI

j
N qq

output: control policy tdtu, value function V .

X . We define the approximation of the continuation value on the grid ΥI by regressing the set of value
functions tV pt` 1, Xj

t`1, wiqu
M
j“1 over the basis functions tφkpxquKk“1 for each twiuDi“0, obtaining:

Ĉpt, x, wi;mq “
K
ÿ

k“1

αtk,i,mφkpxq , i “ 0, 1, . . . , D,
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where we compute a collection of regression coefficients through least square minimization

αti,m “ argmin
aPRK

! 1

M

M
ÿ

j“1

`

V pt` 1, Xj
t`1, wi,mq ´

K
ÿ

k“1

akφpX
j
t q
˘2
)

,

where we define RK Q αti,m “ pαt1,i,m, . . . , αtK,i,mq.
Note that the least square projection is a sample estimation of the L2 projection induced by the condi-

tional expectation, for this reason we can approximate the function Cpt, ¨q using a least square projection of
the value function at time t` 1.However, as we have not included the inventory in the basis functions, we
need to interpolate between values of Ĉpt, x, wi;mq in order to obtain an estimation of the value function
for It P pwi, wi`1q. Let us define by C̃pt, x, w;m, dq the linear interpolation

C̃pt, x, w;m, dq “ ωpt, w, dqĈpt, x, wi,mq`
`

1´ωpt, w, dq
˘

Ĉpt, x, wi`1,mq , w´Bdt ∆t P rwi, wi`1q,

where ωpt, w, dq “ wi`1´w`B
d
t ∆t

wi`1´wi
and i “ 0, . . . , D.

Details of the algorithms are given in the pseudocode 2.

Algorithm 2 Regression technique for continuation value: Grid Discretisation

input: tV pt` 1, Xj
t`1, I

j
t`1,mqu

M
j“1, tφkuKk“1.

1: for i “ 0 to D do

2: αtm “ argmin
a

! M
ř

j“1

´

V pt` 1, Xj
t`1, wi,mq ´

K
ř

k“1

akφkpX
j
t q

¯2)

;

3: Define Ĉpt, x, wi,mq “
řK
k“1 α

t
k,i,mφkpxq, m “ 0, 1;

4: Define C̃pt, x, w;m, dq “
wi`1´w`B

d
t ∆t

wi`1´wi
Ĉpt, x, wi;m, dq `

w´Bd
t´wi

wi`1´wi
Ĉpt, x, wi`1;m, dq, w P

rwi, wi`1q, m “ 0, 1.

output: C̃, tαtk,i,mu
K,D,1
k“1,i“1,m“0.

4.1.2. 2D Regression

Contrary to the grid discretisation approach, the 2D regression methods approximate the conditional
expectation of the value function as a surface, function of both residual demand X and inventory I , with-
out the need for interpolation. In the problem we consider, the control only acts on a degenerate pro-
cess and we can therefore test two specifications of the method: “Regress Now”, where we project over
tφkpXt, It`1qu

K
k“1 and “Regress Later”, where we project over tφkpXt`1, It`1qu

K
k“1. The terminology

Regress Now or Regress Later is attributed to the time step of the exogenous variable Xt used in the
projection.

In Regress Now, we generate training points tXj
t u
M,N
j“1,t“1 from a forward simulation of the dynamics of

X and tIjt u
M,N
j“1,t“1 from a distribution µN on r0, Imaxs independently. In Regress Later, on the other hand,

we generate both processes tXj
t , I

j
t u
M,N
j“1,t“1 from an appropriate distribution µL, for details see [2]. Notice

that we do not require to have any dependence between the different time steps in Regress Later, contrary
to the exogenous dimension in Regress Now where the samples tXj

t`1|Xtu
M
j“1 are simulated using the

empirical distribution of the process Xt`1|Xt. In the following we will generalize the discussion of the
two approaches by using the subscript r with realization t to indicate Regress Now algorithm and t` 1 to
indicate Regress Later. As training measures we choose µN to be the Lebesgue measure on r0, Imaxs and
µL to be Lesbegue measure on r0, Imaxs ˆ r´Xmax, Xmaxs.

Remark 6. Although in this paper we chose µN to be independent of the dynamics of pXtqtě0, in a parallel
work [16] authors have discussed in detail the effect of the correlation between tXj

t u
M
j“1 and tIjt`1u

M
j“1

on the performance of Regress Now algorithm.
9



The regression coefficients in the 2D regression Monte Carlo method are computed by least-square
projection as:

αtm “ argmin
aPRK

!

E
”

`

V pt` 1, Xj
t`1, I

j
t`1,mq ´

K
ÿ

k“1

akφpX
j
r , I

j
t`1q

˘2
ı)

,

where we define RK Q αtm “ pαt1,m, . . . , αtK,mq.
Let us recall, denoting by φ the vector

`

φ1p¨q, . . . , φKp¨q
˘

, that the coefficients αtm can be computed
explicitly by

αtm “
´

Eµ
“

φφT
‰

¯´1

Eµ
”

V pt`1, Xt`1, It`1,mqφ
ıT

«

´

M
ÿ

j“1

φφT
¯´1 M

ÿ

j“1

V pt`1, Xj
t`1, I

j
t`1,mqφ

T

and therefore, even though the regression coefficients are random (sample average approximation of ex-
pectations with respect to the measure µ) they are independent of Ft. Given the previous remark we can
estimate the conditional expectation of future value through:

C̃pt, x, w;m, dq “ E
”

K
ÿ

k“1

αtk,mφkpXr, It`1q

ˇ

ˇ

ˇ
Xt “ x, It “ w, dt “ d

ı

“

K
ÿ

k“1

αtk,mE
”

φkpXr, It`1q

ˇ

ˇ

ˇ
Xt “ x, It “ w, dt “ d

ı

.

The explicit value of E
”

φkpXr, It`1q

ˇ

ˇ

ˇ
Xt “ x, It “ w, dt “ d

ı

now depends on r, i.e. whether we are
using “Regress Now” or “Regress Later” to deal with the uncontrolled residual demand. In the first case
we simply obtain, from the measurability of Xt,

E
”

φkpXt, It`1q

ˇ

ˇ

ˇ
Ft

ı

“ φkpx,w ´B
d
t ∆tq “: φ̃kpx,w, dq.

In the second case we need to compute the expectation with respect to the randomness contained in the
transition function from Xt to Xt`1 and we simply write

E
”

φkpXt`1, It`1q

ˇ

ˇ

ˇ
Ft

ı

“ Eξ
”

φkpx` bpΛt ´ xq∆t` σ
?

∆tξ, w ´Bdt ∆tq
ı

“: φ̂kpx,w, dq.

Remark 7. For polynomial basis functions, i.e. φkpXt`1, It`1q :“ Xp
t`1I

q
t`1, the conditional expectation

φ̂kpx,w, dq can be written in closed form as:

φ̂kpx,w, dq “ E
“

Xp
t`1, I

q
t`1

ˇ

ˇXt “ x, It “ w, dt “ d
‰

“ Iqt`1σ
pdt

p
2

p
ÿ

k“0

Itpp´kq is oddu

ˆ

p

k

˙

´

x
1´ λdt

σ
?
dt

¯k
p´k
2
ź

j“1

p2j ´ 1q

Using the notation just introduced we can summarize the differences between the two techniques in the
following table:

φk Erφk|Xt, It, dts Cpt, x, w,m; dq

RN pXt, It`1q φkpXt, It ´B
d
t ∆tq

řK
k“1 α

t
k,mφ̃kpx,w, dq

RL pXt`1, It`1q ErφkpXt ` bpΛt ´Xtq∆t` σ
?

∆tξ, It ´B
d
t ∆tqs

řK
k“1 α

t
k,mφ̂kpx,w, dq

Details of the algorithms are given in the pseudocode 3 .
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Algorithm 3 Regression technique for continuation value: 2D Regression

input: tV pt` 1, Xj
t`1, I

j
t`1,mqu

M
j“1, tφkuKk“1.

1: if Regress Later then
2: r “ t` 1
3: else if Regress Now then
4: r “ t

5: αtm “ argmin
a

! M
ř

j“1

´

V pt` 1, Xj
r , I

j
t`1,mq ´

K
ř

k“1

akφkpX
j
r , I

j
t`1q

¯2)

, m “ 0, 1;

6: Define C̃pt, x, w;m, dq “
řK
k“1 α

t
k,mErφkpXr, It`1q|x,w, ds

output: C̃, tαtk,mu
K,1
k“1,m“0.

Remark 8. A natural question that comes to mind when reading this section is how the error bound on
the estimation of conditional expectations influences the estimation of the value function. To answer this
question we suggest the reader to check the proof of convergence in [1] where the authors compute error
bounds in the case of control of fully random Markov processes for the Regress Later scheme. In the Regress
Now case some studies of the convergence behaviour are available but are relevant only for stopping and
switching problems, where the choice of the control does not influences the future distribution of the state
variables. The inventory problem case that we are treating in this paper however does not fall into the case
studies in [1] because of the singularity of the transition density of the inventory process that falls outside
their assumptions.

5. NUMERICAL EXPERIMENTS

In this section we use the algorithms introduced in section 4 to solve a simple instance of the microgrid
management problem. We fix some base parameters and test the three algorithms; the one performing best
is then used to study the sensitivity of the control policy and of the operational costs on changes in system
parameters, hoping to gain some insight on the optimal design of the microgrid.

We now list the base parameters chosen for the numerical experiments; notice that the "s" column
indicates whether a sensitivity analysis is run for such parameter. For the meaning of the parameters refer
to section 2.

parameter value s
T 100h
∆t 0.25h
b 0.5 *
σ 2 *
Λt 0, @t

parameter value s
Imax 10 KWh *
ρpdq pd´d˚q3`pd˚q3`d

10
litre
KW

d˚ 6 KW
p 1e
gpiq 0, @i

parameter value s
dmin 1KW
dmax 10KW
K 5e *
C 0e *

According to the parameters table above, and recalling remark 4 the residual demand has the following
dynamics:

Xt`1 “
`

Xtp1´ 0.5∆tq ` σ
?

∆tξt
˘

^ 10, t P t0, 1, . . . , T ´ 1u, (16)
where ξt „ Np0, 1q.

We decided to use such simple dynamics for illustrative purposes in order to make the sensitivity of the
optimal control policy to the remaining parameters more straight forward to understand.

Consider now that for the parameters listed above, the problem is time homogeneous. We have also
observed empirically that the estimated continuation values tend to forget the terminal condition rather
quickly. We show in Figure 3 that the regression coefficients for all algorithms converge to a stationary
value time steps, suggesting that optimization ran for longer time horizons would not bring any noticeable
effect to control policy. Since all three methods use polynomial basis of degree two for the projection,
it also allows for easy comparison of the dynamics of the coefficients across methods. For example, at
inventory level I “ 0 the dynamics of the coefficient for x achieves same stationary level for both Grid

11



(A) (B) (C)

FIGURE 3. In the three panels above we display the estimated regression coefficients correspond-
ing to the basis tx, i, x iu in the case of 2D regression, and txu at three different inventory levels
for GD for mt “ 1. Although we used basis function up to polynomial degree 2, we present few
coefficients for clarity of presentation. Notice that the time axis is inverted to show the number
of time steps computed backward. Remarkable smooth coefficients are computed by the Regress
Later algorithm.

(A) (B) (C)

FIGURE 4. In the figure above we show, in the two left-most panels, an example of control map
produced by the Regress Later algorithm at time t “ 0. Notice the difference depending on the
state of the generator. In the right-most panel we display the estimated probability density function
of the state of charge of the battery associated with the use of the three policies. It can be observed
that Regress Later and Grid discretization induce very similar distributions.

Discretization and Regress Now. Although an exact comparison is not possible between Regress Now and
Regress Later, we continue to observe similar sign and dynamics for each of the coefficients. However,
getting away with almost no noise in the dynamics of the estimated coefficients of Regress Later compared
to Regress Now is essentially magical.

As a result, we define a stationary policy dpx,w,mq to be used in a longer time horizon than the one
employed for its estimation which performance are comparable to the time dependent policy dpt, x, w,mq.

We finally tested the value of both stationary and time dependent policy and found that the performance
of the stationary policy is comparable to that of the time dependent policy.

5.1. Analysis of the controllers

In this section we compare the control policies estimated by the three algorithms and we try to assess
whether one of the approaches is preferable.

5.1.1. Control maps

We compare now the stationary control policies produced by the different algorithms; recall that these
policies are feedback to the state, i.e. can be written as function dmpx,wq. Figure 4 displays an example
of the feedback control policy in the form of control map, a graphical representation of the value of the
optimal control for each pair px,wq.

12



We observed that the three policies agree with the intuition that the diesel generator should produce
more power when residual demand is high and inventory is low. We can also notice that the switching cost
influences the policy, forcing the diesel to keep running for longer in order to charge the battery sufficiently
and avoid turning ON and OFF the generator too often. Just by observation of the control maps little
difference can be found among the algorithms, we display in Figure 4 the effect of the control policy on a
the state of charge of the battery. It can be observed from the estimated unconditional probability density
of the process I that the policies induced by Regress Now and Regress Later are very similar. Both seem
to induce a peculiar mass of probability around In “ 2.5, differentiating the behavior of the inventory
compared to Grid Discretization. The distribution of the state of charge, obtained by plotting the histogram
of all simulations over all time steps, shows that Regress Now and Regress Later does not fully exploit
the whole inventory but rather they are more conservative, saving energy to avoid to turn ON the diesel
generator in the future. In the next section we will investigate the value associated to this control maps.

5.1.2. Performance of the policies

In order to assess the performance of each policy in an unbiased manner, we select a collection of
simulated paths of the residual demand process X , and record the costs associated with managing the
microgrid as indicated by each control map.

We first study how the quality of each policy improves when we increase the computational budget M
(and the complexity of the projection K) for each algorithm to compute the stationary policy. In Figure
5, we show the estimated value of the policy when the initial state of the system is px, i,mq “ p0, 5, 0q
for polynomial basis functions of increasing degree, for 2D regression. In case of GD we increase the
number of discretisation points for the inventory. In particular we make the computational time increase
by providing the problem with more training points and more parameters to use in the definition of C as
increasing the number of basis functions. In the case of 2D regression, surprisingly, we notice that the
performance of the estimated control improves only when polynomials of even degree are added, and the
effect is more prominent for Regress Later.

We notice from the comparison that Grid Discretisation converges quickly, resulting in the best algo-
rithm in terms of trade off between running time and precision. Among the 2D regressions, we observe
similar bias for Regress Now and Regress Later (not displayed in order to maintain clear presentation, but
available on request), however latter has lower standard error. This is not surprising because Regress Later
has only one element of approximation error due to finite basis functions while Regress Now has error at-
tributed to two sources, first, due to finite basis function and second, pathwise estimation of the conditional
expectation.

5.2. System behavior

In the previous section we selected Grid Discretisation to be the best performing algorithm by our
criteria. In the following we shall always employ Grid Discretisation to conduct our study of the sensitivity
of the control policy and the associated cost of managing the grid to some of the parameters of the model.

The aim of the section is to build a solid understanding of the behavior of the microgrid in order to get
an insight into the optimal design of the system. We decided to study the following aspects of the grid:
battery capacity, represented by Imax; different proportion of renewable production, via the volatility σ
and the mean reversion b; tenable behavior of the policy, via the switching cost K and curtailment cost C.

In order to be able to carry out our analysis, without introducing cumbersome economic and engineering
details regarding the microgrid components, we have to make very simplistic assumptions. Our aim is
however to guide the reader through a methodology that can be replicated to study real world microgrid
systems.

5.2.1. Battery capacity

We study first the behaviour of the system relatively to changes in the capacity of the battery. We
would expect to observe negative correlation between the quantity of diesel consumed and the battery size.
We display in Figure 6 both the quantity of energy curtailed and the cost of running the diesel generator
for different values of the battery capacity. We can observe that, as expected, increasing the size of the
battery leads to lower diesel usage thanks to the higher proportion of renewable energy that is retained
within the system. As the capacity of the battery reaches 30/40 KWh, we start observing a decrease in the

13



FIGURE 5. The figure in display shows the reduction in average operating cost (value function for
given initial condition) when higher degree polynomials are added to the basis functions, in the
case of RN regression, or more inventory points in Grid Discretisation (see upper tick bar, where
we indicate the number of discretisation levels). Notice the peculiar behaviour of even/odd degree
of basis functions in the RN regressions. Similar analysis was performed for Regress Later and the
results are available on request.

FIGURE 6. In the figure above we show histograms for different levels of battery capacity. In the
top panel we display the estimated probability density of the curtailed energy, while in the bottom
panel the estimated density of the cost of operating the diesel generator. Notice that the decrease
in cost and curtailed energy per KWh of additional capacity is smaller for high capacity batteries.

cost-reduction per KWh of additional capacity suggesting that further analysis should be run in order to
understand up to which size it is worth to pay to add storage capacity to the system.

We show now how to infer information about the optimal sizing of the battery, minimizing the trade
off between the installation cost of a bigger battery and the reduced use of the diesel generator. Consider
however that including battery ageing in the stochastic control problem is outside the scope of this paper
but rather in this section we present only a post-optimization analysis. Assuming that the microgrid runs
under similar conditions for the next 10 years, we can quickly estimate the total throughput of energy for
the different battery capacities. Consider now that a battery does not have an infinite lifetime, but rather
it should be scrapped after equivalent 4000 cycles (amount of energy for one full charge and discharge).
Under the previous assumptions, we can compute how many batteries would be necessary to cover the next
10 years of operations. Similarly, using the data relative to the usage of diesel generator for different levels
of capacity, we can compute the operating cost of the diesel generator over the same time period. Further
exploiting the assumption about the lifetime of a battery, we obtain the cost of running the grid for 10 years
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FIGURE 7. In the figure above we compute the total cost of installing and running the grid for ten
years, assuming we replace the battery every 4000 cycles, and plot it against the battery capacity
(left panel). From the corresponding minimum we can work out the optimal battery capacity and,
further, compute the sensitivity of such result with respect to the cost per KWh of capacity.

FIGURE 8. The blue lines (solid and dashed, mostly decreasing with y-axis on the left) represents
the cost of the diesel usage for myopic and stochastic policy as a function of σ. The orange curve
(mostly increasing with y-axis on the right) represents the percentage improvement in cost when
using stochastic policy as a proportion of cost of myopic policy.

as a function of the number of batteries. To conclude, assuming a linear cost of 400 e/KWh of capacity,
we work out the installation cost of the different-size storage devices.

Once this information is collected we search for the minimum of the sum of installation and running
cost and, in turn, we compute the optimal capacity. Figure 7, on the left, displays a graphical summary of
the procedure just described and shows that in our problem the optimal size of the battery is 14 KWh under
the current set of assumptions. Further, we study how much our result is affected by the cost per KWh of
capacity, repeating the procedure above. We find that, as expected, as cost increases the size of the optimal
battery decreases. Figure 7, on the right, displays such behaviour.

5.2.2. Renewable penetration

In this section we want to investigate how robust the microgrid is to higher penetration of renewable
generation, or, in other words, to what extent the algorithm can cope with increasing randomness and
decreasing predictability of the system. To model this phenomena we assume that greater penetration of
renewables can be modeled by increasing both the parameters for volatility σ and the mean reversion rate
λ. Increasing these two parameters makes the problem more difficult to solve, given that the control policy
can rely less and less on the statistical properties of the process X which approaches white noise as high
variance and high mean reversion make the current position of the process not very informative to predict
its next one.
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(A) (B)

FIGURE 9. Figure in the left and right panel represents demand, diesel usage and the inventory
dynamics for low and high σ respectively. It is important to mention that the mean reversion rate
was chosen as λ :“ σ2

{8, in order to ensure a constant volatility of the process regardless of σ.
Notice the low usage of the diesel generator in the figure on the right compared to the one on the
left.

In order to establish the real added value provided by our stochastic optimization algorithm, we compare
the estimated policy with an heuristic myopic control which can be reproduced in our model solving the
dynamic programming equation (12) taking constant conditional expectation with respect to the control
(greedy policy with respect to the current cost), particularly C̃ “ 0. We plot the value of the two control
policies as function of the increasing learning difficulty in Figure 8 where we observe that the importance
of accounting for the future conditional expectations C̃ increases as the predictability of X decreases.

In figure 8 we present cost of diesel (solid and dashed blue, mostly decreasing with y-axis on the left)
as a function of σ for myopic and stochastic policy. The orange line (mostly increasing and y-axis on the
right) represents the percentage improvement. Since increasing σ alters the volatility of the distribution of
the process X , we define the mean reversion rate λ :“ σ2{p2cq in order to ensure that the volatility of the
process is constant while we increase σ. The stochastic policy leads to at least 12% reduction in the cost of
the diesel usage, compared to the myopic policy, and the difference magnifies with increasing “fluctuations"
in the process. The decreasing relationship of the cost with σ signifies the importance of the battery storage
system in the microgrid which absorbs the sharp change in the demand. In figure 9 we compare the demand
for two different levels of the σ, the dynamics of the diesel generator and the inventory. Notice significantly
less usage of the diesel for high fluctuations, σ “ 5, compared to σ “ 1.175.

The results of this experiment are affected by the over-pessimistic assumption of modeling greater pen-
etration of renewables with an increasingly unpredictable, and eventually completely random, residual
demand process. This sort of analysis can however provide insight into how much (weather and load)
forecasting capability will be necessary for a given level of renewable penetration.

5.2.3. Switching and curtailment

We conclude this section by analyzing the dependence of the system behavior on two key parameters
in the model: switching cost K and curtailment cost C. Switching cost is a system’s property and the
microgrid controller has little freedom over, however the controller can significantly reduce the amount
of curtailed energy by choosing the appropriate curtailment cost. In figure 10, we observe that increasing
the curtailment cost reduces the total curtailed energy by approximately 4%. However, it comes at the
cost of inefficient usage of the diesel generator, which is represented on the right in the figure 10. The
blue historgam represents the difference between the cost of diesel usage for C=20 and C=2. Similarly the
orange histogram represents the difference between the energy curtailed for the two cases. Positive diesel
cost depicts inefficient usage of the diesel at C=20 compared to C=2. Depending upon the specific cost
functional for the diesel, the controller can use an artificial C as a parameter in the algorithm to achieve
better quality of the optimization.
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FIGURE 10. Line plot on the left, represents the impact of curtailment cost on the total curtailed
energy for different C as a proportion of curtailed energy at C=2. The right panel represents the
histograms for the differences between the two cases, C=20 and C=2. The blue plot represents the
difference in the cost of the diesel with C=20 and C=2; the orange represents the difference in the
curtailed energy. Notice the increase in curtailment cost leads to reduced curtailed energy but at
the expense of inefficient diesel usage.

(A) K “ 2 (B) K “ 5

FIGURE 11. Figure on the left represents the control map for switching cost K “ 2, while the
figure on the right represents the control map for K “ 5 when the generator is ON. Notice the
increase in area for light blue (corresponding to d “ 1) in the figure on the right because of
increased switching cost.

The optimal policy when the generator is ON mt “ 1 is significantly altered depending upon the
switching cost. For example, in figure 11, we present the control maps associated with K=2 and K=5. As
expected, larger switching cost disincentivise the controller to switch OFF the diesel generator once it’s
ON. However, we don’t observe "significant" change in the control policy due to increase in switching cost
when the generator is OFF.

6. COMPARISON WITH DETERMINISTICALLY TRAINED POLICY

In this section we compare our stochastic optimization algorithm with a deterministically trained policy.
The latter is widely used in online optimization where the solution is computed with respect to the best
forecast available at a given time. We emulate this situation by computing the optimal set of actions for a
particular deterministic demand trajectory at different levels of the inventory. We assume that the forecast
of the demand is given by:

Xt`1 “ Xt ` 0.5p6 sinp
πt

12
q ´Xtq∆t; t P t0, 1, . . . , T ´ 1u. (17)
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(A) Demand (B) Inventory (C) Diesel Output

FIGURE 12. The image illustrates the dynamics of the inventory and control for the deterministic
control problem. Figure (A) represents the demand in equation (17), the optimal control of the
diesel in figure (C) and the corresponding dynamics of the inventory in figure (B).

Equation (17) implies periodicity of one day in the residual demand and is equivalent to σ “ 0, b “ 0.5
and Λt “ 6 sinpπt12 q1 in (2). Zero volatility in the residual demand curve leads to a deterministic optimal
control problem, rather than a stochastic control problem we have presented in section 5.

Notice that the deterministic optimal control problem results in a sequence of control maps dt : pw,mq Ñ
rdmin, dmaxs Y 0. As a result, although the policy has been trained on a deterministic residual demand,
it dynamically adapts itself to different inventory levels and state of the diesel generator, when tested in a
stochastic environment. We present the modified algorithm in 4. There are two key differences from the
previous algorithm, first, we use one dimensional projection of the value function and second, we replace
regression with interpolation since there is no randomness left in the problem.

Algorithm 4 Regression Monte Carlo algorithm for deterministic demand

1: Simulate tXtu
N
t“1 according to its dynamics;

2: Discretize It into M levels indexed by j s.t. tIjt u
M
j“1 ;

3: Initialize the value function V pT, IjT ,mT q “ gpIjT q, @j “ 1, . . . , M and mT “ t0, 1u ;
4: for t “ N ´ 1 to 1 do
5: Find interpolation function Bpt` 1, It`1,mq for tV pt` 1, Ijt`1,mt`1qu

M
j“1 for each m “ 0, 1

6: Compute the set of admissible controls as Ut
7: for j “ 1 to M do
8: for m “ 0 to 1 do
9: F “ Bpt` 1, Ijt , 0q

10:

V pt, Ijt ,mq “

$

’

&

’

%

min
dPUtzt0u

!

pρpdq ` CSt1tStă0u `Bpt` 1, Ijt ´B
d
t , 1q

)

`K1tm“0u ^ F if 0 P Ut

min
dPUt

!

pρpdq ` CSt1tStă0u `Bpt` 1, Ijt ´B
d
t , 1q

)

`K1tm“0u otherwise

output: control policy tBpt, ¨, ¨quNt“2.

In order to understand the solution of the deterministic problem, in figure 13 we present the dynamics of
the optimal control and inventory corresponding to the demand faced in (A). As expected, diesel switches
on when the demand is high and it keeps it running just long enough that the battery is empty before it
faces negative residual demand to charge the battery. Moreover, there is substantial curtailment of energy
since the battery is not large enough to store all the excess energy.

In order to quantify the gain due to formulating the microgrid management problem as a stochastic
control rather than traditional deterministic control, we compare the performance of the deterministically
trained strategy of this section to its stochastic counterpart developed in this paper. While the deterministic
control problem was solved using the residual demand curve (17), the stochastic control problem was fed
in with the residual demand curve (18). Finally, we test both the strategies on fresh out-of-sample paths
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FIGURE 13. Difference of the Cost
of Stochastic and deterministic policy
for K=5

Switching Cost K=2 K=5 K=10
Deterministic 138.56 162.63 201.52
Stochastic 131.86 150.49 178.22
% difference 4.84% 7.46% 11.56%

TABLE 1. Comparison of deter-
ministic and stochastic trained pol-
icy.

following the residual demand (18).

Xt`1 “

´

Xt ` 0.5p6 sinp
πt

12
q ´Xtq∆t` 2

?
∆tξt

¯

^ 10 ; t P t0, 1, . . . , T ´ 1u (18)

In figure 13, we present the histogram of the cost from the stochastic policy and the deterministic policy
pathwise for 10,000 out-of-sample paths. As evident, most of the distribution lies on the negative side,
implying gain due to stochastic policy. To measure this difference, in table 1, we quantify the gain of the
stochastic policy for different switching cost. For switching cost of K=5, we observe that the stochastic
policy is 7.5% better than the deterministic policy. As the switching cost increases, mistakes made by
deterministic policy become more expensive leading to higher percentage difference.

Finally, Figure 14 displays the behavior of inventory and the cost along a random trajectory of residual
demand. In blue we show the stochastically trained control policy and in orange the deterministically
trained. The stochastic policy has lesser switch of the diesel generator and thus lower costs. The spikes in
the cost function for the deterministic policy is due to poor management of the inventory and thus inefficient
usage of the microgrid.

7. CONCLUSION

In this paper we solved the problem of optimal management of a microgrid by employing three algo-
rithms from the Regression Monte Carlo literature, namely: Regress Now, Regress Later and Inventory
Discretization. We find that Inventory Discretization significantly outperforms the other two methods. Be-
sides algorithm design, we propose a methodology to optimize the design of the grid and determine the
optimal sizing of the battery. In addition, we perform a thorough sensitivity analysis to some of the key
parameters, showing the robustness of our solution. Finally, we compare the control policy estimated by
our algorithm to industry standard deterministic control, observing a 5-10% reduction in cost.

Future research in this direction will include further studies of the optimal sizing of the battery by ex-
plicitly incorporating the wearing off caused by usage. Another more challenging direction is to understand
the impact of delay, e.g., in the switching of the diesel generator, on the optimal management of the micro-
grid. This problem introduces several mathematical and algorithmic issues which are currently the focus
of our research.
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FIGURE 14. The figure above presents the pathwise comparison of stochastic and deterministic
policy for the same demand on the left panel. The center panel represents dynamics of the inventory
due to control on the right panel. Particularly notice the difference in switching times for the diesel
in the deterministic policy and stochastic policy.
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