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Refleted SDEs

• B Brownian motion in Rd , F its augmented filtration

• Skorokhod problem

? Given the barrier {Lt}0≤t≤T and the initial condition X0 ≥ L0

Xt = X0 +
∫ t

0
b(Xs) ds +

∫ t

0
σ(Xs) · dBs + Kt , t ≥ 0

Xt ≥ Lt ,

∫ t

0
(Xs − Ls)dKs = 0, t ≥ 0.

? X , K continuous real processes,

? K is nondecreasing with K0 = 0

? Tanaka 79’, Lions-Sznitman 84’, ...
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Reflected SDEs in mean

• We consider a reflected SDE

Xt = X0 +
∫ t

0
b(Xs) ds +

∫ t

0
σ(Xs) · dBs + Kt , t ≥ 0

• The reflection is not on Xt itself but involves its law

• Given an increasing function h, the constraint is

∀t ≥ 0, E[h(Xt)] ≥ 0

• The Skorokhod condition becomes∫ t

0
E[h(Xs)] dKs = 0, t ≥ 0.
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Motivation : Risk Measures

• A risk measure is an application ρ : L2(FT ) −→ R such that

1. X ≤ Y =⇒ ρ(X ) ≥ ρ(Y ) ;
2. ρ(X + m) = ρ(X )−m .

? Convex risk measures: H. Föllmer, A. Schied

? Coherent (convex + positively homogenous): P. Artzner,
F. Delbaen, J.-M. Eber, D. Heath

• The acceptance set is

Aρ = {X : ρ(X ) ≤ 0}

• Given a set A, one can define a risk measure by setting

ρ(X ) = inf{m ∈ R : m + X ∈ A}
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Motivation : Risk Measures
• If u is a nondecreasing function, one can choose as acceptance set

A = {X : E[ u(X )] ≥ α} = {X : E[ h(X )] ≥ 0}, h(x) = u(x)− α

• If one invests in the stock S following the strategy π, the value of the
portofolio is given by

Xt = X0 +
∫ t

0
πt dSt = X0 +

∫ t

0
µπtSt +

∫ t

0
σπtSt dBt , t ≥ 0

• The investor can follow the strategy he wants as soon as

? Xt remains an acceptable position for a given risk measure.

• Examples

? VaRα(X ) = inf{m : P(m + X < 0) ≤ α}, h(x) = 1x≥0 − (1− α)

? AVaRα(X ) :=
1
α

∫ α

0
VaRs(X )ds = E [−X | − X ≥ VaRα(X )] (if X is

continuous)
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A simple example

• Let us solve the following reflected SDE

Xt = X0 − γt + σBt + Kt , t ≥ 0,

E[Xt ] ≥ u,
∫ t

0
(E[Xs]− u) dKs = 0, t ≥ 0

? with γ > 0, E[X0] > u.

• The solution is

Xt = X0 − γt + σBt + (E[X0] − γt − u)−

Kt = γ(t − t∗)+, E[X0]− γt∗ = u
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A simple example

• Starting from the previous solution, for α ∈ R, set

Eαt = exp
(
αBt − α2t/2

)
, Kα

t =
∫ t

0
Eαs dKs

• Let Xα be the "solution" to the SDE

Xα
t = X0 − γt + σBt + Kα

t , t ≥ 0

• Then (Xα,Kα) is still a solution to the reflected SDE:

? E
[
Xα

t
]

= E [Xt ] since E
[
Eαt
]

= 1

? we have the Skorokhod condition since dKα << dK .

No Uniqueness if K is allowed to be random
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A simple example

• There is no minimal solution

• Assume (X ,K ) is a minimal solution then

X t ≤ Xα
t = X0 − γt + σBt + Kα

t ,

= X0 − γt + σBt +
∫ t

0
Eαs dKs

• As a byproduct, α→ +∞,

∀t > 0, X t ≤ X0 − γt + σBt , E
[
X t
]

= E [X0]− γt < u,

• The constraint is not satisfied for t large enough
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Deterministic solution

Definition
By a deterministic solution we mean a couple (X ,K ) of progressively
measurable processes s.t.

1. (X ,K ) is continuous ;
2. K is nondecreasing with K0 = 0 and deterministic ;
3. (X ,K ) is square integrable ;
4. the equation is satisfied:

Xt = X0 +
∫ t

0
b(Xs) ds +

∫ t

0
σ(Xs) · dBs + Kt , t ≥ 0,

E [h(Xt )] ≥ 0,
∫ t

0
E [h(Xs)] dKs = 0, t ≥ 0.
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Assumptions

• We assume that b : R −→ R and σ : R −→ Rd are Lipschitz continuous

• X0 ∈ Lp for p > 4

• The function h : R −→ R is nondecreasing and for some 0 < m ≤ M

m|x − y | ≤ |h(x)− h(y )| ≤ M|x − y |, (0 < m ≤ h′(x) ≤ M).

• This assumption is rather strong! But so far . . .
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Existence and Uniqueness result

• We want to solve the SDE

Xt = X0 +
∫ t

0
b(Xs) ds +

∫ t

0
σ(Xs) · dBs + Kt , t ≥ 0,

E [h(Xt )] ≥ 0,
∫ t

0
E [h(Xs)] dKs = 0, t ≥ 0.

• We assume that X0 is square integrable and E [h(X0)] ≥ 0

Theorem (R. Elie, Y. Hu, PhB)
The previous reflected SDE has a unique deterministic solution.
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Proof: fixed point argument
• Let Y be a given process and let us solve

Xt = X0 +
∫ t

0
b(Ys)ds +

∫ t

0
σ(Ys) · dBs + Kt , E [h(Xt )] ≥ 0

• We set

Ut = X0 +
∫ t

0
b(Ys)ds +

∫ t

0
σ(Ys) · dBs

• Since E [h(Xt )] = E [h(Ut + Kt )], we have

Kt ≥ G0(Ut ) = G0 (µUt )

where G0 : L2 −→ R is defined by

G0(X ) = inf{x ≥ 0 : E [h(x + X )] ≥ 0}

• Kt is nonincreasing and we have

Kt ≥ sup
s≤t

G0(Us)
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Proof

• We define (X ,K ) by setting

Kt = sup
s≤t

G0(Us), Xt = Ut + Kt .

• By definition of K , we have E [h(Xt )] ≥ 0

• Since G0(Ut ) = sups≤t G0(Xs) > 0 dK -a.e.∫ t

0
E [h(Xs)] dKs =

∫ t

0
E [h(Us + G0(Us))] 1G0(Xs)>0 dKs = 0.

• It remains to prove that Y −→ X is a contraction.

• The key point is the following observation

|G0(X )−G0(X ′)| ≤ M
m

W1 (µX , µX ′) ≤
M
m

E
[
|X − X ′|

]
.
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Properties

• t 7−→ Kt is 1/2-Hölder continuous. This comes directly from

Kt+h − Kt = sup
0≤s≤h

G0

(
Xt +

∫ t+s

t
b(Xu)du +

∫ t+s

t
σ(Xu) dBu

)

• If (X ,K ) is a solution, Itô’s formula gives when h is smooth

E [h(Xt+h)] = E [h(Xt )] +
∫ t+h

t
E [Lh(Xs)] ds +

∫ t+h

t
E
[
h′(Xs)

]
dKs

• Thus, dKt << dt and

K ′t = 1E[h(Xt )=0]
E [Lh(Xt )]−
E [h′(Xt )]



Introduction-Motivation Reflected SDEs in mean Propagation of chaos and simulation Numerical illustrations Generalizations and problems

Risk Measures

• In the same way, if ρ is a risk measure defined on L2, we can solve

Xt = X0 +
∫ t

0
b(Xs) ds +

∫ t

0
σ(Xs) · dBs + Kt , t ≥ 0

ρ(Xt ) ≤ 0,
∫ t

0
ρ(Xs)dKs = 0, t ≥ 0.

• In this case, G0(X ) = ρ+(X ).

Theorem
If ρ : L2 −→ R is a Lipschitz risk measure, then the reflected SDE has a
unique deterministic solution.

• |ρ(X )− ρ(Y )| ≤ C E
[
|X − Y |2|

]1/2
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Examples

• Typical examples are coherent risk measures

ρ(X ) = sup{EQ [−X ] : Q ∈ Q}

? Q is a set of probabilities absolutely continuous w.r.t. P

• As soon as the set of densities is bounded in L2, ρ is Lipschitz

• In particular,

AVaRα(X ) = sup
{
EQ [−X ] :

dQ
dP
≤ 1
α

}
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Simulations ?
• Let us consider the reflected SDE

Xt = x0 +
∫ t

0
b(Xs) ds +

∫ t

0
σ(Xs)dBs + Kt , t ≥ 0,

E[h(Xt )] ≥ 0,
∫ t

0
E[h(Xs)] dKs = 0, t ≥ 0.

• The idea is to take advantage of the definition of K :

Kt+h − Kt = sup
t≤r≤t+h

G0

(
Xt +

∫ r

t
b(Xs) ds +

∫ r

t
σ(Xs)dBs

)
,

G0(X ) = inf{x ≥ 0 : E [h(x + X )] ≥ 0} = G0(µX ).

• The natural discretization is

Xt+h = Xt + h b(Xt ) + σ(Xt ) (Bt+h − Bt ) + Kt+h − Kt ,

Kt+h − Kt = G0 (Xt + h b(Xt ) + σ(Xt ) (Bt+h − Bt )) ,
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Simulations

• But we have to compute G0

• One can consider the following system

X i
t+h = X i

t + h b(X i
t ) + σ(X i

t ) (Bi
t+h − Bi

t ) + Kt+h − Kt , 1 ≤ i ≤ N

Kt+h − Kt = G0

({
X i

t + h b(X i
t ) + σ(X i

t ) (Bi
t+h − Bi

t )
}

1≤i≤N

)
,

G0

({
X i}

1≤i≤N

)
= inf

{
x ≥ 0 :

1
N

N∑
i=1

h
(
x + X i) ≥ 0

}
= G0

(
µN

X
)
.

• We split the analysis into two parts:

? The system of particles

? The discretization
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Propagation of chaos

• We introduce the following system of particles: for 1 ≤ i ≤ N,

X i
t = x0 +

∫ t

0
b(X i

s) ds +
∫ t

0
σ(X i

s)dBi
s + K N

t , t ≥ 0,

1
N

N∑
i=1

h(X i
t ) ≥ 0,

∫ t

0

1
N

N∑
i=1

h(X i
s) dK N

s = 0, t ≥ 0.

? Bi independent BM.

• This system is a reflected diffusion with an oblique reflection:
the direction of the reflexion is (1, . . . ,1)t

• X
i
are independent copies of X
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Result

Theorem (Chaudru de Raynal, Guillin, Labart, PhB)
If h is bi-Lipschitz, then

E
[∣∣∣X i

t − X
i
t

∣∣∣2] ≤ C N−1/2.

In the function h is smooth, C2 with bounded derivatives,

E
[∣∣∣X i

t − X
i
t

∣∣∣2] ≤ C N−1.
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Proof
• For x ∈ R and ν ∈ M1,

H(x , ν) =
∫

h(x + y )ν(dy ), G0(ν) = inf{x ≥ 0 : H(x , ν) ≥ 0},

G(ν) = inf{x : H(x , ν) ≥ 0}

Proposition
We have the following properties:

1. H is a bi-Lipschitz function
2. G0 is Lipschitz continuous:

|G0(ν)−G0(ν′)| ≤ M
m

W1(ν, ν′).

3. More precisely,

|G0(ν)−G0(ν′)| ≤ 1
m

∣∣∣∣∫ h(G(ν) + y )(ν(dy )− ν′(dy ))
∣∣∣∣
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Proof

• Let us recall that

Kt = sup
s≤t

G0(Us), Us = x0 +
∫ s

0
b(Xr )dr +

∫ s

0
σ(Xr )dBr

• In other words, if we call µs the distribution of Us

Kt = sup
s≤t

G0(µs).

• Let µN
s be the empirical distribution of the

U i
s = x0 +

∫ s

0
b(X i

r )dr +
∫ s

0
σ(X i

r )dBi
r

• We have, in the same way, K N
t = sups≤t G0(µN

s )
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Proof

• We compute |X i
t − X

i
t | (b ≡ 0):

|X j
t − X

j
t | ≤

∣∣∣∣∣
∫ t

0

(
σ(X j

s)− σ(X
j
s)
)

dBj
s

∣∣∣∣∣ +

∣∣∣∣∣sup
s≤t

G0(µN
s )− sup

s≤t
G0(µs)

∣∣∣∣∣
≤

∣∣∣∣∣
∫ t

0

(
σ(X j

s)− σ(X
j
s)
)

dBj
s

∣∣∣∣∣ + sup
s≤t

∣∣G0(µN
s )−G0(µN

s )
∣∣

+ sup
s≤t

∣∣G0(µN
s )−G0(µs)

∣∣ .
• Gronwall’s lemma for the first two terms: the speed of convergence is
given by

sup
s≤t

∣∣G0(µN
s )−G0(µs)

∣∣
? Not so easy with the sup
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Proof

• We have

E

[
sup
s≤t

∣∣G0(µN
s )−G0(µs)

∣∣2] ≤ 1
m2E

[
sup
s≤t

∣∣∣∣∫ h(G(µs) + y )(µN
s (dy )− µs(dy ))

∣∣∣∣2
]

• When h is not smooth, we improve a result from Rachev and
Ruschendorf

E

[
sup
s≤t

∣∣G0(µN
s )−G0(µs)

∣∣2] ≤ C E

[
sup
s≤t

W1(µN
s , µs)

]
≤ C N−1/2

• When h is smooth, we can use Itô’s formula to compute

E

[
sup
s≤t

∣∣∣∣∫ h(G(µs) + y )(µN
s (dy )− µs(dy ))

∣∣∣∣2
]
≤ C N−1
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Discretization

Theorem (Chaudru de Raynal, Guillin, Labart, PhB)
If h is bi-Lipschitz, then

E
[∣∣∣X h,N,i

t − X
i
t

∣∣∣2] ≤ C
(

N−1/2 + h| log h|
)
.

If h is smooth

E
[∣∣∣X h,N,i

t − X
i
t

∣∣∣2] ≤ C
(
N−1 + h| log h|

)
.

Theorem (Ghannoum, Labart, PhB)
There is no need of | log h|.
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Linear constraint
• Xt = X0 − βt + a

∫ t
0 Xs + σBt + Kt ,

• E[Xt ] ≥ p, Kt = (ap − β)(t − t∗)+, t∗ = 1
a (log (x0 + β/a)− log (p + β/a))

Figure: n = 500, N = 10000, T = 1, β = 2.1, a = 1, σ = 1, x0 = 1, p = 3.6
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Nonlinear constraint

• Xt = X0 − βt + a
∫ t

0 Xs + σBt + Kt

• h(x) = x + α sin(x)− p

K. t = e−atd sup
s≤t

(
F−1

s (0)
)+
,

Ft (x) =

{
e−at

(
x0 − β

(
eat − 1

a

)
+ x
)

+ α exp
(
−e−at σ

2

a
sinh(at)

)

× sin
(

e−at
(

x0 − β
(

eat − 1
a

)
+ x
))
− p

}
.
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Nonlinear constraint

Figure: n = 100, N = 10000, T = 15, β = 10−2, σ = 1, p = π/2, α =
.9, x0 + α sin(x0) − p = 0
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A different approach

• h smooth, K has a density w.r.t. Lebesgue measure

Kt =
∫ t

0
1E[h(Xs)]=0 E

[
h′(Xs)

]−1 E [Lh(Xs)]− ds

• The solution to the mean reflected SDE is the solution to the classical
McKean-Vlasov SDE

Xt = X0 +
∫ t

0
b(Xs)ds +

∫ t

0
σ(Xs) dBs +

∫ t

0
f (PXs ) ds,

f (µ) = 1µ(h)=0
µ (Lh)−

µ ((h′))

• The numerical scheme resulting from the McKean-Vlasov SDE seems
to converge

? Analysis in progress
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Generalizations

• Generalizations

? SDEs with jumps (Abir Ghannoum)

? BSDEs when f does not depend on z (Hélène Hibon)

• Between generalizations and problems

? Multidimensional case

? Link with PDEs
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Multidimensional case

• h : Rn −→ R

? h concave

? 0 < m2 ≤ |∇h(x)|2 ≤ M2

• We consider the normal reflected SDE

Xt = X0 +
∫ t

0
b(Xs) ds +

∫ t

0
σ(Xs) · dBs +

∫ t

0
∇h(Xs)dKs, t ≥ 0,

E [h(Xt )] ≥ 0,
∫ t

0
E [h(Xs)] dKs = 0, t ≥ 0.

First result
There exists a unique solution with K deterministic
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Problems

• Propagation of chaos for BSDEs when f depends on z

• Regularity of h: h′(x) ≥ m > 0

• Mixed reflexion depending on both the law and the path

? So far, Xt ≥ E [Xt ]− α



Thank you for your attention
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