Université Savoie Mont Blanc CNRS UMR 5127

Mean Reflected SDEs and Propagation of Chaos

Séminaire FIME Lab., IHP 2017-10-06

Overview

Introduction-Motivation

Reflected SDEs in mean

Propagation of chaos and simulation

Numerical illustrations

Generalizations and problems

Overview

Introduction-Motivation

Reflected SDEs in mean

Propagation of chaos and simulation

Numerical illustrations

Generalizations and problems

Refleted SDEs

- B Brownian motion in $\mathbf{R}^{d}, \mathcal{F}$ its augmented filtration
- Skorokhod problem
\star Given the barrier $\left\{L_{t}\right\}_{0 \leq t \leq T}$ and the initial condition $X_{0} \geq L_{0}$

$$
\begin{gathered}
X_{t}=X_{0}+\int_{0}^{t} b\left(X_{s}\right) d s+\int_{0}^{t} \sigma\left(X_{s}\right) \cdot d B_{s}+K_{t}, \quad t \geq 0 \\
X_{t} \geq L_{t}, \quad \int_{0}^{t}\left(X_{s}-L_{s}\right) d K_{s}=0, \quad t \geq 0
\end{gathered}
$$

* X, K continuous real processes,
$\star K$ is nondecreasing with $K_{0}=0$
* Tanaka 79', Lions-Sznitman 84', ...

Reflected SDEs in mean

- We consider a reflected SDE

$$
X_{t}=X_{0}+\int_{0}^{t} b\left(X_{s}\right) d s+\int_{0}^{t} \sigma\left(X_{s}\right) \cdot d B_{s}+K_{t}, \quad t \geq 0
$$

- The reflection is not on X_{t} itself but involves its law
- Given an increasing function h, the constraint is

$$
\forall t \geq 0, \quad \mathbb{E}\left[\boldsymbol{h}\left(\boldsymbol{X}_{t}\right)\right] \geq 0
$$

- The Skorokhod condition becomes

$$
\int_{0}^{t} \mathbb{E}\left[h\left(X_{s}\right)\right] d K_{s}=0, \quad t \geq 0
$$

Motivation : Risk Measures

- A risk measure is an application $\rho: L^{2}\left(\mathcal{F}_{T}\right) \longrightarrow \mathbf{R}$ such that

1. $X \leq Y \Longrightarrow \rho(X) \geq \rho(Y)$;
2. $\rho(X+m)=\rho(X)-m$.
\star Convex risk measures: H. Föllmer, A. Schied

* Coherent (convex + positively homogenous): P. Artzner, F. Delbaen, J.-M. Eber, D. Heath
- The acceptance set is

$$
\mathcal{A}_{\rho}=\{X: \rho(X) \leq 0\}
$$

- Given a set \mathcal{A}, one can define a risk measure by setting

$$
\rho(X)=\inf \{m \in \mathbf{R}: m+X \in \mathcal{A}\}
$$

Motivation : Risk Measures

- If u is a nondecreasing function, one can choose as acceptance set

$$
\mathcal{A}=\{X: \mathbb{E}[u(X)] \geq \alpha\}=\{X: \mathbb{E}[h(X)] \geq 0\}, \quad h(x)=u(x)-\alpha
$$

- If one invests in the stock S following the strategy π, the value of the portofolio is given by

$$
X_{t}=X_{0}+\int_{0}^{t} \pi_{t} d S_{t}=X_{0}+\int_{0}^{t} \mu \pi_{t} S_{t}+\int_{0}^{t} \sigma \pi_{t} S_{t} d B_{t}, \quad t \geq 0
$$

- The investor can follow the strategy he wants as soon as
$\star X_{t}$ remains an acceptable position for a given risk measure.
- Examples

$$
\begin{aligned}
& \star \operatorname{VaR}_{\alpha}(X)=\inf \{m: \mathbb{P}(m+X<0) \leq \alpha\}, \quad h(x)=\mathbf{1}_{x \geq 0}-(1-\alpha) \\
& \star A \operatorname{VaR} R_{\alpha}(X):=\frac{1}{\alpha} \int_{0}^{\alpha} \operatorname{VaR}_{s}(X) d s=\mathbb{E}\left[-X \mid-X \geq \operatorname{VaR}_{\alpha}(X)\right] \text { (if } X \text { is }
\end{aligned}
$$ continuous)

Overview

Introduction-Motivation

Reflected SDEs in mean

Propagation of chaos and simulation

Numerical illustrations

Generalizations and problems

A simple example

- Let us solve the following reflected SDE

$$
\begin{aligned}
X_{t}=X_{0}-\gamma t+\sigma B_{t}+K_{t}, \quad t \geq 0 \\
\mathbb{E}\left[X_{t}\right] \geq u, \quad \int_{0}^{t}\left(\mathbb{E}\left[X_{s}\right]-u\right) d K_{s}=0, \quad t \geq 0
\end{aligned}
$$

\star with $\gamma>0, \mathbb{E}\left[X_{0}\right]>u$.

- The solution is

$$
\begin{gathered}
\boldsymbol{X}_{t}=\boldsymbol{X}_{0}-\gamma \boldsymbol{t}+\sigma B_{t}+\left(\mathbb{E}\left[\boldsymbol{X}_{0}\right]-\gamma \boldsymbol{t}-\boldsymbol{u}\right)_{-} \\
\boldsymbol{K}_{\boldsymbol{t}}=\gamma\left(\boldsymbol{t}-\boldsymbol{t}^{*}\right)_{+}, \quad \mathbb{E}\left[\boldsymbol{X}_{0}\right]-\gamma \boldsymbol{t}^{*}=\boldsymbol{u}
\end{gathered}
$$

A simple example

- Starting from the previous solution, for $\alpha \in \mathbf{R}$, set

$$
\mathcal{E}_{t}^{\alpha}=\exp \left(\alpha B_{t}-\alpha^{2} t / 2\right), \quad K_{t}^{\alpha}=\int_{0}^{t} \mathcal{E}_{s}^{\alpha} d K_{s}
$$

- Let X^{α} be the "solution" to the SDE

$$
X_{t}^{\alpha}=X_{0}-\gamma t+\sigma B_{t}+K_{t}^{\alpha}, \quad t \geq 0
$$

- Then $\left(X^{\alpha}, K^{\alpha}\right)$ is still a solution to the reflected SDE:
$\star \mathbb{E}\left[X_{t}^{\alpha}\right]=\mathbb{E}\left[X_{t}\right]$ since $\mathbb{E}\left[\mathcal{E}_{t}^{\alpha}\right]=1$
\star we have the Skorokhod condition since $d K^{\alpha} \ll d K$.
No Uniqueness if K is allowed to be random

A simple example

- There is no minimal solution
- Assume (\bar{X}, \bar{K}) is a minimal solution then

$$
\begin{aligned}
\bar{X}_{t} & \leq X_{t}^{\alpha}=X_{0}-\gamma t+\sigma B_{t}+K_{t}^{\alpha}, \\
& =X_{0}-\gamma t+\sigma B_{t}+\int_{0}^{t} \mathcal{E}_{s}^{\alpha} d K_{s}
\end{aligned}
$$

- As a byproduct, $\alpha \rightarrow+\infty$,

$$
\forall t>0, \quad \bar{X}_{t} \leq X_{0}-\gamma t+\sigma B_{t}, \quad \mathbb{E}\left[X_{t}\right]=\mathbb{E}\left[X_{0}\right]-\gamma t<u,
$$

- The constraint is not satisfied for t large enough

Deterministic solution

Definition

By a deterministic solution we mean a couple (X, K) of progressively measurable processes s.t.

1. (X, K) is continuous ;
2. K is nondecreasing with $K_{0}=0$ and deterministic ;
3. (X, K) is square integrable ;
4. the equation is satisfied:

$$
\begin{aligned}
& X_{t}=X_{0}+\int_{0}^{t} b\left(X_{s}\right) d s+\int_{0}^{t} \sigma\left(X_{s}\right) \cdot d B_{s}+K_{t}, \quad t \geq 0 \\
& \mathbb{E}\left[h\left(X_{t}\right)\right] \geq 0, \quad \int_{0}^{t} \mathbb{E}\left[h\left(X_{s}\right)\right] d K_{s}=0, \quad t \geq 0
\end{aligned}
$$

Assumptions

- We assume that $b: \mathbf{R} \longrightarrow \mathbf{R}$ and $\sigma: \mathbf{R} \longrightarrow \mathbf{R}^{d}$ are Lipschitz continuous
- $X_{0} \in \mathrm{~L}^{p}$ for $p>4$
- The function $h: \mathbf{R} \longrightarrow \mathbf{R}$ is nondecreasing and for some $0<m \leq M$

$$
m|x-y| \leq|h(x)-h(y)| \leq M|x-y|, \quad\left(0<m \leq h^{\prime}(x) \leq M\right)
$$

- This assumption is rather strong! But so far ...

Existence and Uniqueness result

- We want to solve the SDE

$$
\begin{aligned}
& X_{t}=X_{0}+\int_{0}^{t} b\left(X_{s}\right) d s+\int_{0}^{t} \sigma\left(X_{s}\right) \cdot d B_{s}+K_{t}, \quad t \geq 0 \\
& \mathbb{E}\left[h\left(X_{t}\right)\right] \geq 0, \quad \int_{0}^{t} \mathbb{E}\left[h\left(X_{s}\right)\right] d K_{s}=0, \quad t \geq 0
\end{aligned}
$$

- We assume that X_{0} is square integrable and $\mathbb{E}\left[h\left(X_{0}\right)\right] \geq 0$

Theorem (R. Elie, Y. Hu, PhB)
The previous reflected SDE has a unique deterministic solution.

Proof: fixed point argument

- Let Y be a given process and let us solve

$$
X_{t}=X_{0}+\int_{0}^{t} b\left(Y_{s}\right) d s+\int_{0}^{t} \sigma\left(Y_{s}\right) \cdot d B_{s}+K_{t}, \quad \mathbb{E}\left[h\left(X_{t}\right)\right] \geq 0
$$

- We set

$$
U_{t}=X_{0}+\int_{0}^{t} b\left(Y_{s}\right) d s+\int_{0}^{t} \sigma\left(Y_{s}\right) \cdot d B_{s}
$$

- Since $\mathbb{E}\left[h\left(X_{t}\right)\right]=\mathbb{E}\left[h\left(U_{t}+K_{t}\right)\right]$, we have

$$
K_{t} \geq G_{0}\left(U_{t}\right)=G_{0}\left(\mu U_{t}\right)
$$

where $G_{0}: \mathrm{L}^{2} \longrightarrow \mathbf{R}$ is defined by

$$
G_{0}(X)=\inf \{x \geq 0: \mathbb{E}[h(x+X)] \geq 0\}
$$

- K_{t} is nonincreasing and we have

$$
K_{t} \geq \sup _{s \leq t} G_{0}\left(U_{s}\right)
$$

Proof

- We define (X, K) by setting

$$
K_{t}=\sup _{s \leq t} G_{0}\left(U_{s}\right), \quad X_{t}=U_{t}+K_{t} .
$$

- By definition of K, we have $\mathbb{E}\left[h\left(X_{t}\right)\right] \geq 0$
- Since $G_{0}\left(U_{t}\right)=\sup _{s \leq t} G_{0}\left(X_{s}\right)>0 d K$-a.e.

$$
\int_{0}^{t} \mathbb{E}\left[h\left(X_{s}\right)\right] d K_{s}=\int_{0}^{t} \mathbb{E}\left[h\left(U_{s}+G_{0}\left(U_{s}\right)\right)\right] \mathbf{1}_{G_{0}\left(X_{s}\right)>0} d K_{s}=0 .
$$

- It remains to prove that $Y \longrightarrow X$ is a contraction.
- The key point is the following observation

$$
\left|G_{0}(X)-G_{0}\left(X^{\prime}\right)\right| \leq \frac{M}{m} W_{1}\left(\mu_{X}, \mu_{X^{\prime}}\right) \leq \frac{M}{m} \mathbb{E}\left[\left|X-X^{\prime}\right|\right] .
$$

Properties

- $t \longmapsto K_{t}$ is $1 / 2$-Hölder continuous. This comes directly from

$$
K_{t+h}-K_{t}=\sup _{0 \leq s \leq h} G_{0}\left(X_{t}+\int_{t}^{t+s} b\left(X_{u}\right) d u+\int_{t}^{t+s} \sigma\left(X_{u}\right) d B_{u}\right)
$$

- If (X, K) is a solution, Itô's formula gives when h is smooth

$$
\mathbb{E}\left[h\left(X_{t+h}\right)\right]=\mathbb{E}\left[h\left(X_{t}\right)\right]+\int_{t}^{t+h} \mathbb{E}\left[\mathcal{L} h\left(X_{s}\right)\right] d s+\int_{t}^{t+h} \mathbb{E}\left[h^{\prime}\left(X_{s}\right)\right] d K_{s}
$$

- Thus, $d K_{t} \ll d t$ and

$$
K_{t}^{\prime}=\mathbf{1}_{\mathbb{E}\left[h\left(X_{t}\right)=0\right]} \frac{\mathbb{E}\left[\mathcal{L h}\left(X_{t}\right)\right]_{-}}{\mathbb{E}\left[h^{\prime}\left(X_{t}\right)\right]}
$$

Risk Measures

- In the same way, if ρ is a risk measure defined on L^{2}, we can solve

$$
\begin{gathered}
X_{t}=X_{0}+\int_{0}^{t} b\left(X_{s}\right) d s+\int_{0}^{t} \sigma\left(X_{s}\right) \cdot d B_{s}+K_{t}, \quad t \geq 0 \\
\rho\left(X_{t}\right) \leq 0, \quad \int_{0}^{t} \rho\left(X_{s}\right) d K_{s}=0, \quad t \geq 0
\end{gathered}
$$

- In this case, $G_{0}(X)=\rho^{+}(X)$.

Theorem

If $\rho: \mathrm{L}^{2} \longrightarrow \mathbf{R}$ is a Lipschitz risk measure, then the reflected SDE has a unique deterministic solution.

- $|\rho(X)-\rho(Y)| \leq C \mathbb{E}\left[|X-Y|^{2} \mid\right]^{1 / 2}$

Examples

- Typical examples are coherent risk measures

$$
\rho(X)=\sup \left\{\mathbb{E}^{\mathbb{Q}}[-X]: \mathbb{Q} \in \mathcal{Q}\right\}
$$

$\star \mathcal{Q}$ is a set of probabilities absolutely continuous w.r.t. \mathbb{P}

- As soon as the set of densities is bounded in L^{2}, ρ is Lipschitz
- In particular,

$$
\operatorname{AVaR}_{\alpha}(X)=\sup \left\{\mathbb{E}^{\mathbb{Q}}[-X]: \frac{d \mathbb{Q}}{d \mathbb{P}} \leq \frac{1}{\alpha}\right\}
$$

Overview

Introduction-Motivation

Reflected SDEs in mean

Propagation of chaos and simulation

Numerical illustrations

Generalizations and problems

Simulations ?

- Let us consider the reflected SDE

$$
\begin{aligned}
& X_{t}=x_{0}+\int_{0}^{t} b\left(X_{s}\right) d s+\int_{0}^{t} \sigma\left(X_{s}\right) d B_{s}+K_{t}, \quad t \geq 0 \\
& \mathbb{E}\left[h\left(X_{t}\right)\right] \geq 0, \quad \int_{0}^{t} \mathbb{E}\left[h\left(X_{s}\right)\right] d K_{s}=0, \quad t \geq 0
\end{aligned}
$$

- The idea is to take advantage of the definition of K :

$$
\begin{aligned}
K_{t+h}-K_{t} & =\sup _{t \leq r \leq t+h} G_{0}\left(X_{t}+\int_{t}^{r} b\left(X_{s}\right) d s+\int_{t}^{r} \sigma\left(X_{s}\right) d B_{s}\right), \\
G_{0}(X) & =\inf \{x \geq 0: \mathbb{E}[h(x+X)] \geq 0\}=G_{0}\left(\mu_{X}\right) .
\end{aligned}
$$

- The natural discretization is

$$
\begin{aligned}
X_{t+h} & =X_{t}+h b\left(X_{t}\right)+\sigma\left(X_{t}\right)\left(B_{t+h}-B_{t}\right)+K_{t+h}-K_{t}, \\
K_{t+h}-K_{t} & =G_{0}\left(X_{t}+h b\left(X_{t}\right)+\sigma\left(X_{t}\right)\left(B_{t+h}-B_{t}\right)\right),
\end{aligned}
$$

Simulations

- But we have to compute G_{0}
- One can consider the following system

$$
\begin{aligned}
X_{t+h}^{i} & =X_{t}^{i}+h b\left(X_{t}^{i}\right)+\sigma\left(X_{t}^{i}\right)\left(B_{t+h}^{i}-B_{t}^{i}\right)+K_{t+h}-K_{t}, \quad 1 \leq i \leq N \\
K_{t+h}-K_{t} & =G_{0}\left(\left\{X_{t}^{i}+h b\left(X_{t}^{i}\right)+\sigma\left(X_{t}^{i}\right)\left(B_{t+h}^{i}-B_{t}^{i}\right)\right\}_{1 \leq i \leq N}\right), \\
G_{0}\left(\left\{X^{i}\right\}_{1 \leq i \leq N}\right) & =\inf \left\{x \geq 0: \frac{1}{N} \sum_{i=1}^{N} h\left(x+X^{i}\right) \geq 0\right\}=G_{0}\left(\mu_{X}^{N}\right) .
\end{aligned}
$$

- We split the analysis into two parts:
* The system of particles
* The discretization

Propagation of chaos

- We introduce the following system of particles: for $1 \leq i \leq N$,

$$
\begin{aligned}
& X_{t}^{i}=x_{0}+\int_{0}^{t} b\left(X_{s}^{i}\right) d s+\int_{0}^{t} \sigma\left(X_{s}^{i}\right) d B_{s}^{i}+K_{t}^{N}, \quad t \geq 0 \\
& \frac{1}{N} \sum_{i=1}^{N} h\left(X_{t}^{i}\right) \geq 0, \quad \int_{0}^{t} \frac{1}{N} \sum_{i=1}^{N} h\left(X_{s}^{i}\right) d K_{s}^{N}=0, \quad t \geq 0 .
\end{aligned}
$$

$\star B^{i}$ independent BM .

- This system is a reflected diffusion with an oblique reflection: the direction of the reflexion is $(1, \ldots, 1)^{t}$
- \bar{X}^{i} are independent copies of X

Result

Theorem (Chaudru de Raynal, Guillin, Labart, PhB)

If h is bi-Lipschitz, then

$$
\mathbb{E}\left[\left|X_{t}^{i}-\bar{X}_{t}^{i}\right|^{2}\right] \leq C N^{-1 / 2}
$$

In the function h is smooth, \mathcal{C}^{2} with bounded derivatives,

$$
\mathbb{E}\left[\left|X_{t}^{i}-\bar{X}_{t}^{i}\right|^{2}\right] \leq C N^{-1}
$$

Proof

- For $x \in \mathbf{R}$ and $\nu \in \mathbf{M}^{1}$,

$$
\begin{array}{r}
H(x, \nu)=\int h(x+y) \nu(d y), \quad G_{0}(\nu)=\inf \{x \geq 0: H(x, \nu) \geq 0\}, \\
G(\nu)=\inf \{x: H(x, \nu) \geq 0\}
\end{array}
$$

Proposition

We have the following properties:

1. H is a bi-Lipschitz function
2. G_{0} is Lipschitz continuous:

$$
\left|G_{0}(\nu)-G_{0}\left(\nu^{\prime}\right)\right| \leq \frac{M}{m} W_{1}\left(\nu, \nu^{\prime}\right) .
$$

3. More precisely,

$$
\left|G_{0}(\nu)-G_{0}\left(\nu^{\prime}\right)\right| \leq \frac{1}{m}\left|\int h(G(\nu)+y)\left(\nu(d y)-\nu^{\prime}(d y)\right)\right|
$$

Proof

- Let us recall that

$$
K_{t}=\sup _{s \leq t} G_{0}\left(U_{s}\right), \quad U_{s}=x_{0}+\int_{0}^{s} b\left(X_{r}\right) d r+\int_{0}^{s} \sigma\left(X_{r}\right) d B_{r}
$$

- In other words, if we call μ_{s} the distribution of U_{s}

$$
K_{t}=\sup _{s \leq t} G_{0}\left(\mu_{s}\right) .
$$

- Let μ_{s}^{N} be the empirical distribution of the

$$
U_{s}^{i}=x_{0}+\int_{0}^{s} b\left(X_{r}^{i}\right) d r+\int_{0}^{s} \sigma\left(X_{r}^{i}\right) d B_{r}^{i}
$$

- We have, in the same way, $K_{t}^{N}=\sup _{s \leq t} G_{0}\left(\mu_{s}^{N}\right)$

Proof

- We compute $\left|X_{t}^{i}-\bar{X}_{t}^{i}\right|(b \equiv 0)$:

$$
\begin{aligned}
\left|X_{t}^{j}-\bar{X}_{t}^{j}\right| \leq & \left|\int_{0}^{t}\left(\sigma\left(X_{s}^{j}\right)-\sigma\left(\bar{X}_{s}^{j}\right)\right) d B_{s}^{j}\right|+\left|\sup _{s \leq t} G_{0}\left(\mu_{s}^{N}\right)-\sup _{s \leq t} G_{0}\left(\mu_{s}\right)\right| \\
\leq & \left|\int_{0}^{t}\left(\sigma\left(X_{s}^{j}\right)-\sigma\left(\bar{X}_{s}^{j}\right)\right) d B_{s}^{j}\right|+\sup _{s \leq t}\left|G_{0}\left(\mu_{s}^{N}\right)-G_{0}\left(\bar{\mu}_{s}^{N}\right)\right| \\
& \quad+\sup _{s \leq t}\left|G_{0}\left(\bar{\mu}_{s}^{N}\right)-G_{0}\left(\mu_{s}\right)\right| .
\end{aligned}
$$

- Gronwall's lemma for the first two terms: the speed of convergence is given by

$$
\sup _{s \leq t}\left|G_{0}\left(\bar{\mu}_{s}^{N}\right)-G_{0}\left(\mu_{s}\right)\right|
$$

* Not so easy with the sup

Proof

- We have
$\mathbb{E}\left[\sup _{s \leq t}\left|G_{0}\left(\bar{\mu}_{s}^{N}\right)-G_{0}\left(\mu_{s}\right)\right|^{2}\right] \leq \frac{1}{m^{2}} \mathbb{E}\left[\sup _{s \leq t}\left|\int h\left(G\left(\mu_{s}\right)+y\right)\left(\bar{\mu}_{s}^{N}(d y)-\mu_{s}(d y)\right)\right|^{2}\right]$
- When h is not smooth, we improve a result from Rachev and Ruschendorf

$$
\begin{aligned}
\mathbb{E}\left[\sup _{s \leq t}\left|G_{0}\left(\bar{\mu}_{s}^{N}\right)-G_{0}\left(\mu_{s}\right)\right|^{2}\right] & \leq C \mathbb{E}\left[\sup _{s \leq t} W_{1}\left(\bar{\mu}_{s}^{N}, \mu_{s}\right)\right] \\
& \leq C N^{-1 / 2}
\end{aligned}
$$

- When h is smooth, we can use Itô's formula to compute

$$
\mathbb{E}\left[\sup _{s \leq t}\left|\int h\left(G\left(\mu_{s}\right)+y\right)\left(\bar{\mu}_{s}^{N}(d y)-\mu_{s}(d y)\right)\right|^{2}\right] \leq C N^{-1}
$$

Discretization

Theorem (Chaudru de Raynal, Guillin, Labart, PhB)

If h is bi-Lipschitz, then

$$
\mathbb{E}\left[\left|X_{t}^{h, N, i}-\bar{X}_{t}^{i}\right|^{2}\right] \leq C\left(N^{-1 / 2}+h|\log h|\right) .
$$

If h is smooth

$$
\mathbb{E}\left[\left|X_{t}^{h, N, i}-\bar{X}_{t}^{i}\right|^{2}\right] \leq C\left(N^{-1}+h|\log h|\right) .
$$

Theorem (Ghannoum, Labart, PhB)
There is no need of $|\log h|$.

Overview

Introduction-Motivation

Reflected SDEs in mean

Propagation of chaos and simulation

Numerical illustrations

Generalizations and problems

Linear constraint

- $X_{t}=X_{0}-\beta t+a \int_{0}^{t} X_{s}+\sigma B_{t}+K_{t}$,
- $\mathbb{E}\left[X_{t}\right] \geq p, K_{t}=(a p-\beta)\left(t-t^{*}\right)_{+}, t^{*}=\frac{1}{a}\left(\log \left(x_{0}+\beta / a\right)-\log (p+\beta / a)\right)$

Estimated K_{t} (full line) and true K_{t} (dotted line)

Figure: $n=500, N=10000, T=1, \beta=2.1, a=1, \sigma=1, x_{0}=1, p=3.6$

Nonlinear constraint

- $X_{t}=X_{0}-\beta t+a \int_{0}^{t} X_{s}+\sigma B_{t}+K_{t}$
- $h(x)=x+\alpha \sin (x)-p$

$$
\begin{gathered}
\mathrm{K}_{t}=e^{-a t} d \sup _{s \leq t}\left(F_{s}^{-1}(0)\right)^{+}, \\
F_{t}(x)=\left\{e^{-a t}\left(x_{0}-\beta\left(\frac{e^{a t}-1}{a}\right)+x\right)+\alpha \exp \left(-e^{-a t} \frac{\sigma^{2}}{a} \sinh (a t)\right)\right. \\
\end{gathered}
$$

Nonlinear constraint

Figure: $n=100, N=10000, T=15, \beta=10^{-2}, \sigma=1, p=\pi / 2, \alpha=$ $.9, x_{0}+\alpha \sin \left(x_{0}\right)-p=0$

A different approach

- h smooth, K has a density w.r.t. Lebesgue measure

$$
K_{t}=\int_{0}^{t} \mathbf{1}_{\mathbb{E}\left[h\left(X_{s}\right)\right]=0} \mathbb{E}\left[h^{\prime}\left(X_{s}\right)\right]^{-1} \mathbb{E}\left[\mathcal{L} h\left(X_{s}\right)\right]^{-} d s
$$

- The solution to the mean reflected SDE is the solution to the classical McKean-VIasov SDE

$$
\begin{aligned}
X_{t} & =X_{0}+\int_{0}^{t} b\left(X_{s}\right) d s+\int_{0}^{t} \sigma\left(X_{s}\right) d B_{s}+\int_{0}^{t} f\left(\mathbb{P}_{X_{s}}\right) d s, \\
f(\mu) & =\mathbf{1}_{\mu(h)=0} \frac{\mu(\mathcal{L} h)^{-}}{\mu\left(\left(h^{\prime}\right)\right)}
\end{aligned}
$$

- The numerical scheme resulting from the McKean-Vlasov SDE seems to converge
* Analysis in progress

Overview

Introduction-Motivation

Reflected SDEs in mean

Propagation of chaos and simulation

Numerical illustrations

Generalizations and problems

Generalizations

- Generalizations
* SDEs with jumps (Abir Ghannoum)
* BSDEs when f does not depend on z (Hélène Hibon)
- Between generalizations and problems
* Multidimensional case
* Link with PDEs

Multidimensional case

- $h: \mathbf{R}^{n} \longrightarrow \mathbf{R}$
* h concave

$$
\star 0<m^{2} \leq|\nabla h(x)|^{2} \leq M^{2}
$$

- We consider the normal reflected SDE

$$
\begin{gathered}
X_{t}=X_{0}+\int_{0}^{t} b\left(X_{s}\right) d s+\int_{0}^{t} \sigma\left(X_{s}\right) \cdot d B_{s}+\int_{0}^{t} \nabla h\left(X_{s}\right) d K_{s}, \quad t \geq 0, \\
\mathbb{E}\left[h\left(X_{t}\right)\right] \geq 0, \quad \int_{0}^{t} \mathbb{E}\left[h\left(X_{s}\right)\right] d K_{s}=0, \quad t \geq 0 .
\end{gathered}
$$

First result
There exists a unique solution with K deterministic

Problems

- Propagation of chaos for BSDEs when f depends on z
- Regularity of $h: h^{\prime}(x) \geq m>0$
- Mixed reflexion depending on both the law and the path
* So far, $X_{t} \geq \mathbb{E}\left[X_{t}\right]-\alpha$

Thank you for your attention

