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Refleted SDEs

e B Brownian motion in RY, F its augmented filtration

e Skorokhod problem

* Given the barrier {L;}o<t<7 and the initial condition Xy > Ly
t t
Xt=X0+/ b(Xs)ds+/ o(Xs)-dBs+ K;, t>0
0 0
t
X; > L, / (Xs — Ls)dKs = 0, t>0.
0

* X, K continuous real processes,
* K is nondecreasing with K = 0

* Tanaka 79’, Lions-Sznitman 84, ...
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Reflected SDEs in mean

We consider a reflected SDE

t t
Xt=Xo+/b(XS)ds+/a(Xs)~st+Kt, t>0
0 0

The reflection is not on X; itself but involves its law

Given an increasing function h, the constraint is

vt>0, E[h(X;)]>0
e The Skorokhod condition becomes

/tE[h(Xs)] dKs=0, t>0.
0
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Motivation : Risk Measures

e A risk measure is an application p : L>(F7) — R such that
1. X< Y= p(X) 2 p(Y);
2. p(X+m)=p(X)—m.
* Convex risk measures: H. Féllmer, A. Schied

* Coherent (convex + positively homogenous): P. Artzner,
F. Delbaen, J.-M. Eber, D. Heath

e The acceptance set is
Ay ={X:p(X) < 0}
e Given a set A, one can define a risk measure by setting

p(X)=infflmeR:m+ X € A}
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Motivation : Risk Measures
e If uis a nondecreasing function, one can choose as acceptance set

A= {XE[u(X)] = a} = {X :E[A(X)] = 0}, h(x) = u(x) —a

e If one invests in the stock S following the strategy , the value of the
portofolio is given by

t t t
X1=X0+/ 7T[d81=X0+/ /,671'[81+/ amSTdBt, tZO
0 0 0

e The investor can follow the strategy he wants as soon as
* X; remains an acceptable position for a given risk measure.
e Examples

* VaR,(X) =inf{m:P(m+ X <0) <a}, h(x)=1:0-(1—0a)

« AVaR.(X) = % / VaRs(X)ds = E[-X| — X > VaR.(X)] (if X is
0

continuous)
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A simple example

e Let us solve the following reflected SDE
X[:Xo—’yt+0’Bt+Kt, tZO,

E[Xi] > u, /Ot (E[Xs] —u)dKs =0,  t>0

* with v > 0, E[Xo] > u.
e The solution is

Xi=Xo—~t+0Bi+ (E[Xp] — vt —u)_
Ki=~({t—1t)+, E[X]-1t"=u
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A simple example

e Starting from the previous solution, for « € R, set
t
EF =exp (aBr — ?t/2), K= / £ dK
0
e Let X be the "solution" to the SDE
Xt =Xo—yt+oBi+ K, t>0

e Then (X<, K<) is still a solution to the reflected SDE:
* E[XP] =E[X{] since E [£7] =1

* we have the Skorokhod condition since dK* << dK.

No Uniqueness if K is allowed to be random

Generalizations and problems
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A simple example

There is no minimal solution

Assume (X, K) is a minimal solution then
Yt < X;l =X0 7’yt+0'Bt+Kta,

t
= Xp —7t+aBt+/ EgdKs
0

As a byproduct, a — +oo,

VE>0, X;<Xg—~t+oB;, E [X¢] =E[X] — vt < u,

The constraint is not satisfied for t large enough
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Deterministic solution

Definition
By a deterministic solution we mean a couple (X, K) of progressively
measurable processes s.i.

1. (X, K) is continuous ;

2. K is nondecreasing with Ky = 0 and deterministic ;

3. (X, K) is square integrable ;

4. the equation is satisfied:

t t
x,=x0+/ b(Xs)ds+/ o(Xs) - dBs + K;, t>0,
0 0

E[h(X)] > 0, /O B dKe =0, 20,
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Assumptions

We assume that b: R — R and ¢ : R — RY are Lipschitz continuous

XoelPforp>4

The function h: R — R is nondecreasing and for some 0 < m < M

mix — y| < |h(x) — h(y)l < Mix —yl, (0 <m < H(x)< M).

This assumption is rather strong! But so far ...
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Existence and Uniqueness result

o We want to solve the SDE
t t
Xi=Xo +/ b(Xs) ds+/ o(Xs)-dBs+ K;, t>0,
0 0
t
E[h(X:)] > 0, / E[h(Xs)] dKs = 0, t>0.
0

o We assume that Xj is square integrable and E [h(X)] > 0

Theorem (R. Elie, Y. Hu, PhB)
The previous reflected SDE has a unique deterministic solution.
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Proof: fixed point argument

e Let Y be a given process and let us solve
t t
Xi = Xo +/ b(Ys)ds +/ a(Ys) - dBs + K, E[h(X;)] >0
0 0

o We set . .

Ut = Xo +/ b(Ys)ds+/ o(Ys) - dBs

0 0
e Since E[h(X;)] = E[h(U: + Ki)], we have
Kt > Go(Ur) = Go (1u,)

where Gy : L? — R is defined by

Go(X) =inf{x > 0:E[h(x + X)] > 0}
e K;is nonincreasing and we have

K: > sup Go(Us)

s<t
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Proof

We define (X, K) by setting
Kt = sup G()(Us), X[ = U[ + Kt.

s<t

By definition of K, we have E[h(X;)] > 0
Since Go(Ut) = supg<; Go(Xs) > 0 dK-a.e.

t t
/O E [h(Xe)] dKe = /0 E[(Us + Go(Us))] 6,0 0K = 0.

It remains to prove that Y — X is a contraction.

The key point is the following observation

1Go(X) ~ GolX') < Wi (ux ) < B [IX — X'

31K
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Properties

e t+— K;is 1/2-Hdlder continuous. This comes directly from

t+s t+s
Kion — Ki = sup Gy <X,+ b(Xu)du+/ a(Xu) dBu>
t t

0<s<h

e If (X, K) is a solution, Ité’s formula gives when his smooth

t+h t+h
E[h(Xtn)] = E[h(X:)] + /: E[Lh(Xs)] ds + /t E [H(Xs)] dKs

e Thus, dK; << dt and

E[Lh(X:)]_

K{ = 1E[h(Xr)=0]W
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Risk Measures

e In the same way, if p is a risk measure defined on L2, we can solve
t t
X =X0+/ b(Xs)ds+/ o(Xs)-dBs+Ki, t>0
0 0
t
)0, [ pXdKe=0.  t=0
0

e In this case, Gy(X) = p*(X).

Theorem

If p: L2 — R is a Lipschitz risk measure, then the reflected SDE has a
unique deterministic solution.

o |p(X)—p(Y)| < CE [|X, y|2”1/2
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Examples

e Typical examples are coherent risk measures

p(X) = sup{E®[-X] : Q € Q}
* Q is a set of probabilities absolutely continuous w.r.t. P
o As soon as the set of densities is bounded in L?, p is Lipschitz

e In particular,

AVaR,(X) = sup {]EQ [—X]:

Q|
3S
IN
Rl—=
—
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Simulations ?
e Let us consider the reflected SDE

t t
x,=xo+/ b(Xs)ds+/ o(Xs)dBs + K, >0,
0 0
t
E[A(X)] = O, / E[h(Xs)]dKs = 0, ¢ > 0.
0

e The idea is to take advantage of the definition of K :

r r
Kih — K= sup Go <x,+ / b(X;) ds + / a(xs)st>,
t t

t<r<t+h
Go(X) =inf{x > 0:E[h(x + X)] > 0} = Go(ux)-
e The natural discretization is

Xirh = Xt + hb(X;) + 0(Xt) (Bten — Br) + Kion — Ko,
Kien — Ki = Go (Xi + hb(X;) + 0(Xt) (B — Br))
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Simulations

e But we have to compute Gy
e One can consider the following system
Lon= X[+ hb(X]) + o(X]) (Bloh — B) + Kin — Ki, 1<i<N
Kien — Ke = Go ({X{ + hbUX) + 0(X)) (Blun = BD} i)

Go ({Xi}1§i§N) = inf {X 20: %Zh(x+x’) > 0} = Go (%) -

o We split the analysis into two parts:
* The system of particles

* The discretization
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Propagation of chaos

e We introduce the following system of particles: for 1 < i < N,

t t
X;'=x0+/ b(x;')ds+/ a(XhaBL+ KN, t>0,
0 0
1 ty &
— i> — i N= > 0.
ngh(x,)_o, /oN,;h(XS)dKS 0, t>0

» B’ independent BM.

e This system is a reflected diffusion with an oblique reflection:
the direction of the reflexion is (1,...,1)!

o X are independent copies of X
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Result

Theorem (Chaudru de Raynal, Guillin, Labart, PhB)
If h is bi-Lipschitz, then

E “X[ - X,

1 <CN'/2

In the function h is smooth, C2 with bounded derivatives,

i12

E UX{ ~X,

]gCN1.
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Proof
e Forxe Rand v e M,

H(x,v) = /h(x +y)v(dy), Go(v)=inf{x>0:H(x,v)> 0},
G(v) = inf{x : H(x,v) > 0}
Proposition

We have the following properties:

1. H is a bi-Lipschitz function
2. Gy Is Lipschitz continuous:

|Go(v) — Go(v')] <

3

3. More precisely,

|Go(v) — Go(v')| < ‘/h(G(V) +y)(v(dy) — v/ (dy))

1
m
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Proof

Let us recall that

S S
K; = sup Go(Us), Us = xo + / b(X;)dr + / o(X;)dB;
0 0

s<t
In other words, if we call us the distribution of Usg

Kt = sup Go(s)-

s<t

Let Y be the empirical distribution of the
U;=xo+/ b(X,’)dr+/ o(X})dB,
0 0

We have, in the same way, KN = sup,, Go(115)
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Proof

e We compute |X] — 7;| (b= 0):

. . t . .
X=X < | [ (o0 - o(Xy) aBl) + SUp Go(1) ~ sup ()
0 s<t
t
< /((Xf)—a( 1)) dBL| + sup | Go(ssd) — Go(l)|
0 s<t

+sUp| Go(EY) — Go(us)] -

s<t

e Gronwall's lemma for the first two terms: the speed of convergence is
given by
sup | Go(72f ) — Go(s)|

s<t

* Not so easy with the sup
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Proof

o We have

E sup

s<t

2 1
sup |Go(ﬁlsv) - GO(NS)| ‘| < WE
s<t

e When his not smooth, we improve a result from Rachev and
Ruschendorf

E

s<t s<t

sup | Go(f) — Go(/ls)|2] < CE

< C N—1/2

e When his smooth, we can use It6’s formula to compute

E |sup

s<t

/ h(G(us) + y)(7is (dy) — ps(dy))

2
1§CN—‘

/ h(Glus) + y)(zg (dy) — ps(ay)

T
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Discretization

Theorem (Chaudru de Raynal, Guillin, Labart, PhB)
If h is bi-Lipschitz, then
. ;12
E Ux,“’” - x’t) } <cC (N—V2 + hllog h|) .
If h is smooth

e,

2
] < C (N~"+hllogh)).

Theorem (Ghannoum, Labart, PhB)
There is no need of | log h|.
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Linear constraint
Xt=X0—5t+af0th+aBt+Kt,
E[X] > p, Ki = (ap — B)(t — t*),, t* = 1 (log (X0 + 3/a) — log (p + 3/ a))

Estimated K (full line) and true K, (dotted line)
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Figure: n=500, N=10000, T=1, 8=21, a=1,0=1, =1, p=3.6
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Nonlinear constraint
o X;=Xo— ft+afyXs+oBi+K

e h(x)=x+asin(x) — p

K, = e @dsup (F;1(0))",

s<t

Fi(x) = {e—a’ (xo - B <eat — 1) + x) + aexp (—e“a’t(72 sinh(at))
a a
at __
X Sin (e‘a’ (xo - (e p 1) +x>> —p}.
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Nonlinear constraint

Estimated K' (full line) and true K' (dotted line)
0.7 . ;
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Figure: n=100, N=10000, T=15, 8=10"2 oc=1, p=7/2, a =
.9, Xo +asin(xp) —p=0
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A different approach

e hsmooth, K has a density w.r.t. Lebesgue measure
t
Ki =/ Tgih(x.)=0 E [h/(Xs)r1 E[Lh(Xs)] ds
0

e The solution to the mean reflected SDE is the solution to the classical
McKean-Vlasov SDE

t t t
Xi=Xo + / b(Xs)ds + / o(Xs) dBs + / f(Px,) ds,
0 0 0

p(Lh)~
f(1) =1, ny=0 ()

e The numerical scheme resulting from the McKean-Vlasov SDE seems
to converge

* Analysis in progress
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Generalizations

e Generalizations

* SDEs with jumps (Abir Ghannoum)

= BSDEs when f does not depend on z (Héléne Hibon)
e Between generalizations and problems

* Multidimensional case
* Link with PDEs
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Multidimensional case

e h:R" —R
* h concave
* 0 < m? < |Vh(x)]?2 < M?

o We consider the normal reflected SDE
t t t
X, = Xo + / b(X.) ds + / o(Xe) - dBs + / Vh(X:)dKs, 130,
0 0 0

E[h(X)] = 0, /Ot]E[h(Xs)] dKs=0, t>0.

First result
There exists a unique solution with K deterministic
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Problems

e Propagation of chaos for BSDEs when f depends on z
e Regularity of h: H'(x) > m >0

e Mixed reflexion depending on both the law and the path
* So far, X > E[X{] — «



Thank you for your attention
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