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Motivation

I We are considering an optimal control problem with a (small) finite action
space which is a common problem in energy markets.

I An area where this kind of problems arise frequently, is the valuation of
operational flexibility of exotic energy derivatives (e.g. power plants,
swing options, hydro pumped storage, batteries)

I Problems with larger action spaces than L = {continue, stop} are
sometimes referred to as optimal switching problems

I These problems in energy markets are sometimes characterized by
idiosyncratic price processes and high dimensional state spaces.
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Motivation

I We try to develop an adaptive design to optimize a gas storage in the
backward dynamic programming framework using Regression Monte
Carlo

I LSMC applied to American options is studied in Longstaff and Schwartz
(2001), Tsitsiklis and Van Roy (2001) and many more. . .

I Boogert and De Jong (2008) and Carmona and Ludkovski (2010) used
LSMC for valuation of gas storages

I Kohler (2010) reviews more general RMC frameworks for pricing
American options

I Recently Gramacy and Ludkovski (2015) and Ludkovski (2016) studied
sequential sampling for RMC for optimal stopping problems and Hu and
Ludkovski (2016) for ranking response surfaces

I We aim to develop an algorithm for optimal switching problems, where a
priori little is known about the exact decision boundary
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Controlled Markov process

I We consider random dynamics on a finite time horizon 0, . . . ,T whose
state x evolves in X and is controlled by actions j from a finite action set
L

I Dt ⊂ X × L denotes the set of possible state-action combinations at
time t

I We denote πt : X → L a decision rule ((x , πt ) ∈ Dt ) and a sequence of
decision rules π = (πt )

T−1
t=0 a strategy

I For each j ∈ L, Kj
t (x , dx ′) is a stochastic transition kernel from Dt to X ,

i.e. for each initial point x0 ∈ X and each policy π there exist a
probability measure Px0,π and a stochastic process (Xt )

T
t=0 satisfying the

initial condition Px0,π(X0 = x0) = 1 such that

Px0,π(Xt+1 ∈ B|X0, . . . ,Xt ) = Kπt (Xt )(Xt ,B)

holds for each B ⊂ X for all t .
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Controlled Markov process

I For an action j ∈ L, we use Kj
t as the one-step transition operator , who

acts on functions v by

(Kj
tv)(x) =

∫
X

v(x ′)Kj
t (x , dx ′)

whenever the integrals are well defined
I ψj (t , x) : Dt → R gives the (discounted) one-stage reward
I ψ(T , x) : X → R is the scrap function for the reward at T
I Having an initial point x0 and a stochastic process, our goal is to

maximize the expected total reward, i.e. to find the optimal strategy
π∗ = (π∗)T−1

t=0 such that

π∗ = arg max
π

Ex0,π

(
T−1∑
t=0

ψπ(Xt )(t ,Xt ) + ψ(T ,Xt )

)
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Controlled Markov process

I To obtain the optimal strategy, we introduce for t , . . . ,T − 1 the maximal
reward operator

Γtv(x) = sup
j∈Dt

(ψj (t , x) +Kj
tv(x))

which acts on each measurable function v : X → R
I We consider the Bellman recursion

v∗T = ψ(T , ·) v∗t = Γtv∗t+1

I There exist a recursive solution to the Bellman recursion, which gives the
value functions and determines an optimal strategy π∗

π∗t (x) = arg max
j∈Dt

(ψj (t , x) +Kj
tv
∗
t+1(x))
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Control problem of a storage

I Given a finite time horizon {0, 1, . . . ,T}, we consider a controlled
Markovian process (X j

t )T
t := (Ct ,Gt , i), where

I cmin ≤ Ct ≤ cmax ∀t is the controlled inventory process
I Gt = {Gp

t }
d
p=1) are d uncontrolled stochastic processes realized on a

probability space (Ω,F ,P), which drive the price process Gt (Gt ) : Rd → R
I i ∈ L = {inject , store,withdraw} is the operating regime

I Furthermore we have a cost component Ki,j for switching the system
from i to j

I A constant discount rate r
I The maximal rate, at which we can change the inventory upwards āin(Ct )

and downwards āout(Ct ) s.t. the constrains
I Buying and selling at the market is represented by ψjt (Gt (Gt ),Ct ), which

is linear in X jt
t and also includes other storage costs for applying action jt

at time t .

A sequential design for gas storage optimization using kriging metamodels | Paris | 22.12.2017



Page 9 | The storage optimization problem and the RMC approach

Control problem of a storage

I Having a linear reward function we know C′t (Ct , jt ), the next state of Ct if
we a apply jt , due to the ’bang-bang’ property

I Provided with a scrap function, we find the solution of the Bellman
recursion by the value functions

V (t ,Gt ,Ct , i) = max
jt∈Dt

[−Ki,jt + ψjt (Gt (Gt ),Ct )

+e−rE
(
V (t + 1,Gt+1,C′(Ct , jt ), jt )|Ft

)]
,

where we suppressed the time dependency in ψ and spread
X jt

t = Ct × Gt .
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Control problem of a storage

I We define the continuation function as

C(t ,Gt ,C′(Ct , jt ), jt ) := E
(
V (t + 1,Gt+1,C′(Ct , jt ), jt )|Ft

)
for each (t ,Gt ,C′(Ct , jt ), jt ) with t ≤ T − 1, and the (backwards)
stochastic dynamic program continuation function

C(t ,Gt ,C′(Ct , jt ), jt ) :=E
(

max
jt+1∈Dt+1

[
−Kjt ,jt+1 + ψjt+1 (Gt+1(Gt+1),C′(Ct , jt ))

+e−rC(t + 1,Gt+1,C′(Ct+1, jt+1), jt+1)
] ∣∣∣∣Ft

)
I We use regression Monte-Carlo to approximate the continuation function
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Regress-now / regress later monte-carlo

I In the classical regression Monte-Carlo a set of simulations and a scrap
function are used to approximate the continuation function at time t + 1
by a two-norm regression on a linear combination of K basis functions
φt,k, k = 1, . . . ,K (regress-now Least Squares Monte-Carlo)

I Let Φt,k, k = 1, . . . ,K be the k-th basis function for the value function
approximation at time t . This so called regress-later Least Squares
Monte-Carlo is based on the assumption, that for each basis function
Φt,k the conditional expectation

Φ̂t,k(x,Ct+1) = E [Φt+1,k(Gt+1(Gt+1),Ct+1)|Gt (Gt ) = x]

can be computed analytically (or precomputed numerically in practice),
(see Nadarajah et al. (2017) for a comparison of regress-now / regress
later)

I Choice of basis functions? Choice of K?
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Value iteration / policy iteration
I Value iteration regression Monte Carlo for optimal stopping problems has been

introduced by Tsitsiklis and Van Roy (2001)
I In terms of storage optimization, the continuation function estimate for the n-th

sample path becomes

Cn(t ,Gn
t ,C
′(Cn

t , j
n
t ), jnt ) = max

jt+1∈Dt+1

[
−Kjnt ,jt+1

+ ψjt+1 (Gt+1(Gn
t+1),C′(Cn

t , j
n
t ))

+e−r Ĉ(t + 1,Gn
t+1,C

′(Cn
t+1, jt+1), jt+1)

]
I Policy iteration regression Monte Carlo for optimal stopping problems has been

introduced by Longstaff and Schwartz (2001)
I In terms of storage optimization, the continuation function estimate for the n-th

sample path becomes

Cn(t ,Gn
t ,C
′(Cn

t , j
n
t ), jnt ) = max

jt+1∈Dt+1

[
− Kjnt ,jt+1

+ ψjt+1 (Gt+1(Gn
t+1),C′(Cn

t , j
n
t ))

+

T−1∑
t̄=t+2

e−(̄t−(t−1))r − Kĵn
t̄−1

,̂jn
t̄

+ ψjn
t̄

(Gt̄ (G
n
t̄ ),C′(Cn

t̄−1, ĵ
n
t̄−1)) + ψ(GT (Gn

T ),C′(Cn
T−1, ĵ

n
T−1))

]
where

ĵnt (jnt−1,G
n
t ,C

n
t ) = arg max

jt∈Dt

[
−Kjnt−1,jt

+ ψjt (Gt+1(Gn
t ),C′(Cn

t−1, j
n
t−1))

+e−r Ĉ(t ,Gn
t ,C
′(Cn

t , jt ), jt )
]
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Optimal inventory control

I Contrary to the optimal stopping problem, the inventory process Ct

depends on the control, so one cannot compute the approximation of
C(t ,Gt ,C′(Ct , jt ), jt ) and then optimize over the controls.

I Solutions
I Grid discretization of inventory levels (e.g. Boogert and De Jong (2008),

Nadarajah et al. (2017))
I Quasi-simulation of the inventory (e.g. Carmona and Ludkovski (2010))
I Control Randomisation (e.g. Kharroubi et al. (2014))
I Backward construction of inventory levels (e.g. Balata and Palczewski

(2017))
I Resimulation of the inventory levels
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Regression techniques

I Different regression techniques to compute the approximation of
C(t ,Gt ,C′(Ct , jt ), jt )

I Ordinary least-squares regression on global polynomial basis functions (e.g.
Boogert and De Jong (2008), Nadarajah et al. (2017), Cortazar et al. (2008),
Carmona and Ludkovski (2010),Longstaff and Schwartz (2001), Balata and
Palczewski (2017))

I . . . supplemented with closed form option prices (e.g. Nadarajah et al.
(2017))

I Ordinary least-squares regression on weighted laguerre polynomials (Kiesel
et al. (2010)) or Hermite, Hyperbolic and Chebyshev polynomials (e.g.
Choudhury and King (2008))

I Nonparametric regression / smoothing splines (see Kohler (2010))
I Linear functions or polynomials with local hypercube support (e.g. Bouchard

and Warin (2012))
I Dynamic trees to partitioning the state space into the continuation and

stopping regions (Gramacy and Ludkovski (2015))
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Control mapping

I For the optimization of the storage we therefore have to rank the
surfaces over the state space X ⊆ Rd+1. For any x = (xg1 , . . . , xc) ∈ X
we denote

Yt,i,j (x) = −Ki,j + ψj (G(xg), xc) + e−r Ĉ(t , xg ,C′t (xc , j), j)

the (noisily sampled) estimated surfaces and

µt,i,j (x) = −Ki,j + ψj (G(xg), xc) + e−r V (t + 1, xg ,C′(xc , j), j)

the true surfaces
I The classifier

Ct,i (x) = arg max
j∈L

[µt,i,j (x)]

determines the optimal switching strategy ∀T ≤ t ≤ 0, i ∈ L
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Optimal switching

I Next, we introduce the classifier

At,i (x) = arg max
j 6=Ct,i (x)∈L

[µt,i,j (x)] ∀T − 1 ≤ t ≤ 0, i ∈ L,

which gives the best alternative decision to the optimal switching
decision.

I We use At,i (x) to define

ϑt,i (x) = µt,i,Ct,i (x)(x)− µt,i,At,i (x)(x) ≥ 0

which is a measure for the ’triviality’ of finding the optimal switching
decision.

I Finding {x |ϑt,i (x) = 0} is a challenging task and together with Ct,i (x) the
nested solution of the optimal control problem.
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Gaussian processes

I A metamodel is an approximation of the Input/Output function that is
implied by the underlying simulation model.

I We want to use Gaussian processes to learn input-output mappings
from the simulated data E = {x1:n, y1:n}

I We use Gaussian processes to define distributions over functions p(f )

which can be used for (Bayesian) regression p(f |E) = p(f )p(E|f )
p(E)

I Gaussian processes can handle the case in which data is available in
(multiple) different forms, as long as we can define an appropriate
covariance function for each data type

I Let~f = (f (x1), f (x2), . . . , f (xN)) be an N-dimensional vector of function
values evaluated at N points x i ∈ X

Definition
p(f ) is a Gaussian process if for any finite subset {x1, . . . , xN} ∈ X , the
marginal distribution over that finite subset p(~f ) has multivariate Gaussian
distribution.
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Gaussian process regression: Kriging

I Kriging is used to build a global estimate of the entire response surface C

I We can use kriging for modeling of noise free experiments (interpolation)
and stochastic simulators (smoothing)

I Assuming the model

y = f (x) + ε

with ε ∼ N (0, σ2), a GP prior and given E we can make predictions for
new points x∗

p(y∗|x∗, E) =

∫
p(y∗|x∗, f , E)p(f , E)df

I As the prior on f is a GP and the likelihood is Gaussian, the posterior on
f is also a GP

I Applying kriging we treat each C as a realization of a Gaussian process
specified by a trend function f ∗j (x)and a covariance structureMj (xu, xv )
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Kriging

I For the covariance structure we choose a parametric kernel depending
only on the increment xu − xv = h = (h1, . . . , hd+1) and a multiplicative
constant σ2 > 0

M(xu, xv ) = σ2
d+1∏
l=1

g(hl ; Θl )

where g is a 1-dimensional covariance kernel called Matern-5/2 kernel

g(h) =

(
1 +

√
5|h|
θ

+
5h2

3θ2

)
exp

(
−
√

5|h|
θ

)
I Other choices include the Squared Exponential covariance function

g(h) = exp
(
− h2

2θ2

)
I The only technical restriction on the covariance function is that it must be

positive semi-definite
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Covariance functions

I The covariance function determines the smoothness of the functions
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Kriging

I Given the n noisy observations ~y = (y(x1), . . . , y(xn))T from the
stochastic sampler at locations ~x = x1:n, the posterior of C again forms a
Gaussian process, specified by the mean mj and the covariance sj

m(n)
j (xu) = f ∗j (xu) + ~k (n)

j (xu)T (Kj + Σ
(n)
j )−1(~y − f ∗(n)

j (~x))

s(n)
j (xu, xv ) =Mj (xu, xv )− ~k (n)

j (xu)T (Kj + Σ
(n)
j )−1~k (n)

j (xv )

where ~k (n)
j (xu) = (Mj (x1, xu), . . . ,Mj (xn, xu))T ,

(Kj )u,v =Mj (xu, xv ), 1 ≤ u, v ≤ n and Σ
(n)
j = diag(τ 2

j (x1), . . . , τ 2
j (xn))

is the diagonal matrix of the noise variances
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Batching

I Inference on the kriging hyperparameters requires knowledge of the
sampling noise

I We therefore sample M times at the same x and use the empirical
estimates of τ 2,

τ̃ 2 =
1

M − 1

M∑
b=1

(y(xb)− ȳ(x))2

as proxy of the unknown τ 2, where ȳ(x) = 1
M

M∑
b=1

y(xb) is our sample

point y(x)
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Sequential design [Hu and Ludkovski (2016)]

I Instead of the static in sample regression, we want to develop a
sequential design to learn the decision boundaries that determine the
optimal switching strategy

I We assume sampling is not inexpensive and optimizing sampling
efficiency is desirable

I Therefore we sample sequentially
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Loss function and local ranking complexity

I We want to assign the optimal strategy Ĉt,i (x) to any x ∈ X that
approximates the true Ct,i in terms of the loss function

Lt (Ĉt,i , Ct,i ) = Et

{
µt,i,Ct,i (x)(x)− µt,i,Ĉt,i (x)(x)

}
I Therefore sampling should be done in the regions, where identifying
Ct,i (x) is difficult

I We measure the the local ranking complexity and the confidence in the
estimated Ĉt,i (x) by ϑt,i (x)

I A low ϑt,i (x) indicates a difficult to determine switching decision, which
requires high local accuracy in the estimation. Vice versa, a high ϑt,i (x)
indicates a trivial decision.
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Sequential design

I We try to choose a collection of sample points, denoted by
Z = (x , j)1:K , x ∈ X , j ∈ L such that we minimize the expected loss

I Having a design Zk we iteratively add new design sites by optimization
of an acquisition function that quantifies information gain

I Instead of optimizing the acquisition function over the state space
directly, we propose an efficient approximation by selecting a set of
candidate points T of size D via stochastic sampling

I Fixing t and i , we choose those N̄ << D new points xn+(1:N̄) ∈ T , for
which hold

mĈ(x)(x)− ζ
√

sĈ(x)(x , x) < max
j 6=Ĉ(x)

mj (x) + ζ
√

sj (x , x)

where

ζ = min

(
ζ

∣∣∣∣∣∑
l∈T

1{
mĈ(xl )

(x l )−ζ
√

sĈ(xl )
(x l ,x l )<maxj 6=Ĉ(xl )

mj (x l )+ζ
√

sj (x l ,x l )

} ≥ N̄

)
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Computational burden reduction measures

I The computational bottleneck of the algorithm is the calculation of
~k (n)

j (x) for the prediction of the posterior means
I Applying the batching schemes, we achieved the first reduction in the

computational effort by reducing the length of ~k (n)
j (x) to n, while having

n ×M samples.
I Without further measures, we still would have to calculate the covariance

n2 ×M times per time step in the forward simulation.
I We can reduce the computational burden further by introducing a dense

grid of points S ∈ X , at which we calculate mj (x) for all j and use
Y·,i,j (x) to find Ĉt,i (x) for all x ∈ S

I We apply a p−nearest neighbors algorithm in the forward simulation to
reduce the amount of points at which we have to calculate mj (x) by the
following principle: We calculate mj (x) only at those points, where the
p−nearest neighbors of S are ambiguous about Ĉt,i (x).

I Normally a choice of p = 3(d+1) gives admirable accuracy.
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Updating Kriging

I Estimating the new model from scratch would be computationally
inefficient. Fortunately kriging gives us efficient updating formulas

m(n+1)
j (xu) =m(n)

j (xu)+

~k (n+1)
j (xu)T (Kj + Σ

(n+1)
j )−1(yn+1 −m(n)

j (xn+1))

s(n+1)
j (xu , xv ) =s(n)

j (xu , xv )− (~k (n+1)
j (xu)T (Kj + Σ

(n+1)
j )−1)T

(s(n)
j (xn+1, xn+1) + τ2

j (xn+1))~k (n+1)
j (xv )T (Kj + Σ

(n+1)
j )−1

where m(n+1)
j (xu) and s2(n+1)

j (xu, xv ) is the new conditional posterior
mean and covariance respectively.
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Illustration

As an illustrative example, we consider a gas storage with the following
properties:

I T = 1year,∆t = 1/100
I Gt = 17.1(log 3− log Gt )dt + 1.33dWt

I cmin = 0Bcf , cmax = 8Bcf
I ain(Ct ) = 0.09 · 365∆t , aout(Ct ) = 0.2 · 365∆t
I Ki,j = 0.25 if i 6= j

I ψj (Gt ,Ct ) =


−ain(Ct ) · Gt − 0.1∆t(Ct ) if j = inject
−0.1∆t(Ct ) if j = store
āout(Ct ) · Gt − 0.1∆t(Ct ) if j = withdrawal.

I r = 0.06
I V (T , g, c, i) = −2g · max[4− c, 0]

I D=2000
I N̄ = 50
I M=20

I n = 152
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Illustration for t = 50

Figure: The grid x (n)
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Illustration for t = 50

Figure: C50,store(x),green:inject, red:store, black:withdraw
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Illustration for t = 50
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Illustration of storage values

Figure: Storage value using the initial design of 225 points and after sequentially adding 50 points. The values
are found by applying the Algorithm on 2500 simulations and calculate the mean of all simulations. The procedure is
repeated 20 times at each sampling step.We compare the results with the approach of Carmona and Ludkovski
(2010) with 10,000 simulations and polynomial basis functions of order 3 including all possible cross products. Using
the same initial states, we find a value of 12.10 MM$, which has a deviation from below 1% to our result.
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Illustration of storage values

Figure: Posterior mean functions m(n)
i (xu), which represent the storage value at time

t = 1 for state i = inject (left), i = withdrawal (right) and both surfaces interleaved
(middle). The contour indicates the states, in which the storage value is equal.
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Discussion

I General form of the (continuation) value function
I No selection of the basis functions
I On-line learning: refine the solution without loosing the information from

the initial optimization if the initial solution is not sufficient
I Potential for parallelization
I nested diagnostic tools in the kriging model
I numerically expensive
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