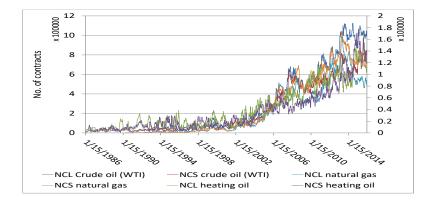


The Role of Financial Investors on Commodity Futures Risk Premium

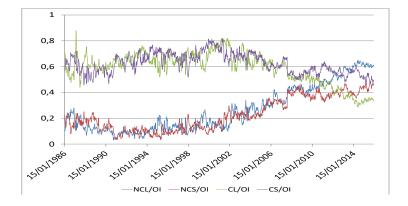
ISLEIMEYYEH Mohammad Paris Dauphine University, PSL, LEDa/SDFi

FDD Chair & FiME seminar

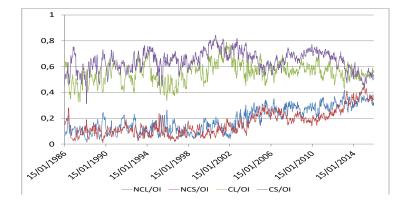

November 23, 2018

(日) (部) (注) (注) (三)

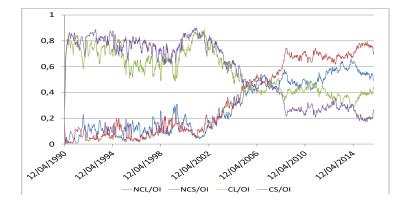
1/34


References

Commodity futures positions


イロト イヨト イヨト イヨト

Motivation



3 / 34

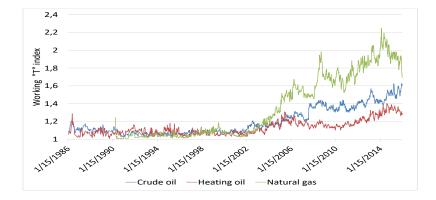
Motivation

 Motivation

he model Data Regressio

Motivation

ns Results


Robustness ch

Conclus

ion Further

Reference

Working (1960) "T" index

What has been learned so far?

• Evidences on the impact of financialization?

4

No evidences	Evidences
Kilian and Murphy (2014)	Masters (2008)
Sockin and Xiong (2015)	Singleton (2014)
Brunetti and Buyukşahin (2009)	Henderson et al. (2015)
Buyukşahin and Harris (2011)	Hamilton and Wu (2015) (crude oil)
Hamilton and Wu (2015) (agr. com.)	Buyukşahin and Robe (2014a,b)
Bosch and Pradkhan (2015)	Tang and Xiong (2012)
	Boons et al. (2014)

• To the best of my knowledge, in the context of financialization, the futures risk premium gets less attention in the literature.

- To the best of my knowledge, in the context of financialization, the futures risk premium gets less attention in the literature.
- Acharya et al. (2013) and Etula (2013) focus on the comparative statics between risk aversion and the futures risk premium.

(日) (部) (注) (注) (三)

Motivation The model Data Regressions Results Robustness check Conclusion Further issues References What has been learned so far?

- To the best of my knowledge, in the context of financialization, the futures risk premium gets less attention in the literature.
- Acharya et al. (2013) and Etula (2013) focus on the comparative statics between risk aversion and the futures risk premium.
- Hamilton and Wu (2014) show that the compensation for taking long positions became lower after 2005.

Motivation The model Data Regressions Results Robustness check Conclusion Further issues References What has been learned so far?

- To the best of my knowledge, in the context of financialization, the futures risk premium gets less attention in the literature.
- Acharya et al. (2013) and Etula (2013) focus on the comparative statics between risk aversion and the futures risk premium.
- Hamilton and Wu (2014) show that the compensation for taking long positions became lower after 2005.
- Boons et al. (2014) find that about 70% of the cross spread in the average returns can be attributed to traditional hedging pressure and the remaining 30% to the stock market risk.

Motivation	The model	Data	Regressions	Results	Robustness check	Conclusion	Further issues	References

• The vast majority of the researches are empirical.

Motivation	The model	Data	Regressions	Results	Robustness check	Conclusion	Further issues	References

- The vast majority of the researches are empirical.
- Some of them are theoretical such as Basak and Pavlova (2016).

Motivation	The model	Data	Regressions	Results	Robustness check	Conclusion	Further issues	References

- The vast majority of the researches are empirical.
- Some of them are theoretical such as Basak and Pavlova (2016).
- The impact of financialization is still debated.

Motivation	The model	Data	Regressions	Results	Robustness check	Conclusion	Further issues	References

- The vast majority of the researches are empirical.
- Some of them are theoretical such as Basak and Pavlova (2016).
- The impact of financialization is still debated.
- Theoretical work is needed.

Motivation	The model	Data	Regressions	Results	Robustness check	Conclusion	Further issues	References

- The vast majority of the researches are empirical.
- Some of them are theoretical such as Basak and Pavlova (2016).
- The impact of financialization is still debated.
- Theoretical work is needed.
- What do I look for?

Motivation	The model	Data	Regressions	Results	Robustness check	Conclusion	Further issues	References

- The vast majority of the researches are empirical.
- Some of them are theoretical such as Basak and Pavlova (2016).
- The impact of financialization is still debated.
- Theoretical work is needed.
- What do I look for?
 - I look at the effect of financial investors on the futures risk premium for energy commodities.

Motivation	The model	Data	Regressions	Results	Robustness check	Conclusion	Further issues	References
				Out	line			
Mc	otivation							
Th	e model							
Da	ta							
Reį	gressions							
Re	sults							
Ro	bustness c	check						
Co	nclusion							
Fu	rther issue	es						
							<	5
							N = K N = K	=)4(*

10/34

- I develop a model in the spirit of Ekeland et al. (2018)
 - The model studies the interaction between commodity (physical & futures) and stock markets.

- I develop a model in the spirit of Ekeland et al. (2018)
 - The model studies the interaction between commodity (physical & futures) and stock markets.

イロト イヨト イヨト イヨト 三日

11/34

• There is a single commodity.

- I develop a model in the spirit of Ekeland et al. (2018)
 - The model studies the interaction between commodity (physical & futures) and stock markets.
 - There is a single commodity.
 - Two periods.

- I develop a model in the spirit of Ekeland et al. (2018)
 - The model studies the interaction between commodity (physical & futures) and stock markets.

イロト イヨト イヨト イヨト

11/34

- There is a single commodity.
- Two periods.
- There are four types of agents:
 - Inventory holder (storer)
 - Processor
 - Financial investor
 - Spot traders

Motivation	The model	Data	Regressions	Results	Robustness check	Conclusion	Further issues	References
				The r	model			

- At *t*:
 - Storers buy the commodity physically at spot price P_t.
 - Processors decide the volume of the commodity that they want to buy at T at price P
 _T.
 - The spot traders effect appear in both demand and supply side in the physical market.
 - Both storers and processors hedge their physical positions in the futures market at futures price $F_{t,T}$.
 - The financial investors take their positions in the futures market to diversify the stock portfolio.

Motivation	The model	Data	Regressions	Results	Robustness check	Conclusion	Further issues	References
				The r	model			

- At *t*:
 - Storers buy the commodity physically at spot price P_t .
 - Processors decide the volume of the commodity that they want to buy at T at price \tilde{P}_T .
 - The spot traders effect appear in both demand and supply side in the physical market.
 - Both storers and processors hedge their physical positions in the futures market at futures price $F_{t,T}$.
 - The financial investors take their positions in the futures market to diversify the stock portfolio.
- At T:
 - The storers sell their inventory.
 - The processors deliver their demands from the commodity.
 - The spot traders appear on the demand and supply side in the physical market.
 - The futures contracts are settled implying a financial profit $\tilde{P}_{T}-F_{t,T}.$

Motivation The model Data Regressions Results Robustness check Conclusion Further issues References Agents' profit

• The storer

$$\tilde{\pi}(x, f_l) = x(\tilde{P}_T - P_t) + f_l(\tilde{P}_T - F_{t,T}) - \frac{1}{2}Cx^2$$
(1)

Where x is the quantity bought by storer, f_l is the futures positions taken by storer and C is the cost of storage.

Motivation The model Data Regressions Results Robustness check Conclusion Further issues References Agents' profit

• The storer

$$\tilde{\pi}(x, f_l) = x(\tilde{P}_T - P_t) + f_l(\tilde{P}_T - F_{t,T}) - \frac{1}{2}Cx^2$$
(1)

Where x is the quantity bought by storer, f_l is the futures positions taken by storer and C is the cost of storage.

The processor

$$\tilde{\pi}(y, f_P) = (y - \frac{\beta}{2}y^2)Z - y\tilde{P}_T + f_P(\tilde{P}_T - F_{t,T})$$
(2)

Where y is the quantity demanded by processor, f_P is the futures positions taken by processor, Z is the final good price and β is the cost of production.

Financial investor

$$\pi(k, f_{\mathcal{S}}) = k(\tilde{V_{\mathcal{T}}} - V_t) + f_{\mathcal{S}}(\tilde{P_{\mathcal{T}}} - F_{t,\mathcal{T}}), k \ge 0$$
(3)

Where f_S is the futures positions taken by financial investor, k is the financial investor's position in stock market, V_i is the value of the portfolio at time i (i = t&T).

The model

Further issues

・ロト ・ 日 ト ・ ヨ ト ・ ヨ

References

15/34

Optimal positions

• Agents are mean-variance utility maximizers

$$E(\tilde{\pi}_j) - \frac{1}{2}\alpha_j \operatorname{Var}(\tilde{\pi}_j) \tag{4}$$

References

15/34

Optimal positions

• Agents are mean-variance utility maximizers

$$E(\tilde{\pi}_j) - \frac{1}{2} \alpha_j \operatorname{Var}(\tilde{\pi}_j) \tag{4}$$

• The storer

$$x^{*} = \frac{1}{C} \max \left\{ F_{t,T} - P_{t}, 0 \right\},$$
 (5)

$$f_l^* = \frac{E[\tilde{P}_T] - F_{t,T}}{\alpha_l Var[\tilde{P}_T]} - x^*$$
(6)

・ロト ・ 日 ト ・ ヨ ト ・ ヨ

References

Optimal positions

• Agents are mean-variance utility maximizers

$$E(\tilde{\pi}_j) - \frac{1}{2} \alpha_j \operatorname{Var}(\tilde{\pi}_j) \tag{4}$$

The storer

$$x^* = \frac{1}{C} \max \{F_{t,T} - P_t, 0\},$$
 (5)

$$f_l^* = \frac{E[\tilde{P}_T] - F_{t,T}}{\alpha_l Var[\tilde{P}_T]} - x^*$$
(6)

• The processor

$$y^* = \frac{1}{\beta Z} \max \{ Z - F_{t,T}, 0 \},$$
 (7)

$$f_P^* = \frac{E[\tilde{P}_T] - F_{t,T}}{\alpha_P Var[\tilde{P}_T]} + y^*$$
(8)

<ロト < 部ト < 言ト < 言ト 差 の Q (や 15/34

Financial investor

$$f_{S}^{*} = \left(\frac{1}{1-\rho^{2}}\right) \frac{1}{\alpha_{S}\sigma_{P}} \left[\frac{E[\tilde{P}_{T}] - F_{t,T}}{\sigma_{P}} - \rho \frac{E[\tilde{V}_{T}] - V_{t}}{\sigma_{V}}\right], \rho \neq \pm 1$$
(9)

$$k^* = \left(\frac{1}{1-\rho^2}\right) \frac{1}{\alpha_S \sigma_V} \left[\frac{E[\tilde{V}_T] - V_t}{\sigma_V} - \rho \frac{E[\tilde{P}_T] - F_{t,T}}{\sigma_P}\right], \rho \neq \pm 1$$
(10)

Where α is the agent's risk aversion and ρ is the commodity-equity correlation.

References

Markets clearing

• Physical market

 $\mathsf{Supply} = \mathsf{Demand}$

• Physical market

 $\mathsf{Supply} = \mathsf{Demand}$

• at *t*,

 $\omega_t = N_I x^* + \mu_t - m P_t,$

イロト イヨト イヨト イヨト 二日

17/34

rther issues R

References

Markets clearing

• Physical market

 $\mathsf{Supply} = \mathsf{Demand}$

• at *t*,

$$\omega_t = N_I x^* + \mu_t - m P_t,$$

• at *T*,

$$\tilde{\omega}_{T} + N_{I}x^{*} = N_{P}y^{*} + \tilde{\mu}_{T} - m\tilde{P}_{T},$$

< □ ▶ < 部 ▶ < 差 ▶ < 差 ▶ 差 の Q (~ 17/34 Physical market

Supply = Demand • at t, $\omega_t = N_I x^* + \mu_t - m P_t,$ • at T, $\tilde{\omega}_T + N_I x^* = N_P y^* + \tilde{\mu}_T - m \tilde{P}_T,$

Futures market

$$N_S f_S^\star + N_P f_P^\star + N_I f_I^\star = 0.$$

Where N_S is the total number of financial investors, N_I is the total number of storers and N_P is the total number of processor .

The model

ues Refere

Market clearing

Futures risk premium

$$E[\tilde{P}_{T}] - F_{t,T} = \frac{\operatorname{Var}[\tilde{P}_{T}]}{\frac{N_{P}}{\alpha_{P}} + \frac{N_{I}}{\alpha_{I}} + \frac{N_{S}}{\alpha_{S}} \left(\frac{1}{1 - \rho^{2}}\right)} \left(N_{I}x^{*} - N_{P}y^{*} + \frac{N_{S}}{\alpha_{S}}\rho\frac{E[\tilde{V}_{T}] - V_{t}}{\sigma_{P}\sigma_{V}(1 - \rho^{2})}\right)$$
(11)

Where:

- P_T is the commodity spot price at T.
- $F_{t,T}$ is the futures price at t when the maturity is at T.
- $\frac{N_i}{\alpha_i}$ is the number of agent *i* restricted to his risk aversion, and i := P, I, S. P: processor, I: storer and S: financial investor.
- ρ is the commodity-equity correlation.
- V_j is the value of the financial investor's portfolio in the stock market at time j, j := t, T.

Motivation	The model	Data	Regressions	Results	Robustness check	Conclusion	Further issues	References

• From the model to the empirical test

$$\mathbb{E}[\tilde{P}_{T}] - F_{t,T} = \beta_1 HP + \beta_2 \rho \left(E[\tilde{V}_{T}] - V_t \right)$$
(12)

Where, *HP* is the hedging pressure. $\beta_1 \& \beta_2$ are coefficients.

Motivation	The model	Data	Regressions	Results	Robustness check	Conclusion	Further issues	References

From the model to the empirical test

$$\mathbb{E}[\tilde{P}_{T}] - F_{t,T} = \beta_{1}HP + \beta_{2}\rho\left(E[\tilde{V}_{T}] - V_{t}\right)$$
(12)

Where, *HP* is the hedging pressure. $\beta_1 \& \beta_2$ are coefficients.

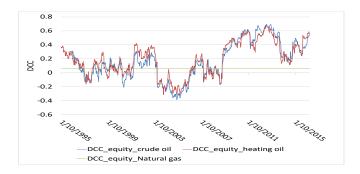
- **Prediction** The futures risk premium of any commodity is determined by the hedging pressure of commercials agents and the stock returns adjusted by commodity-equity correlation. That implies:
 - 1. An increase in the net short hedging pressure causes an increase in the futures risk premium.
 - 2. An increase in stock returns, while the commodity-equity correlation is positive, causes an increase in the futures risk premium.

• Weekly datasets from 1995 to 2015.

- Weekly datasets from 1995 to 2015.
- Three commodities: crude oil (WTI), natural gas, and heating oil.

Data		Source	Variable estimation			
Futures prices	18 maturities for WTI 18 maturities for Natural gas 16 maturities for heating oil	Datastream(the maturities were built by author)	futures returns	$RFUT_t = \frac{F_{t,T} - F_{t-1,T}}{F_{t-1,T}}$		
Open interest p	ositions (long and short)	CFTC	hedging pressure	$HP_t = \frac{Short_t - long_t}{Short_t + long_t}$		
S&P 500 comp	osite index	Datastream	stock returns	$RSP500_t = \frac{SP500_t - SP500_{t-1}}{SP500_{t-1}}$		

イロト イヨト イヨト イヨト 三日


21/34

Data (Dynamic Conditional Correlation)

• The correlation between the stock and the futures returns witnessed changes over time (Buyuksahin and Robe (2014a,b) and Basak and Pavlova (2016)).

Data (Dynamic Conditional Correlation)

- The correlation between the stock and the futures returns witnessed changes over time (Buyuksahin and Robe (2014a,b) and Basak and Pavlova (2016)).
- I compute the dynamic conditional correlation (DCC) addressed by Engle (2002).

• I construct an index of adjusted stock returns that identifies the effect of the stock market.

```
RPSP500adj_t := \rho_t \times RPSP500_t
```

Where ρ_t is the commodity-equity correlation, and $RPSP500_t$ is the stock returns.

• I estimate the futures risk premium on the periods: 1995-2002, 2003-2008 and 2008-2015.

 $RFUTXM_t = \beta_1 CHP_t + \beta_2 RPSP500 adj_t + \epsilon_t$

Regression estimation for crude oil (WTI) on the periods 1995-2002, 2003-2008 and 2008-2015

	Panel A 1995-2002				Panel B 2003-2008				Panel C 2008-2016			
VARIABLES	CHP	RPSP500adj	Obs	R-squared	CHP	RPSP500adj	Obs	R-squared	CHP	RPSP500adj	Obs	R-squared
RFUT1M	0.946***	-0.0827	376	0.200	1.343***	1.483*	307	0.200	0.829***	2.097***	375	0.269
	(0.0981)	(0.574)			(0.156)	(0.860)			(0.185)	(0.213)		
RFUT2M	0.927***	-0.0915	376	0.258	1.276***	0.998	307	0.195	0.758***	2.172***	375	0.295
	(0.0817)	(0.477)			(0.149)	(0.823)			(0.175)	(0.201)		
RFUT3M	0.863***	-0.0320	376	0.267	1.212***	0.838	307	0.192	0.719***	2.163***	375	0.311
	(0.0743)	(0.434)			(0.143)	(0.790)			(0.166)	(0.192)		
						:						
						:						
						:						
RFUT12M	0.425***	0.246	376	0.171	0.754***	0.342	307	0.113	0.467***	1.960***	375	0.338
	(0.0493)	(0.288)			(0.121)	(0.671)			(0.136)	(0.156)		
RFUT13M	0.398***	0.254	376	0.160	0.720***	0.332	307	0.105	0.445***	1.938***	375	0.338
	(0.0482)	(0.282)			(0.120)	(0.665)			(0.133)	(0.154)		
RFUT14M	0.372***	0.251	376	0.148	0.688***	0.323	307	0.099	0.427***	1.914***	375	0.338
	(0.0472)	(0.276)			(0.119)	(0.659)			(0.131)	(0.151)		

25 / 34

- *HP*(β₁) is
 - Positive.
 - Significant.
 - Decrease when the maturity increases.

- *HP*(β₁) is
 - Positive.
 - Significant.
 - Decrease when the maturity increases.
- *RPSP*500*adj*(β₂) is
 - Significant.
 - Positive after 2008 financial crisis.

HP(β₁) is

- Positive.
- Significant.
- Decrease when the maturity increases.
- *RPSP*500*adj*(β₂) is
 - Significant.
 - Positive after 2008 financial crisis.
- The effect of the stock market has more influence than the effect of hedging pressure on longer maturities of WTI and heating oil.

(日) (部) (注) (注) (三)

25 / 34

- I test the theoretical findings by replacing the weekly data sets with monthly ones.
- I substitute the maturities from the *S&PGSCI* total return for the tested commodities.
- I divide the tested periods into shorter subperiods (Each subperiod represents 175 weeks).
- I replace the net short hedging pressure with the net long speculative pressure.

• Theoretically:

• Theoretically:

1. The futures risk premium of any commodity is determined by the hedging pressure of commercials agents and the stock returns adjusted by the commodity-equity correlation.

- Theoretically:
 - The futures risk premium of any commodity is determined by the hedging pressure of commercials agents and the stock returns adjusted by the commodity-equity correlation.
 - 2. An increase in the net short hedging pressure causes an increase in the futures risk premium.

- Theoretically:
 - The futures risk premium of any commodity is determined by the hedging pressure of commercials agents and the stock returns adjusted by the commodity-equity correlation.
 - 2. An increase in the net short hedging pressure causes an increase in the futures risk premium.
 - 3. An increase in stock returns, while the commodity-equity correlation is positive, causes an increase in the futures risk premium.

• For WTI and heating oil, the hedging pressure increases the futures risk premium.

- For WTI and heating oil, the hedging pressure increases the futures risk premium.
- The hedging pressure of natural gas decreases the futures risk premium after 2008.

- For WTI and heating oil, the hedging pressure increases the futures risk premium.
- The hedging pressure of natural gas decreases the futures risk premium after 2008.
- For WTI and heating oil, after 2008 crisis, a positive commodity-equity correlation accompanies positive stock returns, which increases the futures risk premium.

- For WTI and heating oil, the hedging pressure increases the futures risk premium.
- The hedging pressure of natural gas decreases the futures risk premium after 2008.
- For WTI and heating oil, after 2008 crisis, a positive commodity-equity correlation accompanies positive stock returns, which increases the futures risk premium.
- When the maturity increases, the adjusted stock market returns have stronger explanatory power than the hedging pressure.

- For WTI and heating oil, the hedging pressure increases the futures risk premium.
- The hedging pressure of natural gas decreases the futures risk premium after 2008.
- For WTI and heating oil, after 2008 crisis, a positive commodity-equity correlation accompanies positive stock returns, which increases the futures risk premium.
- When the maturity increases, the adjusted stock market returns have stronger explanatory power than the hedging pressure.
- In natural gas case, the futures risk premium should be determined by extra explanatory variables.

- For WTI and heating oil, the hedging pressure increases the futures risk premium.
- The hedging pressure of natural gas decreases the futures risk premium after 2008.
- For WTI and heating oil, after 2008 crisis, a positive commodity-equity correlation accompanies positive stock returns, which increases the futures risk premium.
- When the maturity increases, the adjusted stock market returns have stronger explanatory power than the hedging pressure.
- In natural gas case, the futures risk premium should be determined by extra explanatory variables.
- The effect of financial investors on the period of financialization and 2008 crisis is not as important to study as what happened after the 2008 crisis.

Thank you for your attention! Questions?

The impact of commodity-equity correlation

• The impact of commodity-equity correlation (ρ) is linked to the expected stock returns.

The impact of commodity-equity correlation

- The impact of commodity-equity correlation (ρ) is linked to the expected stock returns.
- We focus on the common case when the expected stock returns are positive.

The impact of commodity-equity correlation

- The impact of commodity-equity correlation (ρ) is linked to the expected stock returns.
- We focus on the common case when the expected stock returns are positive.
- An increase in commodity-equity correlation \implies a decrease in the long positions (increase short positions).

 $\nearrow \rho \Leftrightarrow \searrow \mathsf{Long} \ \mathsf{Positions} \\ \searrow \rho \Leftrightarrow \nearrow \mathsf{Long} \ \mathsf{Positions}$

4 ロ ト 4 日 ト 4 日 ト 4 日 ト 4 日 ト 5 つ Q (ひ)
30 / 34

• Our finding show plausible debate about the impact of financialization.

- Our finding show plausible debate about the impact of financialization.
- The impact of financialization depends on the financial investors's situation.

- Our finding show plausible debate about the impact of financialization.
- The impact of financialization depends on the financial investors's situation.
- When their net futures positions is long,

- Our finding show plausible debate about the impact of financialization.
- The impact of financialization depends on the financial investors's situation.
- When their net futures positions is long,
 - The demand on futures positions is high.

- Our finding show plausible debate about the impact of financialization.
- The impact of financialization depends on the financial investors's situation.
- When their net futures positions is long,
 - The demand on futures positions is high.
 - Hence, the futures prices increase ⇒ inventory levels increase ⇒ spot price increases.

- Our finding show plausible debate about the impact of financialization.
- The impact of financialization depends on the financial investors's situation.
- When their net futures positions is long,
 - The demand on futures positions is high.
 - Hence, the futures prices increase \Longrightarrow inventory levels increase \Longrightarrow spot price increases.
 - On the contrary, the physical demand of the processors and the future spot price decrease.

References I

- ACHARYA, V. V., LOCHSTOER, L. A., AND RAMADORAI, T. 2013. Limits to Arbitrage and Hedging: Evidence from Commodity Markets. Journal of Financial Economics 109:441–465.
- BASAK, S. AND PAVLOVA, A. 2016. A model of financialization of commodities. *Journal of Finance* 71:1511–1555.
- BOONS, M., DE ROON, F., AND SZYMANOWSKA, M. 2014. The Price of Commodity Risk in Stock and Futures Markets. *Working Paper*.
- BOSCH, D. AND PRADKHAN, E. 2015. The impact of speculation on precious metals futures markets. *Resources Policy* 44:118–134.
- BRUNETTI, C. AND BUYUKŞAHIN, B. 2009. Is Speculation Destabilizing? *Working paper*.
- BUYUKŞAHIN, B. AND HARRIS, J. H. 2011. Do speculators Drive Crude Oil Futures Prices. *The Energy Journal* 32:167–202.
- BUYUKŞAHIN, B. AND ROBE, M. A. 2014a. Does Paper Oil Matter? Energy Markets'Financialization and Equity-Commodity Co-Movements. *Working Paper, American University, (Revised) July*.

32 / 34

(日) (部) (注) (注) (三)

References

References II

- BUYUKŞAHIN, B. AND ROBE, M. A. 2014b. Speculators, Commodities and Cross-market Linkages. *Journal of International Money and Finance* 42:38–70.
- EKELAND, I., LAUTIER, D., AND VILLENEUVE, B. 2018. Hedging pressure and speculation in commodity markets. *Economic Theory* forthcoming.
- ETULA, E. 2013. Broker-Dealer Risk Appetite and Commodity Returns. Journal of Financial Econometrics 11:486–521.
- HAMILTON, J. D. AND WU, J. C. 2014. Risk Premia in Crude Oil Futures Prices. *Journal of International Money and Finance* 42:9–37.
- HAMILTON, J. D. AND WU, J. C. 2015. Effects of Index-Fund Investing on Commodity Futures Prices. *International Economic Review* 56:187–205.
- HENDERSON, B. J., PEARSON, N. D., AND WANG, L. 2015. New evidence on the financialization of commodities markets. *Review of Financial Studies* 28:1285–1311.

- KILIAN, L. AND MURPHY, D. 2014. The Role of Inventories and Speculative Trading in the Global Market for Crude Oil. *Journal of Applied Econometrics* 29:454–478.
- $\rm MASTERS,\ M.\ W.$ 2008. Testimony before the U.S. Senate Committee on Homeland Security and Governmental Affairs.
- SINGLETON, K. J. 2014. Investor flows and the 2008 boom/bust in oil prices. *Management science* 60:300–318.
- SOCKIN, M. AND XIONG, W. 2015. Informational Frictions and Commodity Markets. *Journal of Finance* 70:2063–2098.
- TANG, K. AND XIONG, W. 2012. Index Investing and the Financialization of Commodities. *Financial Analysts Journal* 68:54–74.