
Some machine learning schemes for

high-dimensional nonlinear PDEs ∗

Côme Huré† Huyên Pham‡ Xavier Warin §

February 4, 2019

Abstract

We propose new machine learning schemes for solving high dimensional nonlinear
partial differential equations (PDEs). Relying on the classical backward stochastic
differential equation (BSDE) representation of PDEs, our algorithms estimate simulta-
neously the solution and its gradient by deep neural networks. These approximations
are performed at each time step from the minimization of loss functions defined recur-
sively by backward induction. The methodology is extended to variational inequalities
arising in optimal stopping problems. We analyze the convergence of the deep learning
schemes and provide error estimates in terms of the universal approximation of neural
networks. Numerical results show that our algorithms give very good results till di-
mension 50 (and certainly above), for both PDEs and variational inequalities problems.
For the PDEs resolution, our results are very similar to those obtained by the recent
method in [EHJ17] when the latter converges to the right solution or does not diverge.
Numerical tests indicate that the proposed methods are not stuck in poor local minima
as it can be the case with the algorithm designed in [EHJ17], and no divergence is ex-
perienced. The only limitation seems to be due to the inability of the considered deep
neural networks to represent a solution with a too complex structure in high dimension.

Key words: Deep neural networks, nonlinear PDEs in high dimension, optimal stopping
problem, backward stochastic differential equations.

∗This work is supported by FiME, Laboratoire de Finance des Marchés de l’Energie, and the ”Finance
and Sustainable Development” EDF - CACIB Chair.
†LPSM, Paris-Diderot University hure at lpsm.paris
‡LPSM, Paris-Diderot University, CREST-ENSAE & FiME pham at lpsm.paris
§EDF R&D & FiME xavier.warin at edf.fr

1

mailto:hure at lpsm.paris
mailto:pham at lpsm.paris
mailto:xavier.warin at edf.fr

1 Introduction

This paper is devoted to the resolution in high dimension of nonlinear parabolic partial
differential equations (PDEs) of the form{

∂tu+ Lu+ f(., ., u, σᵀDxu) = 0, on [0, T)× Rd,
u(T, .) = g, on Rd,

(1.1)

with a non-linearity in the solution and its gradient via the function f(t, x, y, z) defined on
[0, T]× Rd×R×Rd, a terminal condition g, and a second-order generator L defined by

Lu :=
1

2
Tr
(
σσᵀD2

xu
)

+ µ.Dxu.

Here µ is a function defined on [0, T] × Rd with values in Rd, σ is a function defined on
[0, T] × Rd with values in Md the set of d × d matrices, and L is the generator associated
to the forward diffusion process:

Xt = x0 +

∫ t

0
µ(s,Xs) ds+

∫ t

0
σ(s,Xs) dWs, 0 ≤ t ≤ T, (1.2)

with W a d-dimensional Brownian motion on some probability space (Ω,F ,P) equipped
with a filtration F = (Ft)0≤t≤T satisfying the usual conditions.

Due to the so called “curse of dimensionality”, the resolution of nonlinear PDEs in
high dimension has always been a challenge for scientists. Until recently, only the BSDE
(Backward Stochastic Differential Equation) approach first developed in [PP90] was avai-
lable to tackle this problem: using the time discretization scheme proposed in [BT04], some
effective algorithms based on regressions manage to solve non linear PDEs in dimension
above 4 (see [GLW05; LGW06]). However this approach is still not implementable in
dimension above 6 or 7 : the number of basis functions used for the regression still explodes
with the dimension.

Quite recently some new methods have been developed for this problem, and three kind
of methodologies have emerged:

• Some are based on the Feyman-Kac representation of the PDE. Branching tech-
niques [HL+16] have been studied and shown to be convergent but only for small
maturities and some small nonlinearities. Some effective techniques based on nes-
ting Monte Carlo have been studied in [War18b; War18a]: the convergence is proved
for semi-linear equations. Still based on this Feyman-Kac representation some ma-
chine learning techniques permitting to solve a fixed point problem have been used
recently in [CWNMW18]: numerical results show that it is efficient and some partial
demonstrations justify why it is effective.

• Another class of methods is based on the BSDE approach and the curse of dimension-
ality issue is partially avoided by using some machine learning techniques. [HJE17;
EHJ17] propose a deep learning based technique called Deep BSDE. Based on an
Euler discretization of the forward underlying SDE Xt, the idea is to view the BSDE
as a forward SDE, and the algorithm tries to learn the values u and z = σᵀDu at
each time step of the Euler scheme by minimizing a global loss function between the
forward simulation of u till maturity T and the target g(XT).

2

• At last, using some machine learning representation of the solution, [SS18] proposes
to use the automatic numerical differentiation of the solution to solve the PDE on a
finite domain.

Like the second methodology, our approach relies on BSDE representation of the PDE
and deep learning approximations: we first discretize the BSDE associated to the PDE by
an Euler scheme, but in contrast with [EHJ17], we adopt a classical backward resolution
technique. On each time step, we propose to use some machine learning techniques to
estimate simultaneously the solution and its gradient by minimizing a loss function defined
recursively by backward induction, and solving this local problem by a stochastic gradient
algorithm. Two different schemes are designed to deal with the local problems:

(1) The first one tries the estimate the solution and its gradient by a neural network.

(2) The second one tries only to approximate the solution by a neural network while its
gradient is estimated directly with some numerical differentiation techniques.

The proposed methodology is then extended to solve some variational inequalities, i.e., free
boundary problems related to optimal stopping problems.

Convergence analysis of the two schemes for PDEs and variational inequalities is pro-
vided and shows that the approximation error goes to zero as we increase the number of
time steps and the number of neurons/layers whenever the gradient descent method used
to solve the local problems is not trapped in a local minimum.

In the last part of the paper, we test our algorithms on different examples. When the
solution is easy to represent by a neural network, we can solve the problem in quite high
dimension (at least 50 in our numerical tests). We show that the proposed methodology is
superior to the algorithm proposed in [HJE17] that often does not converge or is trapped in
a local minimum far away from the true solution. We then show that when the solution has
a very complex structure, we can still solve the problem but only in moderate dimension:
the neural network used is not anymore able to represent the solution accurately in very
high dimension. Finally, we illustrate numerically that the method is effective to solve some
system of variational inequalities: we consider the problem of American options and show
that it can be solved very accurately in high dimension (we tested until 40).

The outline of the paper is organized as follows. In Section 2, we give a brief and useful
reminder for neural networks. We describe in Section 3 our two numerical schemes and
compare with the algorithm in [HJE17]. Section 4 is devoted to the convergence analysis
of our machine learning algorithms, and we present in Section 5 several numerical tests.

2 Neural networks as function approximators

Multilayer (also called deep) neural networks are designed to approximate unknown or
large class of functions. In contrast to additive approximation theory with weighted sum
over basis functions, e.g. polynomials, neural networks rely on the composition of simple
functions, and appear to provide an efficient way to handle high-dimensional approximation
problems, in particular thanks to the increase in computer power for finding the “optimal”
parameters by (stochastic) gradient descent methods.

We shall consider feedforward (or artificial) neural networks, which represent the basic
type of deep neural networks. Let us recall some notation and basic definitions that will
be useful in our context. We fix the input dimension d0 = d (here the dimension of the

3

state variable x), the output dimension d1 (here d1 = 1 for approximating the real-valued
solution to the PDE, or d1 = d for approximating the vector-valued gradient function), the
global number L + 1 ∈ N \ {1, 2} of layers with m`, ` = 0, . . . , L, the number of neurons
(units or nodes) on each layer: the first layer is the input layer with m0 = d, the last layer
is the output layer with mL = d1, and the L − 1 layers between are called hidden layers,
where we choose for simplicity the same dimension m` = m, ` = 1, . . . , L− 1.

A feedforward neural network is a function from Rd to Rd1 defined as the composition

x ∈ Rd 7−→ AL ◦ % ◦AL−1 ◦ . . . ◦ % ◦A1(x) ∈ Rd1 . (2.1)

Here A`, ` = 1, . . . , L are affine transformations: A1 maps from Rd to Rm, A2, . . . , AL−1

map from Rm to Rm, and AL maps from Rm to Rd1 , represented by

A`(x) = W`x+ β`,

for a matrix W` called weight, and a vector β` called bias term, % : R → R is a nonlinear
function, called activation function, and applied component-wise on the outputs of A`,
i.e., %(x1, . . . , xm) = (%(x1), . . . , %(xm)). Standard examples of activation functions are the
sigmoid, the ReLu, the Elu, tanh.

All these matrices W` and vectors β`, ` = 1, . . . , L, are the parameters of the neural
network, and can be identified with an element θ ∈ RNm , where Nm =

∑L−1
`=0 m`(1 +m`+1)

= d(1+m)+m(1+m)(L−2)+m(1+d1) is the number of parameters, where we fix d0, d1,
L, but allow growing number m of hidden neurons. We denote by Θm the set of possible
parameters: in the sequel, we shall consider either the case when there are no constraints
on parameters, i.e., Θm = RNm , or when the total variation norm of the neural networks
is smaller than γm, i.e.,

Θm = Θγ
m :=

{
θ = (W`, β`)` : |Wl| ≤ γm, ` = 1, . . . , L

}
, with γm ↗∞, as m→∞.

We denote by Φm(.; θ) the neural network function defined in (2.1), and by NN %
d,d1,L,m

(Θm)
the set of all such neural networks Φm(.; θ) for θ ∈ Θm, and set

NN %
d,d1,L

=
⋃
m∈N
NN %

d,d1,L,m
(Θm) =

⋃
m∈N
NN %

d,d1,L,m
(RNm),

as the class of all neural networks within a fixed structure given by d, d1, L and %.
The fundamental result of Hornick et al. [HSW89] justifies the use of neural networks

as function approximators:

Universal approximation theorem (I):NN %
d,d1,L

is dense in L2(ν) for any finite measure

ν on Rd, whenever % is continuous and non-constant.

Moreover, we have a universal approximation result for the derivatives in the case of a
single hidden layer, i.e. L = 2, and when the activation function is a smooth function, see
[HSW90].

Universal approximation theorem (II): Assume that % is a (non constant) Ck function.
Then, NN %

d,d1,2
approximates any function and its derivatives up to order k, arbitrary well

on any compact set of Rd.

4

3 Deep learning-based schemes for semi-linear PDEs

The starting point for our probabilistic numerical schemes to the PDE (1.1) is the well-
known (see [PP90]) nonlinear Feynman-Kac formula via the pair (Y,Z) of F-adapted pro-
cesses valued in R×Rd, solution to the BSDE

Yt = g(XT) +

∫ T

t
f(s,Xs, Ys, Zs) ds−

∫ T

t
Zᵀ
s dWs, 0 ≤ t ≤ T, (3.1)

related to the solution u of (1.1) via

Yt = u(t,Xt), 0 ≤ t ≤ T,

and when u is smooth:

Zt = σᵀ(t,Xt)Dxu(t,Xt), 0 ≤ t ≤ T.

3.1 The deep BSDE scheme of [HJE17]

The DBSDE algorithm proposed in [HJE17; EHJ17] starts from the BSDE representation
(3.1) of the solution to (1.1), but rewritten in forward form as:

u(t,Xt) = u(0, x0)−
∫ t

0
f(s,Xs, u(s,Xs), σᵀ(s,Xs)Dxu(s,Xs)) ds (3.2)

+

∫ t

0
Dxu(s,Xs)ᵀσ(s,Xs) dWs, 0 ≤ t ≤ T.

The forward process X in equation (1.2), when it is not simulatable, is numerically
approximated by an Euler scheme X = Xπ on a time grid: π = {t0 = 0 < t1 < . . . < tN =
T}, with modulus |π| = maxi=0,...,N−1 ∆ti, ∆ti := ti+1 − ti, and defined as

Xti+1 = Xti + µ(ti, Xti)∆ti + σ(ti, Xti)∆Wti , i = 0, . . . , N − 1, X0 = x0, (3.3)

where we set ∆Wti := Wti+1 −Wti . To alleviate notations, we omit the dependence of X
= Xπ on the time grid π as there is no ambiguity (recall that we use the notation X for
the forward diffusion process). The approximation of equation (1.1) is then given formally
from the Euler scheme associated to the forward representation (3.2) by

u(ti+1, Xti+1) ≈ F (ti, Xti , u(ti, Xti), σ
ᵀ(ti, Xti)Dxu(ti, Xti),∆ti,∆Wti) (3.4)

with

F (t, x, y, z, h,∆) := y − f(t, x, y, z)h+ zᵀ∆.

In [HJE17; EHJ17], the numerical approximation of u(ti, Xti) is designed as follows:
starting from an estimation U0 of u(0, X0), and then using at each time step ti, i= 0, . . . , N−
1, a multilayer neural network x ∈ Rd 7→ Zi(x; θi) with parameter θi for the approximation
of x 7→ σᵀ(ti, x)Dxu(ti, x):

Zi(x; θi) ≈ σᵀ(ti, x)Dxu(ti, x), (3.5)

5

one computes estimations Ui of u(ti;Xti) by forward induction via:

Ui+1 = F (ti, Xti ,Ui,Zi(Xti ; θi),∆ti,∆Wti),

for i = 0, . . . , N − 1. This algorithm forms a global deep neural network composed of the
neural networks (3.5) of each period, by taking as input data (in machine learning language)
the paths of (Xti)i=0,...,N and (Wti)i=0,...,N , and giving as output UN = UN (θ), which is a
function of the input and of the total set of parameters θ = (U0, θ0, . . . , θN−1). The output
aims to match the terminal condition g(XtN) of the BSDE, and one then optimizes over
the parameter θ the expected square loss function:

θ 7→ E
∣∣g(XtN)− UN (θ)

∣∣2.
This is obtained by stochastic gradient descent-type (SGD) algorithms relying on training
input data.

3.2 New schemes: DBDP1 and DBDP2

The proposed scheme is defined from a backward dynamic programming type relation, and
has two versions:

(1) First version:

- Initialize from an estimation Û (1)
N of u(tN , .) with Û (1)

N = g

- For i=N−1, . . . , 0, given Û (1)
i+1, use a pair of deep neural networks (Ui(.; θ),Zi(.; θ))

∈NN %
d,1,L,m(RNm)×NN %

d,d,L,m(RNm) for the approximation of (u(ti, .), σ
ᵀ(ti, .)Dxu(ti, .)),

and compute (by SGD) the minimizer of the expected quadratic loss function
L̂

(1)
i (θ) := E

∣∣∣Û (1)
i+1(Xti+1)− F (ti, Xti ,Ui(Xti ; θ),Zi(Xti ; θ),∆ti,∆Wti)

∣∣∣2
θ∗i ∈ arg min

θ∈RNm
L̂1
i (θ).

(3.6)

Then, update: Û (1)
i = Ui(.; θ∗i), and set Ẑ(1)

i = Zi(.; θ∗i).

(2) Second version:

– Initialize with Û (2)
N = g

– For i=N−1, . . . , 0, given Û (2)
i+1, use a deep neural network Ui(.; θ) ∈NN %

d,1,L,m(Θm),
and compute (by SGD) the minimizer of the expected quadratic loss function

L̂
(2)
i (θ) := E

∣∣∣Û (2)
i+1(Xti+1)−

F (ti, Xti ,Ui(Xti ; θ), σ
ᵀ(ti, Xti)D̂xUi(Xti ; θ),∆ti,∆Wti)

∣∣∣2
θ∗i ∈ arg min

θ∈Θm
L̂2
i (θ),

(3.7)

where D̂xUi(.; θ) is the numerical differentiation of Ui(.; θ). Then, update: Û (2)
i

= Ui(.; θ∗i), and set Ẑ(2)
i = σᵀ(ti, .)D̂xUi(.; θ∗i).

6

Remark 3.1. For the first version of the scheme, one can use independent neural networks,
respectively for the approximation of u(ti, .) and for the approximation of σᵀ(ti, .)Dxu(ti, .).
In other words, the parameters are divided into a pair θ = (ξ, η) and we consider neural
networks Ui(.; ξ) and Zi(.; η). �

In the sequel, we refer to the first and second version of the new scheme above as
DBDP1 and DBDP2, where the acronym DBDP stands for deep learning backward dynamic
programming.

The intuition behind DBDP1 and DBDP2 is the following. For simplicity, take f =
0, so that F (t, x, y, z, h,∆) = y + zᵀ∆. The solution u to the PDE (1.1) should then
approximately satisfy (see (3.4))

u(ti+1, Xti+1) ≈ u(ti, Xti) +Dxu(ti, Xti)
ᵀσ(ti, Xti)∆Wti .

Consider the first scheme DBDP1, and suppose that at time i+ 1, Û (1)
i+1 is an estimation of

u(ti+1,.). The quadratic loss function at time i is then approximately equal to

L̂
(1)
i (θ) ≈ E

∣∣∣u(ti+1, Xti+1)− Ui(Xti ; θ)−Zi(Xti ; θ)
ᵀ∆Wti

∣∣∣2
≈ E

[∣∣u(ti, Xti)− Ui(Xti ; θ)
∣∣2 + ∆ti

∣∣σᵀ(ti, Xti)Dxu(ti, Xti)−Zi(Xti ; θ)
∣∣2].

Therefore, by minimizing over θ this quadratic loss function, via SGD based on simulations
of (Xti , Xti+1 ,∆Wti) (called training data in the machine learning language), one expects
the neural networks Ui and Zi to learn/approximate better and better the functions u(ti, .)
and σᵀ(ti,)Dxu(ti,) in view of the universal approximation theorem [HSW90]. Similarly, the
second scheme DPDP2, which uses only neural network on the value functions, learns u(ti, .)
by means of the neural network Ui, and σᵀ(ti,)Dxu(ti,) via σᵀ(ti,)D̂xUi. The rigorous
arguments for the convergence of these schemes will be derived in the next section.

The advantages of our two schemes, compared to the Deep BSDE algorithm, are the
following:

• we solve smaller problems that are less prone to be trapped in local mimimizer. The
memory needed in [HJE17] can be a problem when taking too many time steps.

• at each time step, we initialize the weights and bias of the neural network to the
weights and bias of the previous time step treated : this methodology always used
in iterative solvers in PDE methods permits to have a starting point close to the
solution, and then to avoid local minima too far away from the true solution. Besides
the number of gradient iterations to achieve is rather small after the first resolution
step.

The small disadvantage is due to the Tensorflow structure. As it is done in python, the
global graph creation takes much time as it is repeated for each time step and the global
resolution is a little bit time consuming : as the dimension of the problem increases, the
time difference decreases and it becomes hard to compare the computational time for a
given accuracy when the dimension is above 5.

7

3.3 Extension to variational inequalities: scheme RDBDP

Let us consider a variational inequality in the form{
min

[
− ∂tu− Lu− f(t, x, u, σᵀDxu), u− g

]
= 0, t ∈ [0, T), x ∈ Rd,

u(T, x) = g(x), x ∈ Rd .
(3.8)

which arises, e.g., in optimal stopping problem and American option pricing in finance. It
is known, see e.g. [EK+97], that such variational inequality is related to reflected BSDE of
the form

Yt = g(XT) +

∫ T

t
f(s,Xs, Ys, Zs) ds−

∫ T

t
Zᵀ
s dWs +KT −Kt, (3.9)

Yt ≥ g(Xt), 0 ≤ t ≤ T,

where K is an adapted non-decreasing process satisfying∫ T

0

(
Yt − g(Xt)

)
dKt = 0.

The extension of our DBDP1 scheme for such variational inequality, and refereed to as
RDBDP scheme, becomes

• Initialize ÛN = g

• For i=N−1, . . . , 0, given Ûi+1, use a pair of (multilayer) neural network (Ui(.; θ),Zi(.; θ))
∈ NN %

d,1,L,m(RNm)×NN %
d,d,L,m(RNm), and compute (by SGD) the minimizer of the

expected quadratic loss function L̂i(θ) := E
∣∣Ûi+1(Xti+1)− F (ti, Xti ,Ui(Xti ; θ),Zi(Xti ; θ),∆ti,∆Wti)

∣∣2
θ∗i ∈ arg min

θ∈RNm
L̂i(θ).

(3.10)

Then, update: Ûi = max
[
Ui(.; θ∗i), g], and set Ẑi = Z(.; θ∗i).

4 Convergence analysis

The main goal of this section is to prove convergence of the DBDP schemes towards the
solution (Y,Z) to the BSDE (3.1) (or reflected BSDE (3.9) for variational inequalities),
and to provide a rate of convergence that depends on the approximation errors by neural
networks.

4.1 Convergence of DBDP1

We assume the standard Lipschitz conditions on µ and σ, which ensures the existence and
uniqueness of an adapted solution X to the forward SDE (1.2) satisfying for any p > 1,

E
[

sup
0≤t≤T

|Xt|p
]
< Cp(1 + |x0|p), (4.1)

for some constant Cp depending only on p, b, σ and T . Moreover, we have the well-known
error estimate with the Euler scheme X = Xπ defined in (3.3) with a time grid π =

8

{t0 = 0 < t1 < . . . < tN = T}, with modulus |π| s.t. N |π| is bounded by a constant
depending only on T (hence independent of N):

max
i=0,...,N−1

E
[
|Xti+1 −Xti+1 |2 + sup

t∈[ti,ti+1]
|Xt −Xti |2

]
= O(|π|). (4.2)

Here, the standard notation O(|π|) means that lim sup|π|→0 |π|−1O(|π|) < ∞.

We shall make the standing usual assumptions on the driver f and the terminal data g.

(H1) (i) There exists a constant [f]L > 0 such that the driver f satisfies:

|f(t2, x2, y2, z2)− f(t1, x1, y1, z1)| ≤ [f]L

(
|t2 − t1|1/2 + |x2 − x1|+ |y2 − y1|+ |z2 − z1|

)
,

for all (t1, x1, y1, z1) and (t2, x2, y2, z2) ∈ [0, T]× Rd×R×Rd. Moreover,

sup
0≤t≤T

|f(t, 0, 0, 0)| <∞.

(ii) The function g satisfies a linear growth condition.

Recall that Assumption (H1) ensures the existence and uniqueness of an adapted so-
lution (Y,Z) to (3.1) satisfying

E
[

sup
0≤t≤T

|Yt|2 +

∫ T

0
|Zt|2 dt

]
< ∞.

From the linear growth condition on f in (H1), and (4.1), we also see that

E
[∫ T

0
|f(t,Xt, Yt, Zt)|2 dt

]
< ∞. (4.3)

Moreover, we have the standard L2-regularity result on Y :

max
i=0,...,N−1

E
[

sup
t∈[ti,ti+1]

|Yt − Yti |2
]

= O(|π|). (4.4)

Let us also introduce the L2-regularity of Z:

εZ(π) := E
[N−1∑
i=0

∫ ti+1

ti

|Zt − Z̄ti |2dt
]
, with Z̄ti :=

1

∆ti
Ei
[∫ ti+1

ti

Ztdt
]
,

where Ei denotes the conditional expectation given Fti . Since Z̄ is a L2-projection of Z, we
know that εZ(π) converges to zero when |π| goes to zero. Moreover, as shown in [Zha04],
when the terminal condition g is also Lipschitz, we have

εZ(π) = O(|π|).

Let us first investigate the convergence of the scheme DBDP1 in (3.6), and define
(implicitly)  V̂ti := Ei

[
Û (1)
i+1(Xti+1)

]
+ f(ti, Xti , V̂ti , Ẑti)∆ti

Ẑti := 1
∆ti

Ei
[
Û (1)
i+1(Xti+1)∆Wti

]
,

(4.5)

9

for i = 0, . . . , N − 1. Notice that V̂ti is well-defined for |π| small enough (recall that f is
Lipschitz) by a fixed point argument. By the Markov property of the discretized forward
process (Xti)i=0,...,N , we note that there exists some deterministic functions v̂i and ẑi s.t.

V̂ti = v̂i(Xti), and Ẑti = ẑi(Xti), i = 0, . . . , N − 1. (4.6)

Moreover, by the martingale representation theorem, there exists an Rd-valued square in-
tegrable process (Ẑt)t such that

Û (1)
i+1(Xti+1) = V̂ti − f(ti, Xti , V̂ti , Ẑti)∆ti +

∫ ti+1

ti

Ẑᵀ
s dWs, (4.7)

and by Itô isometry, we have

Ẑti =
1

∆ti
Ei
[∫ ti+1

ti

Ẑs ds
]
, i = 0, . . . , N − 1.

Let us now define a measure of the (squared) error for the DBDP1 scheme by

E
[
(Û (1), Ẑ(1)), (Y, Z)

]
:= max

i=0,...,N−1
E
∣∣Yti − Û (1)

i (Xti)
∣∣2 + E

[N−1∑
i=0

∫ ti+1

ti

∣∣Zt − Ẑ(1)
i (Xti)

∣∣2dt].
Our first main result gives an error estimate of the DBDP1 scheme in terms of the L2-

approximation errors of v̂i and ẑi by neural networks Ui and Zi, i = 0, . . . , N − 1, assumed
to be independent (see Remark 3.1), and defined as

εN ,vi := inf
ξ
E
∣∣v̂i(Xti)− Ui(Xti ; ξ)

∣∣2, εN ,zi := inf
η
E
∣∣ẑi(Xti)−Zi(Xti ; η)

∣∣2.
Here, we fix the structure of the neural networks with input dimension d, output dimension
d1 = 1 for Ui, and d1 = d for Zi, number of layers L, and m neurons for the hidden layers,
and the parameters vary in the whole set RNm where Nm is the number of parameters.
From the universal approximation theorem (I) ([HSW89]), we know that εNN,vi and εNN,zi

converge to zero as m goes to infinity, hence can be made arbitrary small for sufficiently
large number of neurons.

Theorem 4.1. (Consistency of DBDP1) Under (H1), there exists a constant C > 0,
independent of π, such that

E
[
(Û (1), Ẑ(1)), (Y,Z)

]
≤ C

(
E
∣∣g(XT)− g(XT)

∣∣2 + |π|+ εZ(π)

+

N−1∑
i=0

(
NεN ,vi + εN ,zi

))
. (4.8)

Remark 4.1. The error contributions for the DBDP1 scheme in the r.h.s. of estimation
(4.8) consists of four terms. The first three terms correspond to the time discretization of
BSDE, similarly as in [BT04], [GLW05], namely (i) the strong approximation of the terminal
condition (depending on the forward scheme and the terminal data g), and converging to
zero, as |π| goes to zero, with a rate |π| when g is Lipschitz by (4.2) (see [Avi09] for irregular

10

g), (ii) the strong approximation of the forward Euler scheme, and the L2-regularity of Y ,
which gives a convergence of order |π|, (iii) the L2-regularity of Z, which converges to
zero, as |π| goes to zero, with a rate |π| when g is Lipschitz. Finally, the better the neural
networks are able to approximate/learn the functions v̂i and ẑi at each time i = 0, . . . , N−1,
the smaller is the last term in the error estimation. �

Proof of Theorem 4.1.
In the following, C will denote a positive generic constant independent of π, and that may
take different values from line to line.

Step 1. Fix i ∈ {0, . . . , N − 1}, and observe by (3.1), (4.5) that

Yti − V̂ti = Ei
[
Yti+1 − Û

(1)
i+1(Xti+1)

]
+ Ei

[∫ ti+1

ti

f(t,Xt, Yt, Zt)− f(ti, Xti , V̂ti , Ẑti) dt
]
.

By using Young inequality: (a + b)2 ≤ (1 + γ∆ti)a
2 + (1 + 1

γ∆ti
)b2 for some γ > 0 to be

chosen later, Cauchy-Schwarz inequality, the Lipschitz condition on f in (H1), and the
estimation (4.2) on the forward process, we then have

E
∣∣Yti − V̂ti∣∣2 ≤ (1 + γ∆ti)E

∣∣∣Ei[Yti+1 − Û
(1)
i+1(Xti+1)

]∣∣∣2
+ 4[f]2

L
∆ti
(
1 +

1

γ∆ti

){
|∆ti|2 + E

[∫ ti+1

ti

∣∣Yt − V̂ti∣∣2 dt
]

+ E
[∫ ti+1

ti

∣∣Zt − Ẑti∣∣2 dt
]}

≤ (1 + γ∆ti)E
∣∣∣Ei[Yti+1 − Û

(1)
i+1(Xti+1)

]∣∣∣2 (4.9)

+ 4
[f]2

L

γ
(1 + γ∆ti)

{
C|π|2 + 2∆tiE

∣∣Yti − V̂ti∣∣2 + E
[∫ ti+1

ti

∣∣Zt − Ẑti∣∣2 dt
]}
,

where we use in the last inequality the L2-regularity (4.4) of Y .
Recalling the definition of Z̄ as a L2-projection of Z, we observe that

E
[∫ ti+1

ti

∣∣Zt − Ẑti∣∣2 dt
]

= E
[∫ ti+1

ti

∣∣Zt − Z̄ti∣∣2 dt
]

+ ∆tiE
∣∣Z̄ti − Ẑti∣∣2. (4.10)

By multiplying equation (3.1) between ti and ti+1 by ∆Wti , and using Itô isometry, we
have together with (4.5)

∆ti
(
Z̄ti − Ẑti

)
= Ei

[
∆Wti

(
Yti+1 − Û

(1)
i+1(Xti+1)

)]
+ Ei

[
∆Wti

∫ ti+1

ti

f(t,Xt, Yt, Zt) dt
]

= Ei
[
∆Wti

(
Yti+1 − Û

(1)
i+1(Xti+1)− Ei

[
Yti+1 − Û

(1)
i+1(Xti+1)

])]
+ Ei

[
∆Wti

∫ ti+1

ti

f(t,Xt, Yt, Zt) dt
]
.

By Cauchy-Schwarz inequality, and law of iterated conditional expectations, this implies

∆tiE
∣∣Z̄ti − Ẑti∣∣2 ≤ 2d

(
E
∣∣Yti+1 − Û

(1)
i+1(Xti+1)

∣∣2 − E
∣∣∣Ei[Yti+1 − Û

(1)
i+1(Xti+1)

]∣∣∣2)
+ 2d∆tiE

[∫ ti+1

ti

|f(t,Xt, Yt, Zt)|2 dt
]
. (4.11)

11

Then, by plugging (4.10) and (4.11) into (4.9), and choosing γ = 8d[f]2
L
, we have

E
∣∣Yti − V̂ti∣∣2 ≤ C∆tiE

∣∣Yti − V̂ti∣∣2 + (1 + γ∆ti)E
∣∣Yti+1 − Û

(1)
i+1(Xti+1)

∣∣2 + C|π|2

+ CE
[∫ ti+1

ti

∣∣Zt − Z̄ti∣∣2 dt
]

+ C∆tiE
[∫ ti+1

ti

|f(t,Xt, Yt, Zt)|2 dt
]
,

and thus for |π| small enough:

E
∣∣Yti − V̂ti∣∣2 ≤ (1 + C|π|)E

∣∣Yti+1 − Û
(1)
i+1(Xti+1)

∣∣2 + C|π|2

+ CE
[∫ ti+1

ti

∣∣Zt − Z̄ti∣∣2 dt
]

+ C|π|E
[∫ ti+1

ti

|f(t,Xt, Yt, Zt)|2 dt
]
. (4.12)

Step 2. By using Young inequality in the form: (a + b)2 ≥ (1 − |π|)a2 + (1 − 1
|π|)b

2 ≥
(1− |π|)a2 − 1

|π|b
2, we have

E
∣∣Yti − V̂ti∣∣2 = E

∣∣Yti − Û (1)
i (Xti) + Û (1)

i (Xti)− V̂ti
∣∣2

≥ (1− |π|)E
∣∣Yti − Û (1)

i (Xti)
∣∣2 − 1

|π|
E
∣∣Û (1)
i (Xti)− V̂ti

∣∣2. (4.13)

By plugging this last inequality into (4.12), we then get for |π| small enough

E
∣∣Yti − Û (1)

i (Xti)
∣∣2 ≤ (1 + C|π|)E

∣∣Yti+1 − Û
(1)
i+1(Xti+1)

∣∣2 + C|π|2

+ CE
[∫ ti+1

ti

∣∣Zt − Z̄ti∣∣2 dt
]

+ C|π|E
[∫ ti+1

ti

|f(t,Xt, Yt, Zt)|2 dt
]

+ CNE
∣∣V̂ti − Û (1)

i (Xti)
∣∣2.

From discrete Gronwall’s lemma (or by induction), and recalling the terminal condition YtN
= g(XT), Û (1)

i (XtN) = g(XT), the definition εZ(π) of the L2-regularity of Z, and (4.3), this
yields

max
i=0,...,N−1

E
∣∣Yti − Û (1)

i (Xti)
∣∣2 ≤ CE

∣∣g(XT)− g(XT)
∣∣2 + C|π|+ CεZ(π)

+ CN

N−1∑
i=0

E
∣∣V̂ti − Û (1)

i (Xti)
∣∣2. (4.14)

Step 3. Fix i ∈ {0, . . . , N − 1}. By using relation (4.7) in the expression of the expected

quadratic loss function in (3.6), and recalling the definition of Ẑti as a L2-projection of Ẑt,
we have for all parameters θ = (ξ, η) of the neural networks Ui(.; ξ) and Zi(.; η)

L̂
(1)
i (θ) = L̃i(θ) + E

[∫ ti+1

ti

∣∣Ẑt − Ẑti∣∣2 dt
]

(4.15)

with

L̃i(θ) := E
∣∣∣V̂ti − Ui(Xti ; ξ) +

(
f(ti, Xti ,Ui(Xti ; ξ),Zi(Xti ; η))− f(ti, Xti , V̂ti , Ẑti)

)
∆ti

∣∣∣2
+ ∆tiE

∣∣Ẑti −Zi(Xti ; η)
∣∣2.

12

By using Young inequality: (a + b)2 ≤ (1 + γ∆ti)a
2 + (1 + 1

γ∆ti
)b2, together with the

Lipschitz condition on f in (H1), we clearly see that

L̃i(θ) ≤ (1 + C∆ti)E
∣∣V̂ti − Ui(Xti ; ξ)

∣∣2 + C∆tiE
∣∣Ẑti −Zi(Xti ; η)

∣∣2. (4.16)

On the other hand, using Young inequality in the form: (a+b)2 ≥ (1−γ∆ti)a
2 + (1− 1

γ∆ti
)b2

≥ (1− γ∆ti)a
2 − 1

γ∆ti
b2, together with the Lipschitz condition on f , we have

L̃i(θ) ≥ (1− γ∆ti)E
∣∣V̂ti − Ui(Xti ; ξ)

∣∣2 − 2∆ti[f]2
L

γ

(
E
∣∣V̂ti − Ui(Xti ; ξ)

∣∣2 + E
∣∣Ẑti −Zi(Xti ; η)

∣∣2)
+ ∆tiE

∣∣Ẑti −Zi(Xti ; η)
∣∣2.

By choosing γ = 4[f]2
L
, this yields

L̃i(θ) ≥ (1− C∆ti)E
∣∣V̂ti − Ui(Xti ; ξ)

∣∣2 +
∆ti
2

E
∣∣Ẑti −Zi(Xti ; η)

∣∣2. (4.17)

Step 4. Fix i ∈ {0, . . . , N − 1}, and take θ∗i = (ξ∗i , η
∗
i) ∈ arg minθ L̂

(1)
i (θ) so that Û (1)

i =

Ui(.; ξ∗i), and Ẑ(1)
i = Zi(.; η∗i). By (4.15), notice that θ∗i ∈ arg minθ L̃i(θ). From (4.17) and

(4.16), we then have for all θ = (ξ, η)

(1− C∆ti)E
∣∣V̂ti − Û (1)

i (Xti)
∣∣2 +

∆ti
2

E
∣∣Ẑti − Ẑ(1)

i (Xti)
∣∣2

≤ L̃i(θ∗i) ≤ L̃i(θ) ≤ (1 + C∆ti)E
∣∣V̂ti − Ui(Xti ; ξ)

∣∣2 + C∆tiE
∣∣Ẑti −Zi(Xti ; η)

∣∣2.
For |π| small enough, and recalling (4.6), this implies

E
∣∣V̂ti − Û (1)

i (Xti)
∣∣2 + ∆tiE

∣∣Ẑti − Ẑ(1)
i (Xti)

∣∣2 ≤ CεN ,vi + C∆tiε
N ,z
i . (4.18)

Plugging this last inequality into (4.14), we obtain

max
i=0,...,N−1

E
∣∣Yti − Û (1)

i (Xti)
∣∣2 ≤ CE

∣∣g(XT)− g(XT)
∣∣2 + C|π|+ CεZ(π)

+ C

N−1∑
i=0

(
NεN ,vi + εN ,zi

)
, (4.19)

which proves the consistency of the Y -component in (4.8).

Step 5. Let us finally prove the consistency of the Z-component. From (4.10) and (4.11),
we have for any i = 0, . . . , N − 1:

E
[∫ ti+1

ti

∣∣Zt − Ẑti∣∣2 dt
]
≤ E

[∫ ti+1

ti

∣∣Zt − Z̄ti∣∣2 dt
]

+ 2d|π|E
[∫ ti+1

ti

|f(t,Xt, Yt, Zt)|2 dt
]

+ 2d
(
E
∣∣Yti+1 − Û

(1)
i+1(Xti+1)

∣∣2 − E
∣∣∣Ei[Yti+1 − Û

(1)
i+1(Xti+1)

]∣∣∣2)
By summing over i = 0, . . . , N − 1, we get (recall (4.3))

E
[N−1∑
i=0

∫ ti+1

ti

∣∣Zt − Ẑti∣∣2 dt
]
≤ εZ(π) + C|π|+ 2dE

∣∣g(XT)− g(XT)
∣∣2 (4.20)

+ 2d

N−1∑
i=0

(
E
∣∣Yti − Û (1)

i (Xti)
∣∣2 − E

∣∣∣Ei[Yti+1 − Û
(1)
i+1(Xti+1)

]∣∣∣2)

13

where we change the indices in the last summation. Now, from (4.9), (4.13), we have

2d
(
E
∣∣Yti − Û (1)

i (Xti)
∣∣2 − E

∣∣∣Ei[Yti+1 − Û
(1)
i+1(Xti+1)

]∣∣∣2)
≤
(1 + γ|π|

1− |π|
− 1
)
E
∣∣∣Ei[Yti+1 − Û

(1)
i+1(Xti+1)

]∣∣∣2
+

8d[f]2
L

γ

1 + γ|π|
1− |π|

{
C|π|2 + |π|E

∣∣Yti − V̂ti∣∣2 + E
[∫ ti+1

ti

∣∣Zt − Ẑti∣∣2 dt
]}

+
2d

|π|(1− |π|)
E
∣∣Û (1)
i (Xti)− V̂ti

∣∣2.
We now choose γ = 24d[f]2

L
so that

8d[f]2
L

γ (1 + γ|π|)/(1 − |π|) ≤ 1/2 for |π| small enough,

and by plugging into (4.20), we obtain (note also that
[
(1 + γ|π|)/(1− |π|)− 1

]
= O(|π|)):

1

2
E
[N−1∑
i=0

∫ ti+1

ti

∣∣Zt − Ẑti∣∣2 dt
]
≤ εZ(π) + C|π|+ C max

i=0,...,N
E
∣∣Yti − Û (1)

i (Xti)
∣∣2

+
1

2
|π|

N−1∑
i=0

E
∣∣Yti − V̂ti∣∣2 + CN

N−1∑
i=0

E
∣∣Û (1)
i (Xti)− V̂ti

∣∣2
≤ CεZ(π) + C|π|+ C max

i=0,...,N
E
∣∣Yti − Û (1)

i (Xti)
∣∣2

+ CN

N−1∑
i=0

E
∣∣Û (1)
i (Xti)− V̂ti

∣∣2
≤ CE

∣∣g(XT)− g(XT)
∣∣2 + C|π|+ CεZ(π)

+ C
N−1∑
i=0

(
NεN ,vi + εN ,zi

)
, (4.21)

where we used (4.12) and (4.3) in the second inequality, and (4.18) and (4.19) in the last
inequality.

By writing that

E
[∫ ti+1

ti

∣∣Zt − Ẑ(1)
i (Xti)

∣∣2 dt
]
≤ 2E

[∫ ti+1

ti

∣∣Zt − Ẑti∣∣2 dt
]

+ 2∆tiE
∣∣Ẑti − Ẑ(1)

i (Xti)
∣∣2,

and using (4.18), (4.21), we obtain after summation over i = 0, . . . , N − 1, the required
error estimate for the Z-component as in (4.19), and this ends the proof. �

4.2 Convergence of DBDP2

We shall consider neural networks with one hidden layer, m neurons with total variation
smaller than γm (see Section 2), a C3 activation function % with linear growth condition,
and bounded derivatives, e.g., a sigmoid activation function, or a tanh function: this class
of neural networks is then represented by the parametric set of functions

NN %
d,1,2,m(Θγ

m) :=

{
x ∈ Rd 7→ U(x; θ) =

m∑
i=1

ci%(ai.x+ bi) + b0, θ = (ai, bi, ci, b0)mi=1 ∈ Θγ
m

}
,

14

with

Θγ
m :=

{
θ = (ai, bi, ci, b0)mi=1 : max

i=1,...,m
|ai| ≤ γm,

m∑
i=1

|ci| ≤ γm

}
,

for some sequence (γm)m converging to ∞, as m goes to infinity, and such that

γ6m
N −−−−−→m,N→∞

0. (4.22)

Notice that the neural networks in NN %
d,1,2,m(Θγ

m) have their first, second and third deriva-
tives uniformly bounded w.r.t. the state variable x. More precisely, there exists some
constant C depending only on d and the derivatives of % s.t. for any U ∈ NN %

d,1,2,m(Θγ
m),

sup
x∈Rd,θ∈Θγm

∣∣∣DxU(x; θ)
∣∣∣ ≤ Cγ2

m, sup
x∈Rd,θ∈Θγm

∣∣∣D2
xU(x; θ)

∣∣∣ ≤ Cγ3
m,

and sup
x∈Rd,θ∈Θγm

∣∣∣D3
xU(x; θ)

∣∣∣ ≤ Cγ4
m.

(4.23)

Let us investigate the convergence of the scheme DBDP2 in (3.7) with neural networks
in NN %

d,1,2,m(Θγ
m), and define for i = 0, . . . , N − 1: V̂ti := Ei

[
Û (2)
i+1(Xti+1)

]
+ f(ti, Xti , V̂ti , Ẑti)∆ti = v̂i(Xti),

Ẑti := 1
∆ti

Ei
[
Û (2)
i+1(Xti+1)∆Wti

]
= ẑi(Xti).

(4.24)

A measure of the (squared) error for the DBDP2 scheme is defined similarly as in
DBDP1 scheme:

E
[
(Û (2), Ẑ(2)), (Y, Z)

]
:= max

i=0,...,N−1
E
∣∣Yti − Û (2)

i (Xti)
∣∣2 + E

[N−1∑
i=0

∫ ti+1

ti

∣∣Zt − Ẑ(2)
i (Xti)

∣∣2dt].
Our second main result gives an error estimate of the DBDP2 scheme in terms of the

L2-approximation errors of v̂i and its derivative (which exists under assumption detailed
below) by neural networks Ui ∈ NN %

d,1,2,m(Θγ
m), i = 0, . . . , N − 1, and defined as

εN ,mi := inf
θ∈Θγm

{
E
∣∣v̂i(Xti)− Ui(Xti ; θ)

∣∣2 + ∆tiE
∣∣σᵀ(ti, Xti)

(
Dxv̂i(Xti)−DxUi(Xti ; θ)

)∣∣2},
which are expected to be small in view of the universal approximation theorem (II), see
discussion in Remark 4.2.

We also require the additional conditions on the coefficients:

(H2) (i) The functions x 7→ µ(t, .), σ(t, .) are C1 with bounded derivatives uniformly w.r.t.
(t, x) ∈ [0, T]× Rd.
(ii) The function (x, y, z) 7→ f(t, .) is C1 with bounded derivatives uniformly w.r.t. (t, x, y, z)
in [0, T]× Rd×R×Rd.

15

Theorem 4.2. (Consistency of DBDP2) Under (H1)-(H2), there exists a constant C > 0,
independent of π, such that

E
[
(Û (2), Ẑ(2)), (Y, Z)

]
≤ C

(
E
∣∣g(XT)− g(XT)

∣∣2 +
γ6
m

N
+ εZ(π) +N

N−1∑
i=0

εN ,mi

)
.(4.25)

Proof. For simplicity of notations, we assume d = 1, and only detail the arguments that
differ from the proof of Theorem 4.8. From (4.24), and the Euler scheme (3.3), we have

v̂i(x) = ṽi(x) + ∆tif(ti, x, v̂i(x), ẑi(x)), ṽi(x) := E
[
ûi+1(Xx

ti+1
)
]
, x ∈ Rd,

ẑi(x) =
1

∆ti
E
[
ûi+1(Xx

ti+1
)∆Wti

]
, Xx

ti+1
= x+ µ(ti, x)∆ti + σ(ti, x)∆Wti .

Under assumption (H2)(i), and recalling that ûi+1 = Ui+1(.; θ∗i+1) is C2 with bounded
derivatives, we see that ṽi is C1 with

Dxṽi(x) = E
[(

1 +Dxµ(ti, x)∆ti +Dxσ(ti, x)∆Wti

)
Dxûi+1(Xx

ti+1
)
]

= E
[
Dxûi+1(Xx

ti+1
)
]

+ ∆ti Ri(x) (4.26)

Ri(x) := Dxµ(ti, x)E
[
Dxûi+1(Xx

ti+1
)
]

+ σ(ti, x)Dxσ(ti, x)E
[
D2
xûi+1(Xx

ti+1
)
]
,

where we use integration by parts in the second equality. Similarly, we have
ẑi(x) = σ(ti, x)E

[
Dxûi+1(Xx

ti+1
)
]
,

Dxẑi(x) = Dxσ(ti, x)E
[
Dxûi+1(Xx

ti+1
)
]

+ σ(ti, x)E
[
D2
xûi+1(Xx

ti+1
)
]

+ ∆ti σ(ti, x)Gi(x)

Gi(x) := Dxµ(ti, x)E
[
D2
xûi+1(Xx

ti+1
)
]

+ σ(ti, x)Dxσ(ti, x)E
[
D3
xûi+1(Xx

ti+1
)
]
.

(4.27)
Denoting by f̂i(x) = f(ti, x, v̂i(x), ẑi(x)), it follows by the implicit function theorem, and
for |π| small enough, that v̂i is C1 with derivative given by

Dxv̂i(x) = Dxṽi(x) + ∆ti

(
Dxf̂i(x) +Dyf̂i(x)Dxv̂i(x) +Dz f̂i(x)Dxẑi(x)

)
and thus by (4.26)-(4.27)(
1−∆tiDyf̂i(x)

)
σ(ti, x)Dxv̂i(x) = ẑi(x) + ∆tiσ(ti, x)

(
Ri(x) +Dxf̂i(x) +Dz f̂i(x)Dxẑi(x)

)
.

Under (H2), by the linear growth condition on σ, and using the bounds on the derivatives
of the neural networks in NN %

d,1,2,m(Θγ
m) in (4.23), we then have

E
∣∣∣σ(ti, Xti)Dxv̂i(Xti)− Ẑti

∣∣∣2 ≤ C(γ6
m + |π|2γ8

m)|π|2. (4.28)

Next, by the same arguments as in Steps 3 and 4 in the proof of Theorem 4.1 (see in
particular (4.18)), we have for |π| small enough,

E
∣∣V̂ti − Û (2)

i (Xti)
∣∣2 + ∆tiE

∣∣Ẑti − Ẑ(2)
i (Xti)

∣∣2
≤ CE

[∣∣v̂i(Xti)− Ui(Xti ; θ)
∣∣2]+ C∆tiE

∣∣Ẑti − σ(ti, Xti)D̂xUi(Xti ; θ)
∣∣2,

16

for all θ ∈ ΘN , and then with (4.28), and by definition of εNN,v,2i :

E
∣∣V̂ti − Û (2)

i (Xti)
∣∣2 + ∆tiE

∣∣Ẑti − Ẑ(2)
i (Xti)

∣∣2 ≤ CεNN,v,2i + C(γ6
m + |π|2γ8

m)|π|3.(4.29)

On the other hand, by the same arguments as in Steps 1 and 2 in the proof of Theorem 4.1
(see in particular (4.14)), we have

max
i=0,...,N−1

E
∣∣Yti − Û (2)

i (Xti)
∣∣2 ≤ CE

∣∣g(XT)− g(XT)
∣∣2 + C|π|+ CεZ(π)

+ CN
N−1∑
i=0

E
∣∣V̂ti − Û (2)

i (Xti)
∣∣2.

Plugging (4.29) into this last inequality, together with (4.22), gives the required estimation
(4.25) for the Y -component. Finally, by following the same arguments as in Step 5 in the
proof of (4.1), we obtain the estimation (4.25) for the Z-component. �

Remark 4.2. The universal approximation theorem (II) [HSW90] is valid on compact sets,
and one cannot conclude a priori that the error of network approximation εN ,mi converge
to zero as m goes to infinity. Instead, we have to proceed into two steps:

(i) Localize the error by considering

εN ,m,Ki := inf
θ∈Θγm

E
[
∆i(Xti ; θ)1|Xti |≤K

]
,

where we set ∆i(x; θ) := |v̂i(x)− Ui(x; θ)|2 + ∆ti
∣∣σᵀ(ti, x)

(
Dxv̂i(x)−DxUi(x; θ)

)∣∣2.

(ii) Consider an increasing family of neural networks ΘγN−1

m ⊂ . . . ⊂ Θγi
m ⊂ . . . ⊂ Θγ0

m on
which to minimize the approximation errors by backward induction at times ti, i =
N − 1, . . . , 0, and where, γim is defined by

γim := γϕN−1−i(m),

with ϕ : N→ N an increasing function, and where we use the notation ϕk := ϕ◦ ...◦ϕ
(composition k times).

The localized approximation error at time ti, for 0 ≤ i ≤ N − 1, should then be
rewritten as

εN ,m,Ki,N := inf
θ∈Θγ

i
m

E
[
∆i(Xti ; θ)1|Xti |≤K

]
,

and the non-localized one as

εN ,mi,N := inf
θ∈Θγ

i
m

E
[
∆i(Xti ; θ)

]
.

Note that εN ,m,Ki,N converges to zero, as m goes to infinity, for any K > 0, as claimed by the
universal approximation theorem (II) [HSW90]. On the other hand, from the expressions
of v̂i, Dxv̂i in the above proof of Theorem 4.2, we see under (H1)-(H2), and from (4.23)

that for all x ∈ Rd, θ ∈ Θγi
m , i = 0, . . . , N − 1:

|∆i(x; θ)| ≤ C(1 + |x|2)γ4
ϕN−1(m),

17

for some positive constant C independent of m,π. We deduce by Cauchy-Schwarz and

Chebyshev’s inequalities that for all K > 0, and θ ∈ Θγi
m , i = 0, . . . , N − 1,

E
[
∆i(Xti ; θ)1|Xti |>K

]
≤
∥∥∥∆i(Xti ; θ)

∥∥∥
2

∥∥Xti

∥∥
2

K
≤ C(1 + |x0|3)

γ4
ϕN−1(m)

K
,

where we used (4.1) in the last inequality. This shows that

εN ,mi,N ≤ εN ,m,Ki,N + C
γ4
ϕN−1(m)

K
, ∀K > 0,

and thus, in theory, the error εN ,mi,N can be made arbitrary small by suitable choices of large
m and K. �

4.3 Convergence of RDBDP

In this paragraph, we study the convergence of machine learning schemes for the variational
inequality (3.8).

We first consider the case when f does not depend on z, so that the component Yt =
u(t,Xt) solution to the reflected BSDE (3.9) admits a Snell envelope representation, and
we shall focus on the error on Y by proposing an alternative to scheme (3.10), refereed to
as RDBDPbis scheme, which only uses neural network for learning the function u:

• Initialize ÛN = g

• For i = N−1, . . . , 0, given Ûi+1, use a deep neural network Ui(.; θ) ∈ NN %
d,1,L,m(RNm),

and compute (by SGD) the minimizer of the expected quadratic loss function L̄i(θ) := E
∣∣Ûi+1(Xti+1)− Ui(Xti ; θ) + f(ti, Xti ,Ui(Xti ; θ))∆ti

∣∣2
θ∗i ∈ arg min

θ∈RNm
L̄i(θ).

(4.30)

Then, update: Ûi = max
[
Ui(.; θ∗i), g].

Let us also define from the scheme (4.30){
Ṽti := Ei

[
Ûi+1(Xti+1)

]
+ f(ti, Xti , Ṽti)∆ti = ṽi(Xti),

V̂ti := max[Ṽti ; g(Xti)], i = 0, . . . , N − 1.
(4.31)

Our next result gives an error estimate of the scheme (4.30) in terms of the L2-
approximation errors of ṽi by neural networks Ui, i = 0, . . . , N − 1, and defined as

ε̃Ni := inf
θ∈RNm

E
∣∣ṽi(Xti)− Ui(Xti ; θ)

∣∣2.
Theorem 4.3. (Case f independent of z: Consistency of RDBDPbis) Let Assumption
(H1) hold, with g Lipschitz. Then, there exists a constant C > 0, independent of π, such
that

max
i=0,...,N−1

∥∥Yti − Ûi(Xti)
∥∥

2
≤ C

(
|π|

1
2 +

N−1∑
i=0

√
ε̃Ni

)
, (4.32)

where ‖.‖2 is the L2-norm on (Ω,F ,P).

18

Remark 4.3. The estimation (4.32) implies that

max
i=0,...,N−1

E
∣∣Yti − Ûi(Xti)

∣∣2 ≤ C
(
|π|+N

N−1∑
i=0

ε̃Ni

)
,

which is of the same order than the error estimate in Theorem 4.1 when g is Lipschitz. �

Proof. Let us introduce the discrete-time approximation of the reflected BSDE
Y π
tN

= g(XtN)

Ỹ π
ti = Ei[Y π

ti+1
] + f(ti, Xti , Ỹ

π
ti)∆ti

Y π
ti = max

[
Ỹ π
ti ; g(Xti)

]
, i = 0, . . . , N − 1.

(4.33)

It is known, see [BP03], [BT04] that

max
i=0,...,N−1

∥∥Yti − Y π
ti

∥∥
2

= O(|π|
1
2). (4.34)

Fix i = 0, . . . , N − 1. From (4.31), (4.33), we have

|Ỹ π
ti − Ṽti | ≤ Ei

∣∣Y π
ti+1
− Ûi+1(Xti+1)

∣∣+ ∆ti
∣∣f(ti, Xti , Ỹ

π
ti)− f(ti, Xti , Ṽti)

∣∣
≤ Ei

∣∣Y π
ti+1
− Ûi+1(Xti+1)

∣∣+ [f]L∆ti|Ỹ π
ti − Ṽti |,

from the Lipschitz condition on f in (H1), and then for |π| small enough∥∥Ỹ π
ti − Ṽti

∥∥
2
≤ (1 + C|π|)

∥∥Y π
ti+1
− Ûi+1(Xti+1)

∥∥
2
.

By Minkowski inequality, this yields for all θ∥∥Ỹ π
ti − Ui(Xti ; θ)

∥∥
2
≤ (1 + C|π|)

∥∥Y π
ti+1
− Ûi+1(Xti+1)

∥∥
2

+
∥∥Ṽti − Ui(Xti ; θ)

∥∥
2
. (4.35)

On the other hand, by the martingale representation theorem, there exists an Rd-valued
square integrable process (Z̃t)t such that

Ûi+1(Xti+1) = Ṽti − f(ti, Xti , Ṽti)∆ti +

∫ ti+1

ti

Z̃ᵀ
s dWs,

and the expected squared loss function of the DBDP3 scheme can be written as

L̄i(θ) = L̃i(θ) + E
[∫ ti+1

ti

∣∣Z̃t∣∣2 dt
]

with √
L̃i(θ) :=

∥∥∥Ṽti − Ui(Xti ; θ) +
(
f(ti, Xti ,Ui(Xti ; θ))− f(ti, Xti , Ṽti)

)
∆ti

∥∥∥
2

.

From the Lipschitz condition on f , and by Minkowski inequality, we have for all θ

(1− [f]L∆ti)
∥∥Ṽti − Ui(Xti ; θ)

∥∥
2
≤

√
L̃i(θ) ≤ (1 + [f]L∆ti)

∥∥Ṽti − Ui(Xti ; θ)
∥∥

2
.

19

Take now θ∗i ∈ arg minθ L̄i(θ) = arg minθ L̃i(θ). Then, from the above relations, we have

(1− [f]L∆ti)
∥∥Ṽti − Ui(Xti ; θ

∗
i)
∥∥

2
≤ (1 + [f]L∆ti)

∥∥Ṽti − Ui(Xti ; θ)
∥∥

2
,

for all θ, and so ∥∥Ṽti − Ui(Xti ; ξ
∗
i)
∥∥

2
≤ (1 + C|π|)

√
ε̃Ni . (4.36)

By taking θ = θ∗i in (4.35), recalling that Ûi(Xti) = max[Ui(Xti ; θ
∗
i); g(Xti)], Y

π
ti =

max[Ỹ π
ti ; g(Xti)], and since |max(a, c)−max(b, c)| ≤ |a− b|, we obtain by using (4.36)∥∥Y π

ti − Ûi(Xti)
∥∥

2
≤ (1 + C|π|)

(∥∥Y π
ti+1
− Ûi+1(Xti+1)

∥∥
2

+
√
ε̃Ni

)
.

By induction, this yields

max
i=0,...,N−1

∥∥Y π
ti − Ûi(Xti)

∥∥
2
≤ C

N−1∑
i=0

√
ε̃Ni ,

and we conclude with (4.34). �

We finally turn to the general case when f may depend on z, and study the convergence
of the RDBDP scheme (3.10) towards the variational inequality (3.8) related to the solution
(Y,Z) of the reflected BSDE (3.9) by showing an error estimate for

E
[
(Û , Ẑ), (Y,Z)

]
:= max

i=0,...,N−1
E
∣∣Yti − Ûi(Xti)

∣∣2 + E
[N−1∑
i=0

∫ ti+1

ti

∣∣Zt − Ẑi(Xti)
∣∣2dt].

Let us define from the scheme (3.10)
Ṽti := Ei

[
Ûi+1(Xti+1)

]
+ f(ti, Xti , Ṽti , Z̃ti)∆ti = ṽi(Xti),

Z̃ti :=
1

∆ti
Ei
[
Ûi+1(Xti+1)∆Wti

]
= z̃i(Xti),

V̂ti := max[Ṽti ; g(Xti)], i = 0, . . . , N − 1.

(4.37)

Our final main result gives an error estimate of the RDBDP scheme in terms of the L2-
approximation errors of ṽi and z̃i by neural networks Ui and Zi, i = 0, . . . , N − 1, assumed
to be independent (see Remark 3.1), and defined as

εN ,ṽi := inf
ξ
E
∣∣ṽi(Xti)− Ui(Xti ; ξ)

∣∣2, εN ,z̃i := inf
η
E
∣∣z̃i(Xti)−Zi(Xti ; η)

∣∣2.
The result is obtained under one of the following additional assumptions

(H3) g is C1, and g, Dxg are Lipschitz.
or

(H4) σ is C1, with σ, Dxσ both Lipschitz, and g is C2, with g, Dxg, D2
xg all Lipschitz.

Theorem 4.4. (Consistency of RDBDP) Let Assumption (H1) hold. There exists a con-
stant C > 0, independent of π, such that

E
[
(Û , Ẑ), (Y, Z)

]
≤ C

(
ε(π) +

N−1∑
i=0

(
NεN ,ṽi + εN ,z̃i

))
, (4.38)

with ε(π) = O(|π|
1
2) under (H3), and ε(π) = O(|π|) under (H4).

20

Proof. Let us introduce the discrete-time approximation of the reflected BSDE

Y π
tN

= g(XtN)

Zπti =
1

∆ti
Ei
[
Y π
ti+1

∆Wti

]
,

Ỹ π
ti = Ei[Y π

ti+1
] + f(ti, Xti , Ỹ

π
ti , Z

π
ti)∆ti

Y π
ti = max

[
Ỹ π
ti ; g(Xti)

]
, i = 0, . . . , N − 1.

(4.39)

It is known from [BC08] that
max

i=0,...,N−1
E
∣∣Yti − Y π

ti

∣∣2 = ε(π)

E
[N−1∑
i=0

∫ ti+1

ti

∣∣Zt − Zπti∣∣2dt] = O(|π|
1
2),

(4.40)

with ε(π) = O(|π|
1
2) under (H3), and ε(π) = O(|π|) under (H4).

Fix i = 0, . . . , N − 1. By writing that

Ỹ π
ti − Ṽti = Ei

[
Yti+1 − Ûi+1(Xti+1)

]
+ ∆ti

(
f(ti, Xti , Ỹ

π
ti , Z

π
ti)− f(ti, Xti , Ṽti , Z̃ti)

)
,

and proceeding similarly as in Step 1 in the proof of Theorem 4.1, we have by Young
inequality and Lipschitz condition on f

E
∣∣Ỹ π
ti − Ṽti

∣∣2 ≤ (1 + γ∆ti)E
∣∣∣Ei[Y π

ti+1
− Ûi+1(Xti+1)

]∣∣∣2
+ 2

[f]2
L

γ

(
1 + γ∆ti

){
∆tiE

∣∣Ỹ π
ti − Ṽti

∣∣2 + ∆tiE
∣∣Zπti − Z̃ti∣∣2}. (4.41)

From (4.37), (4.39), Cauchy-Schwarz inequality, and law of iterated conditional expecta-
tions, we have similarly as in Step 1 in the proof of Theorem 4.1:

∆tiE
∣∣Zπti − Z̃ti∣∣2 ≤ 2d

(
E
∣∣Y π
ti+1
− Ûi+1(Xti+1)

∣∣2 − E
∣∣∣Ei[Y π

ti+1
− Ûi+1(Xti+1)

]∣∣∣2).
Then, by plugging into (4.41) and choosing γ = 4d[f]2

L
, we have for |π| small enough:

E
∣∣Ỹ π
ti − Ṽti

∣∣2 ≤ (1 + C|π|)E
∣∣Y π
ti+1
− Ûi+1(Xti+1)

∣∣2.
Next, by using Young inequality as in Step 2 in the proof of Theorem 4.1, we obtain for

all θ = (ξ, ζ):

E
∣∣Ỹ π
ti − Ui(Xti ; ξ)

∣∣2 ≤ (1 + C|π|)E
∣∣Y π
ti+1
− Ûi+1(Xti+1)

∣∣2 + CNE
∣∣Ṽti − Ui(Xti ; ξ)

∣∣2.(4.42)

On the other hand, by the martingale representation theorem, there exists an Rd-valued
square integrable process (Z̃t)t such that

Ûi+1(Xti+1) = Ṽti − f(ti, Xti , Ṽti , Z̃ti)∆ti +

∫ ti+1

ti

Z̃ᵀ
s dWs,

21

and the expected squared loss function of the RDBDP scheme can be written as

L̂i(θ) = L̃i(θ) + E
[∫ ti+1

ti

∣∣Z̃t − Z̃ti∣∣2 dt
]
,

where we notice by Itô isometry that Z̃ti = 1
∆ti

Ei
[∫ ti+1

ti
Z̃tdt

]
, and

L̃i(θ) := E
∣∣∣Ṽti − Ui(Xti ; ξ) +

(
f(ti, Xti ,Ui(Xti ; ξ),Zi(Xti ; η))− f(ti, Xti , Ṽti , Z̃ti)

)
∆ti

∣∣∣2
+ ∆tiE

∣∣Z̃ti −Zi(Xti ; η)
∣∣2.

By the same arguments as in Step 3 in the proof of Theorem 4.1, using Lipschitz condition
on f and Young inequality, we show that for all θ = (ξ, η)

(1− C∆ti)E
∣∣Ṽti − Ui(Xti ; ξ)

∣∣2 +
∆ti
2

E
∣∣Z̃ti −Zi(Xti ; η)

∣∣2
≤ L̃i(θ) ≤ (1 + C∆ti)E

∣∣Ṽti − Ui(Xti ; ξ)
∣∣2 + C∆tiE

∣∣Z̃ti −Zi(Xti ; η)
∣∣2.

By taking θ∗i = (ξ∗i , η
∗
i) ∈ arg minθ L̂i(θ) = arg minθ L̃i(θ), it follows that for |π| small

enough

E
∣∣Ṽti − Ui(Xti ; ξ

∗
i)
∣∣2 + ∆tiE

∣∣Z̃ti −Zi(Xti ; η
∗
i)
∣∣2 ≤ CεN ,ṽi + C∆tiε

N ,z̃
i .

By plugging into (4.42), recalling that Ûi(Xti) = max[Ui(Xti ; ξ
∗
i); g(Xti)], Y

π
ti = max[Ỹ π

ti ; g(Xti)],
and since |max(a, c)−max(b, c)| ≤ |a− b|, we obtain

E
∣∣Y π
ti − Ûi(Xti)

∣∣2 ≤ (1 + C|π|)E
∣∣Y π
ti+1
− Ûi+1(Xti+1)

∣∣2 + CN
(
εN ,ṽi + ∆tiε

N ,z̃
i

)
,

and then by induction

max
i=0,...,N−1

E
∣∣Y π
ti − Ûi(Xti)

∣∣2 ≤ C
N−1∑
i=0

(
NεN ,ṽi + εN ,z̃i

)
.

Combining with (4.40), this proves the error estimate (4.38) for the Y -component. The
error estimate (4.38) for the Z-component is proved along the same arguments as in Step
5 in the proof of Theorem 4.1, and is omitted here. �

5 Numerical results

In the first two subsections, we compare our schemes DBDP1 (3.6), DBDP2 (3.7) and the
scheme proposed by [HJE17] on some examples of PDEs and BSDEs.

We first test our algorithms on some PDEs with bounded solutions and quite a simple
structure (see section 5.1), and then try to solve some PDEs with unbounded solutions and
more complex structures (see section 5.2). Our goal is to emphasize that solutions with
simple structure easily represented by a neural network can be evaluated by our method
even in very high-dimension, whereas the solution with complex structure can only be
evaluated in moderate dimension.

Finally, we apply the scheme described in section 3.3 to an American option problem
and show its accuracy in high dimension (see section 5.3).

22

If not specified, we use in the sequel a fully connected feedforward network with two
hidden layers, and d+10 neurons on each hidden layer, to implement our schemes (3.6) and
(3.7). We choose tanh as activation function for the hidden layers in order to avoid some
explosion while calculating the numerical gradient Z in scheme (3.7) and choose identity
function as activation function for the output layer. We renormalize the data before entering
the network. We use Adam Optimizer, implemented in TensorFlow and mini-batch with
1000 trajectories for the stochastic gradient descent.

5.1 PDEs with bounded solution and simple structure

We begin with a simple example in dimension one. It is not hard to find test cases where
the scheme proposed in [HJE17] fails even in dimension one. In fact the latter scheme works
well for small maturities and with a starting point close to the solution.

It is always interesting to start by testing schemes in dimension one as one can easily
compare graphically the numerical results to the theoretical solution. Then we take some
examples in higher dimensions and show that our method seems to work well when the
dimension increases higher.

5.1.1 An example in 1D

We take the following parameters for the BSDE problem defined by (1.2) and (3.1):

σ = 1, µ = 0.2, T = 2, d = 1, (5.1)

f(t, x, y, z) = (cos(x)(e
T−t
2 + σ2

2) + µ sin(x))e
T−t
2 − 1

2

(
sin(x) cos(x)eT−t

)2
+ 1

2(yz)2

g(x) = cos(x).

for which, the explicit analytic solution is equal to u(t, x) = e
T−t
2 cos(x).

We want to estimate the solution u and its gradient Dxu from our schemes. This
example is interesting, because with T = 1, the method proposed in [HJE17], initializing
u(0, .) as the solution of the associated linear problem associated (f = 0) and randomly
initializing Dxu(0, .) works very well. However, for T = 2, the method in [HJE17] always
fails on our test whatever the choice of the initialization: the algorithm is either trapped
in a local minimum when the initial learning rate associated to the gradient method is
too small or explodes when the learning rate is taken higher. This numerical failure is
not dependent on the considered network: using some LSTM networks as in [CWNMW18]
gives the same result.

Because of the high non-linearity, we discretize the BSDE using N = 240 time steps, and
implemented hidden layers with d+ 10 = 11 neurons. Figure 1 (resp. Figure 2) depicts the
estimated functions u(t, .) and Dxu(t, .) estimated from DBDP1 (resp. DBDP2) scheme.

Averaged value Standard deviation

DBDP1 1.46332 0.01434

DBDP2 1.4387982 0.01354

Table 1: Estimate of u(0, x0) where d = 1 and x0 = 1. Average and standard deviation
observed over 10 independent runs are reported. The theoretical solution is 1.4686938.

23

u(t, .) and its estimate at time t = 1. Z and its estimate at time t = 1.

u(t, .) and its estimate at time t = 0.0091. Z and its estimate at time t = 0.0091.

Figure 1: Estimates of u and Z using DBDP1. We took the parameters defined in (5.1)
and set x0 = 1.

24

u(t, .) and its estimate at time t = 1. Z and its estimate at time t = 1.

u(t, .) and its estimate at time t = 0.0091. Z and its estimate at time t = 0.0091.

Figure 2: Estimates of u and Z using DBDP2. We took the parameters defined in (5.1)
and set x0 = 1.

25

5.1.2 Increasing the dimension

We extend the example from the previous section to the following d-dimensional problem:

d ≥ 1, σ =
1√
d
Id, µ =

0.2

d
1Id, T = 1,

f(t, x, y, z) = (cos(x̄)(e
T−t
2 + 1

2) + 0.2 sin(x̄))e
T−t
2 − 1

2

(
sin(x̄) cos(x̄)eT−t

)2
+ 1

2d(u(1Id.z))
2,

g(x) = cos(x̄),

with x̄ =
∑d

i=1 xi.
We take N = 120 in the Euler scheme, and d+10 neurons for each hidden layer. We take

1000 trajectories in mini batch, use data renormalization, and check the loss convergence
every 50 iterations. For this small maturity, the scheme [HJE17] generally converges, and
we give the results obtained with the same network and initializing the scheme with the
linear solution of the problem. Results in dimension 5 to 50 are given in Tables 2, 3, 4 and
5. Both schemes (3.6) and (3.7) work well with results very close to the solution and close
to the results calculated by the scheme [HJE17]. As the dimension increases, scheme (3.6)
seems to be the most accurate.

Remark 5.1. In dimension 50, the initial learning rate in scheme [HJE17] is taken small
in order to avoid a divergence of the method. In fact, running the test 3 times (with 10
runs each time), we observed convergence of the algorithm two times, and in the last test:
one of the ten run exploded, and another one clearly converged to a wrong solution. �

Averaged value Standard deviation

DBDP1 0.4637038 0.004253

DBDP2 0.46335 0.00137

Scheme [HJE17] 0.46562 0.0035

Table 2: Estimate of u(0, x0) where d = 5 and x0 = 1I5. Average and standard deviation
observed over 10 independent runs are reported. The theoretical solution is 0.46768.

Averaged value Standard deviation

DBDP1 - 1.3895 0.00148

DBDP2 -1.3913 0.000583

Scheme [HJE17] -1.3880 0.00155

Table 3: Estimate of u(0, x0) where d = 10 and x0 = 1I10. Average and standard deviation
observed over 10 independent runs are reported. The theoretical solution is −1.383395.

Averaged value Standard deviation

DBDP1 0.6760 0.00274

DBDP2 0.67102 0.00559

Scheme [HJE17] 0.68686 0.002402

Table 4: Estimate of u(0, x0) where d = 20 and x0 = 1I20. Average and standard deviation
observed over 10 independent runs are reported. The theoretical solution is 0.6728135.

26

Averaged value Standard deviation

DBDP1 1.5903 0.006276

DBDP2 1.58762 0.00679

Scheme [HJE17] 1.583023 0.0361

Table 5: Estimate of u(0, x0) where d = 50 and x0 = 1I50. Average and standard deviation
observed over 10 independent runs are reported. The theoretical solution is 1.5909.

5.2 PDEs with unbounded solution and more complex structure

In this section with take the following parameters

σ =
1√
d
Id, µ = 0, T = 1,

f(x, y, z) = k(x) +
1

2
√
d
y(1Id.z) +

y2

2
(5.2)

where the function k is chosen such that the solution to the PDE is equal to

u(t, x) =
T − t
d

d∑
i=1

(sin(xi)1xi<0 + xi1x1≥0) + cos

(
d∑
i=1

ixi

)
.

Notice that the structure of the solution is more complex than in the first example. We
aim at evaluating the solution at x = 0.51Id. We take 120 time steps for the Euler time
discretization and d + 10 neurons in each hidden layers. As shown in Figures 3 and 4 as
well as in Table 6, the three schemes provide accurate and stable results in dimension d =
1.

Averaged value Standard deviation

DBDP1 1.3720 0.00301

DBDP2 1.37357 0.0022

Scheme [HJE17] 1.37238 0.00045

Table 6: Estimate of u(0, x0), where d = 1 and x0 = 0.5. Average and standard deviation
observed over 10 independent runs are reported. The theoretical solution is 1.37758.

In dimension 2, the three schemes provide very accurate and stable results, as shown in
Figures 5 and 6, as well as in Table 7.

Averaged value Standard deviation

DBDP1 0.5715359 0.0038

DBDP2 0.5707974 0.00235

Scheme [HJE17] 0.57145 0.0006

Table 7: Estimate of u(0, x0), where d = 2 and x0 = 0.51I2. Average and standard deviation
observed over 10 independent runs are reported. The theoretical solution is 0.570737.

Above dimension 3, the scheme [HJE17] always explodes no matter the chosen initial
learning rate and the activation function for the hidden layers (among the tanh, ELU, ReLu
and sigmoid ones). Besides, taking 3 or 4 hidden layers does not improve the results.

27

u(t, .) and its estimate at time t = 0.5. Z and its estimate at time t = 0.5

u(t, .) and its estimate at time t = 0.0085. Z and its estimate at time t = 0.0085.

Figure 3: Estimates of u and Z using DBDP1. We took the parameters defined in (5.2),
with d = 1, and set x0 = 0, 5.

We reported the results obtained in dimension d = 5 and 8 in Table 8 and 9. Scheme
(3.6) seems to work better than scheme (3.7) as the dimension increases. Note that the
standard deviation increases with the dimension of the problem.

Averaged value Standard deviation

DBDP1 0.8666 0.013

DBDP2 0.83646 0.00453

Scheme [HJE17] NC NC

Table 8: Estimate of u(0, x0), where d = 5 and x0 = 0.51I5. Average and standard deviation
observed over 10 independent runs are reported. The theoretical solution is 0.87715.

28

u(t, .) and its estimate at time t = 0.5. Z and its estimate at time t = 0.5

u(t, .) and its estimate at time t = 0.0085. Z and its estimate at time t = 0.0085.

Figure 4: Estimates of u and Z using DBDP2. We took the parameters defined in (5.2),
with d = 1, and set x0 = 0.5.

Averaged value Standard deviation

DBDP1 1.169441 0.02537

DBDP2 1.0758344 0.00780

Scheme [HJE17] NC NC

Table 9: Estimate of u(0, x0), where d = 8 and x0 = 0.51I8. Average and standard deviation
observed over 10 independent runs are reported. The theoretical solution is 1.1603167.

When d ≥ 10, schemes (3.6) and (3.7) both fail at providing correct estimates of the
solution, as shown in Table 10. Increasing the number of layers or neurons does not improve
the result.

29

Error on solution at date t = 0.5. Error on solution at date t = 0.0085.

Figure 5: Algebric error of the estimate of u using DBDP1. We took the parameters in
(5.2) and set d = 2 and x0 = 0.51Id.

Error on solution at date t = 0.5. Error on solution at date t = 0.0085.

Figure 6: Algebric error of the estimate of u using scheme (3.7). We took the parameters
in (5.2) and set d = 2 and x0 = 0.51Id.

Averaged value Standard deviation

DBDP1 -0.3105 0.02296

DBDP2 -0.3961 0.0139

Scheme [HJE17] NC NC

Table 10: Estimate of u(0, x0), where d = 10 and x0 = 0.51I10. Average and standard
deviation observed over 10 independent runs are reported. The theoretical solution is
−0.2148861.

30

5.3 Application to American options

Consider the stock price Xt = (X1
t , . . . , X

d
t) of d assets with the following dynamics under

the risk neutral probability measure:

dXi
t = rXi

tdt+ σiX
i
tdW

i
t ,

where W. = (W 1
. , . . . ,W

d
.) is a d-dimensional Brownian Motion, σ = (σ1, . . . , σd) ∈ Rd, and

r is the risk-free rate.
The value at time t of an American option with payoff g and maturity T is given by:

u(t, x) = sup
τ∈Tt,T

E[e−rτg(Xτ)],

where Tt,T is the set of stopping time with values in [t, T], and is solution of the variational
inequality {

min
[
− ∂tu− L̂u, u− g

]
= 0, on [0, T)× (0,∞)d

u(T, .) = g, on (0,∞)d,

with

L̂u(t, x) =
1

2

d∑
i=1

σ2
i x

2
iD

2
xiu(t, x) + r

d∑
i=1

xiDxiu(t, x)− ru(t, x),

as proved e.g. in [JLL90].
Let us define the change of function v by: u(t, x) = ertv(t, log(x)), which is solution of

the following variational inequality{
min (−∂tv − Lv, v − ĝ) = 0, on [0, T)× Rd

v(T, .) = ĝ, on Rd, (5.3)

where
ĝ(t, x) = e−rtg(ex),

Lv =
1

2

d∑
i=1

σ2
iD

2
xivii +

d∑
i=1

(r − 1

2
σ2
i)Dxivi.

In this section, we test the scheme described in section 3.3 on (5.3) in the special case
of a geometrical put with strike K = 1 , T = 1, r = 0.05, Xi

0 = 1, σi = 0.2 for i = 1 to d,
and payoff (K −

∏d
i=1X

i
t)+, as considered previously in [BW12]. In dimension d, the case

boils down to the resolution of an American option in dimension d = 1 so that it can be
very accurately estimated e.g. with a tree-based method. Results given in Table 11 show
that scheme (3.10) is very accurate for the pricing of American options.

31

Dimension nb step value std reference

1 10 0.06047 0.00023 0.060903

1 20 0.060789 0.00021 0.060903

1 40 0.061122 0.00015 0.060903

1 80 0.0613818 0.00019 0.060903

5 10 0.10537 0.00014 0.10738

5 20 0.10657 0.00011 0.10738

5 40 0.10725 0.00012 0.10738

5 80 0.107650 0.00016 0.10738

10 10 0.12637 0.00014 0.12996

10 20 0.128292 0.00011 0.12996

10 40 0.12937 0.00014 0.12996

10 80 0.129923 0.00016 0.12996

20 10 0.1443 0.00014 0.1510

20 20 0.147781 0.00012 0.1510

20 40 0.149560 0.00012 0.1510

20 80 0.15050 0.00010 0.1510

40 10 0.15512 0.00018 0.1680

40 20 0.16167 0.00015 0.1680

40 40 0.16487 0.00011 0.1680

40 80 0.16665 0.00013 0.1680

40 160 0.16758 0.00016 0.1680

Table 11: Estimates of the American option using RDBDP. Average and standard deviation
over 40 independent runs for different numbers of time steps are reported.

References

[Avi09] R. Avikainen. “On irregular functionals of SDEs and the Euler scheme”.
In: Finance and Stochastics 13 (2009), pp. 381–401.

[BC08] B. Bouchard and J.F. Chassagneux. “Discrete-time approximation for con-
tinuously and discretely reflected BSDEs”. In: Stochastic Processes and
their Applications 118 (2008), pp. 2269–2293.

[BP03] V. Bally and G. Pagès. “Error analysis of the quantization algorithm for
obstacle problems”. In: Stochastic Processes and their Applications 106
(2003), pp. 1–40.

[BT04] B. Bouchard and N. Touzi. “Discrete-time approximation and Monte-Carlo
simulation of backward stochastic differential equations”. In: Stochastic
Processes and their applications 111.2 (2004), pp. 175–206.

[BW12] B. Bouchard and X. Warin. “Monte-Carlo valuation of American options:
facts and new algorithms to improve existing methods”. In: Numerical
methods in finance. Springer, 2012, pp. 215–255.

[CWNMW18] Q. Chan-Wai-Nam, J. Mikael, and X. Warin. “Machine Learning for semi
linear PDEs”. In: arXiv preprint arXiv:1809.07609 (2018).

32

[EHJ17] W. E, J. Han, and A. Jentzen. “Deep learning-based numerical methods
for high-dimensional parabolic partial differential equations and backward
stochastic differential equations”. In: Communications in Mathematics and
Statistics 5.4 (2017), pp. 349–380.

[EK+97] N. El Karoui et al. “Reflected Solutions of Backward SDEs, and related
obstacle problems for PDEs”. In: Annals of Probability 25.2 (1997), pp. 702–
737.

[GLW05] E. Gobet, J.P. Lemor, and X. Warin. “A regression-based Monte Carlo
method to solve backward stochastic differential equations”. In: The Annals
of Applied Probability 15.3 (2005), pp. 2172–2202.

[HJE17] J. Han, A. Jentzen, and W. E. “Overcoming the curse of dimensionality:
Solving high-dimensional partial differential equations using deep learning”.
In: arXiv:1707.02568 (2017).

[HL+16] P. Henry-Labordere et al. “Branching diffusion representation of semilinear
PDEs and Monte Carlo approximation”. In: Annales de l’Institut Henri
Poincaré (B) Probabilités et Statistiques (2016). to appear.

[HSW89] K. Hornik, M. Stinchcombe, and H. White. “Multilayer feedforward net-
works are universal approximators”. In: Neural Networks 2.5 (1989), pp. 359–
366.

[HSW90] K. Hornik, M. Stinchcombe, and H. White. “Universal approximation of
an unknown mapping and its derivatives using multilayer feedforward net-
works”. In: Neural Networks 3(5) (1990), pp. 551–560.

[JLL90] P. Jaillet, D. Lamberton, and B. Lapeyre. “Variational Inequalities and the
Pricing of American Options”. In: Acta Applicandae Mathematicae 21(3)
(1990), pp. 263–289.

[LGW06] J.P. Lemor, E. Gobet, and X. Warin. “Rate of convergence of an empirical
regression method for solving generalized backward stochastic differential
equations”. In: Bernoulli 12.5 (2006), pp. 889–916.

[PP90] E. Pardoux and S. Peng. “Adapted solution of a backward stochastic dif-
ferential equation”. In: Systems & Control Letters 14.1 (1990), pp. 55–61.

[SS18] J. Sirignano and K. Spiliopoulos. “DGM: A deep learning algorithm for
solving partial differential equations”. In: Journal of Computational Physics
375 (2018), pp. 1339–1364.

[War18a] X. Warin. “Monte Carlo for high-dimensional degenerated Semi Linear and
Full Non Linear PDEs”. In: arXiv preprint arXiv:1805.05078 (2018).

[War18b] X. Warin. “Nesting Monte Carlo for high-dimensional Non Linear PDEs”.
In: Monte Carlo Methods and Applications (2018). to appear.

[Zha04] J. Zhang. “A numerical scheme for BSDE’s”. In: The Annals of Applied
Probability 14.1 (2004), pp. 459–488.

33

	Introduction
	Neural networks as function approximators
	Deep learning-based schemes for semi-linear PDEs
	The deep BSDE scheme of han2017overcoming
	New schemes: DBDP1 and DBDP2
	Extension to variational inequalities: scheme RDBDP

	Convergence analysis
	Convergence of DBDP1
	Convergence of DBDP2
	Convergence of RDBDP

	Numerical results
	PDEs with bounded solution and simple structure
	An example in 1D
	Increasing the dimension

	PDEs with unbounded solution and more complex structure
	Application to American options

