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motivation - energy prices

Modern energy markets involve a large number of units and
different technologies to generate electricity.
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motivation - energy prices

In Brazil and Northern Europe, hydraulic generation is one of the
main sources of energy. This technology has the following important
characteristics:

∙ It is a renewable energy
∙ The low cost of hydro-energy generation if compared to others
sources.

∙ It allows the system to store energy in the form of water in the
reservoir.

∙ The difficulty in predicting the amount of rain or snow at any
time scale makes the water inflows uncertain.
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motivation - energy prices

The price signal represents the opportunity cost, that is, consider the
possibility of shortage of energy and the cost of other supply
sources in future periods.

For example, if it rains less than expected, it can be necessary to
activate different and more expensive power plants. This extra-cost
is an important component in the price of hydro power plants.
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motivation - energy prices

The randomness that comes from the diverse inflow scenarios makes
us consider many different possibilities in a future cost function.

We consider scenarios with large and small amount of inflow and
their consequences for the system.
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motivation - energy prices

In long term planning problems, decisions are coupled in time. An
example of the link between t and t+ 1 is the water balance
equation.

Denoting the generation of the i-th unit by xi, for one realization ξ of
the uncertain Inflow, the 2-stage formulation for the energy
generation problem is:

min ⟨Cost1, x1⟩+ ⟨Cost2, x2⟩
s.t. xi ≥ 0, i = 1, 2

Bxi ≤ bi, i = 1, 2
Tx1 +Wx2 = Inflow(ξ) ⇝ π̄(ξ)

The link between stages is represented by the matrices W and T.

The sub-vectors x1 and x2 represent, respectively, the parameters in
the generation of the set of power plants, at time steps 1 and 2.

Variables x2 are recourse variables that depend on the realization ξ.
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motivation - energy prices

Mathematically, the opportunity cost corresponds to the Lagrange
Multiplier.

min ⟨Cost1, x1⟩+ ⟨Cost2, x2⟩
s.t. xi ≥ 0, i = 1, 2

Bxi ≤ bi, i = 1, 2
Tx1 +Wx2 = Inflow(ξ) ⇝ π̄(ξ)

Denoting x = (x1, x2), the Lagrangian function is:

L(x, π, µ1, µ2) :=

⟨(Cost1, Cost2), x⟩+⟨(B,B)x−b, µ1⟩+⟨−Ix, µ2⟩+⟨(T,W)x−inflow(ξ), π(ξ)⟩

if L′(x, π̄, µ̄1, µ̄2) = 0, we call (π̄, µ̄) Lagrange Multipliers.

−(Cost1, Cost2) = (B,B)⊤µ̄1 − Iµ̄2 + (T,W)⊤π̄(ξ)
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motivation - energy prices

The general multistage stochastic problem is:

min
A1x1=ξ1, x1≥0

c1x1+E
[

min
B2x1+A2x2=ξ2, x2≥0

c2x2+E
[
...+E

[
min

BTxT−1+ATxT=ξT, T≥0

]]]

∙ xt is called the decision variable.
∙ At and Bt are matrices.
∙ In the case of energy generation xt is composed essentially by
the level of the reservoirs of each hydro power plant, the
generation of each power plant and the flow between them.
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motivation - energy prices

Difficulty 1 The set of Lagrange Multipliers {π} is not commonly
singleton. The price signal is one element in this set that depends
on the way we model and the algorithm used to solve the problem.
Is this price signal the best one for our application? What about the
position of this price signal in this set?

Difficulty 2 Taking uncertainty into account means that the price will
be a random vector (π(ξ1), ..., π(ξS)), where ξs ∈ Ω, s ∈ {1, ..., S} are
the scenarios. The distribution of the price signal depends on the
scenarios we consider and on the probability P in this scenario set.
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motivation - energy prices

In a simulation, using a two stage model and S = 80 scenarios, we
can see the difference of price signal distribution for two different
samples P1 and P2 in Ω = {ξ1, ..., ξ80}.

Figure: Price signal distribution for
data distributed as P1

Figure: Price signal distribution for
data distributed as P2

How regularization can help us?
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mathematical model

In the two stage model, for each realization ξ of the uncertainty, the
price is given by the Lagrange Multiplier of the corresponding
second stage problem.

First Stage Problem:

min ⟨Cost1, x1⟩+ E[Q(x1, ξ)]
s.t. x1 ≥ 0

Bixi ≤ bi

Second Stage Problem, fixed ξi:

Q(x1, ξi) :=


min ⟨Cost2, x2⟩
s.t. Wx2 = inflow(ξi)− Tx1

B2x2 ≤ b2

x2 ≥ 0
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mathematical model

Second Stage Problem:
min ⟨Cost2, x2⟩
s.t. Wx2 = inflow(ξi)− Tx1

B2x2 ≤ b2

x2 ≥ 0

Correspondent Lagrangian function:

L(x2, π, µ1, µ2) :=

⟨Cost2, x2⟩+ ⟨B2x2 − b2, µ1⟩ − ⟨Ix2, µ2⟩+ ⟨Wx2 − inflow(ξ)− Tx1, π(ξ)⟩
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mathematical model

The problem can be rewritten as:

min
x∈Rn

{
sup

(π,µ)∈Rm×Rk
+

L(x, π, µ)
}

By definition the dual problem is:

max
(π,µ)∈Rm×Rk

+

{
inf
x∈Rn

L(x, π, µ)
}

Subject to:

∆ =
{
(π, µ) ∈ Rm × Rk : inf

x∈Rn
L(x, π, µ) > −∞

}
.

For important class of optimization problems the dual problem can
be rewritten as a classical optimization problem.

14



mathematical model

The second stage, also known as future cost function:

Q(x1, ξ) :=


min ⟨Cost2, x2⟩
s.t. Wx2 = inflow(ξi)− Tx1

B2x2 ≤ b2

x2 ≥ 0

has as dual:

Q(x1, ξ) :=

 max ⟨π, inflow(ξi)− Tx1⟩ −
⟨
b2, π

B⟩
s.t. W⊺π − B⊺

2π
B ≤ Cost2

Where πB is the Lagrange Multiplier of the inequality constraint.
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mathematical model

Consider the second stage problem.

Given a constant β > 0, the regularized second stage problem is:

Qβ(x1, ξ) :=
{

max ⟨π, inflow(ξ)− Tx1⟩ −
⟨
b2, π

B⟩− β
2 ∥π∥

2

s.t. WTπ − BT
2π

B ≤ Cost2

or, computing its dual:

Qβ(x1, ξ) =


min ⟨Cost2, x2⟩+ 1

2β ∥inflow(ξ)− Tx1 −Wx2∥2

s.t. x2 ≥ 0
B2x2 ≤ b2
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mathematical model

The Lagrange multipliers π can also be viewed as elements of the
sub-gradient of Q and Qβ :

Defining:

ψ(x, π, πB, ξ) = ⟨inflowξ − Tx1, π⟩ − ⟨b2, π
β⟩ − β∥π∥2,

We have that ψ is convex, and:

Qβ(x1, ξ) = max
WTπ−BT

2π
B≤Cost2

ψ(x1, π, πB, ξ)

So by convex analysis theory:

∂Qβ(x1, ξ) = conv{ψ′
x1(x1, π̄, λ, π̄

B, ξ) | π̄ ∈ Π(x1)} = {−Tπ̄ | π̄ ∈ Π(x1)},

where Π(x1) is the set of optimal values of Qβ .
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mathematical model

For Ω = {ξ1, ..., ξS}, with probabilities {p1, ...,pS}, the one level
formulation of the regularized problem has the form:

 min ⟨Cost1, x1⟩+
S∑

s=1
ps

{
⟨Cost2, xs2⟩+

1
2β ∥inflow(ξ

s)− Tx1 −Wxs2∥2
}

s.t. x1 ≥ 0,Bx1 = b1, xs2 ≥ 0,Bx2 = b2 a.e s = 1, ..., S.
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theoretical results

Difficulty 1 Often the set of Lagrange Multipliers {π} is not a
singleton. The price signal is a choice in this set that depends on the
way we model and the algorithm used to solve the problem.
Is this price signal the best one to our application?
What about the position of this price signal in this set?

20



theoretical results

One level formultion:{
min ⟨Cost1, x1⟩+ ⟨Cost2, x2⟩+ 1

2β ∥inflow(ξ)− Tx1 −Wx2∥2

s.t. x1 ≥ 0 , x2 ≥ 0 ,B1x1 ≤ b1 ,B2x2 ≤ b2 .

From KKT equations, given a primal solution x̄1β , x̄2β the regularized
price signal will be:

π̄β =
1
β
(inflow(ξ)− Tx̄1β −Wx̄2β).
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theoretical results difficulty 1

Theorem If the one level original formulation has a unique solution
x̄ = (x̄1, x̄2), and the sequence βk → 0 is decreasing, then the solution
(xk1 , xk2) = xk → x̄.

Our main interest is in the price π. Keeping ξ fixed, we know that:

πk =
1
βk

(inflow(ξ)− Txk1 −Wxk2).

The questions that arise naturally are:

1. Is πk bounded?
2. Does πk converge?
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theoretical results - difficulty 1

Theorem Let βk be monotonically decreasing. Suppose that the
original problem has a unique solution x̄. Denote πk the sequence of
optimal regularized Lagrange multipliers. Under reasonble
assuptions, there is a subsequence πkj of πk that converges to π̂, the
minimum-norm optimal Lagrange multiplier.
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theoretical results - difficulty 1

To explain the condition in the theorem, we remember that for one

scenario we have F = (Cost1, Cost2), A =

[
T
W

]
. The regularized

problem is:

{
min F(x) + 1

2β ∥Ax− ξ∥2

s.t. x ≥ 0 .

The necessary and sufficient condition for boundedness of πk is the
following:

Im AT∩{µ ∈ Rn
+ : µi = 0 if x̄i > 0} = {0}.

The condition is likely to be satisfied
since there is no particular reason why
some given lower-dimensional subspace
intersects the axis xi = 0, except at 0.
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theoretical results - difficulty 2

Dificulty 2 Taking uncertainty into account means that the price will
be a random vector (π(ξ1), ..., π(ξS)). The distribution of the price
signal depends on the scenarios we consider and the probability P
in this scenario set.
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theoretical results - difficulty 2

Let Ω = {ξ1, ..., ξS}, be the set of scenarios.

P = {P = (p1,p2, ...,pS) :
S∑
1

pi = 1}

a perturbation of P is another probability

PU = (p1 + u1,p2 + u2, ...,pS + us).

The set of perturbations for probability P is:

UP = {U = (u1,u2, ...,uS),
∑

us = 0, 0 ≤ (p+ u)s ≤ 1}

and:
fβP (x1,U) = ⟨Cost1, x1⟩+ EPU

[
Qβ(x1, ξ)

]
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theoretical results - difficulty 2

Define:

SβP (U) = {argminx1∈X fβP (x1,U)},

Assume that S0P(0) is a singleton and denote: x̄1 = S0P(0).

Xβ,P1 (u1,u2, ...,uS) 7→ x̄U1 = argmin{∥xU1 − x̄1∥ : xU1 ∈ SβP (U)}.

We aim at understanding the properties of the function Xβ,P1 .

Note that the price signal π(XP,β1 ) can be viewed as a function of XP,β1 .
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theoretical results - difficulty 2

Theorems:

1. Theorem 1 SβP (U) is singleton.
2. Theorem 2 XP,β1 is Lipschitz in UP that is, there are LX1 , Lπ > 0,

such that:
∥xU1

1 − xU2
1 ∥ ≤ LX1∥U1 − U2∥

and
∥πU1 − πU2∥ ≤ Lπ∥U1 − U2∥

3. Theorem 3 We can control Var(π(U)) when U ∈ UP.

The constants LX1 , Lπ are proportional to 1
β .

28



examples



examples

A simple example can illustrate the first theorem.

The first-stage cost c ∈ R2 while second-stage costs are deterministic
q1 = q2 = q ∈ R2. The technology and recourse matrices are:

Non Regularized Problem:
min cx1 + qx2
s.t. x1 ≥ 0
Tx2 +Wxi2 = ξi, i ∈ {1, 2}.

,
T :=

 1 0
0 1
0 0

 and W :=

 2 0
1 −1
1 2

 ,

The uncertain right-hand side terms are:

ξ1 := (1, 1, 1) and ξ2 := (1, 0, 3).
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examples

We can rearrange terms to isolate first and second stage variables
for both scenarios:

x is feasible if and only if, for some y ≥ 0

x1 :=
(
y, 34 (1+y)

)T
, x12 :=

( 1
2 (1−y), 14 (1+y)

)T
, x22 :=

( 1
2 (1−y), 14 (5+y)

)T
.

We arrive in the equivalent one level problem:

min
y≥0

(
c+ 3

4c−
1
2q1 +

1
4q2

)
y+ 3

4c2 +
1
2q1 +

3
4q2 ,

whose optimal solution is ȳ = 0, as long as

c ≥ −3
4c+

1
2q1 −

1
4q2 .
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examples

We can compute the primal solutions:

x̄1 := (0, 34 )
T , x̄12 := ( 12 ,

1
4 )

T , x̄22 := ( 12 ,
5
4 )

T .

Remind the condition:
Im AT ∩ {µ ∈ Rn

+ : µi = 0 if x̄i > 0} = {0}.

If ⟨µ̄, x̄⟩ = 0. Therefore:
µ̄ = αe1 for some α ≥ 0 ,

Suppose µ̄ = αe1 ∈ ImAT. Since ImAT and KerA are orthogonal:

ν ∈ KerA ⇒ α⟨e1, ν⟩ = 0

Since KerA is a (unidimensional) subspace is generated by the vector
s :=

(
4, 3,−2, 1,−2, 1

)
, this means that :

4α = 0

which forces α = 0, Showing that we satisfy the condition.
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examples

Table of primal and dual expected values for different values of β :

β Primal Variable (First Stage) Norm of Expected Price Signal
0 3.5 25.51
0.1 3.45 19.4
0.5 2.91 14.36
1 2.65 12.25

Graphically:
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examples

Consider the two stage stochastic problem in R :

{
min cx1 + E[Q(x1, ξ)]
s.t. x1 ≥ 0

, Q(x1, ξ) :=


min q+y+ + q−y−
s.t. y+ − y− = x1 − ξ

y+, y− ≥ 0

So:

Q(x1, ξ) = q+(x1 − ξ)+ + q−(ξ − x1)+

π(ξ) =

{
q+, if x1 > ξ

−q−, if x1 < ξ.

If the distribution of ξ is symmetric and q+ = q− = q , we have that:
E[π̄] = 0, and Var[π̄] = E[π̄2] = q2.
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examples

In the regularized case:{
min cx1 + E[Qβ(x1, ξ)]
s.t. x1 ≥ 0

,

Qβ(x1, ξ) :=
{

min q+y+ + q−y− + 1
2β |y

+ − y− − ξ + x1|2

y+, y− ≥ 0,

And:

πβ(ξ) =


q+, if ξ ≤ 2βq+ + x1
−q−, if ξ ≥ −2q−β + x1
ξ−x1
2β , if 2q−β + x1 < ξ < 2βq+ + x1.

It is possible to estimate analytically that: Var[πβ] ≤ Var[π].
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examples

We simulate with:

∙ ξ ∼ N(0, 10)
∙ q = 5, c = 5
∙ Ξ = {ξ1, ..., ξN} is a sample, and N = 200
∙ β = 1

Non Regularized Price Signal Regularized Price Signal

36



application to the generation problem



application to the generation problem

The Northern European generation system is composed by hydro,
wind, thermal and solar power plants.

Source: Entsoe Transparency Platform

Denmark

Sweden

Norway

Finland
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application to the generation problem

Zones are connected, but the flow between them are bounded. The
price of one zone can deppend of the power plants of other zones
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application to the generation problem

We modeled the generation of energy in the Northern Europe. Our
model has the following characteristics:

∙ Multistage Model
∙ Uses real data from the Northern European energy system
∙ t ∈ {1, 2, ..., 365}, measures time in days, and w ∈ {1, .., 52}
weeks

∙ The model is deterministic for days inside each week and
considers randomness for the first time of each week

∙ Inflow scenarios are generated from the historical mean and
standard deviation, using a log-normal distribution

∙ Deterministic demand that varies with time
∙ The decision variable includes reservoir levels for hydro power
plant, generation for each power plant, and spillage.

We use the rolling horizon algorithm keeping us in a two stage model
40



application to the generation problem

The general multistage stochastic problem is:

min
A1x1=ξ1, x1≥0

c1x1+E
[

min
B2x1+A2x2=ξ2, x2≥0

c2x2+E
[
...+E

[
min

BTxT−1+ATxT=ξT, T≥0

]]]
Tree of scenarios:
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application to the generation problem

Model of the simulation test:

Data: 200 scenarios, 20 samples, 30 scenarios for optimization.
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application to the generation problem

Reservoir management for SDDP, non regularized and regularized
rolling horizon (β = 30) problems.

Since Q(x1, ξs) ≥ Qβ(x1, ξs), ∀s ∈ {1, ..., S}, we expect regularized
decisions to be less conservatives.
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application to the generation problem

Consequently, in the end of the period, we have more water and also
constant generation levels (in the maximal generation level).

Non Regularized Generation Level for zone NO2 :
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application to the generation problem

Regularized Generation Level for zone NO2 :
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application to the generation problem

Histogram of the non regularized and regularized (β = 30) price
signal for zone NO2, sample 1:

E[π] = 64.8 E[π] = 64.2
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application to the generation problem

Histogram of the non regularized and regularized (β = 30) price
signal for zone NO2, t = 169, sample 2:

E[π] = 65.6 E[π] = 65.1
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application to the generation problem

Comparison of Wasserstein distance and the variance of expected
value of histograms for 20 samples. 30 scenarios for optimization
and 200 for simulation. Zone N02, t = 169 :

Mean Variance of Mean Wasserstein Distance
Regularized (β = 30) 64.31 0.5 33.20
Non-Regularized 64.56 8.32 146.61

Conclusion: Regularization helps to stabilize the price signal in
respect to the distribution of inflows.
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Thanks for your attention!
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