Electricity intraday price modeling with marked Hawkes processes

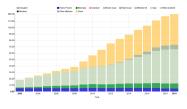
Thomas Deschatre^{1,2}, Pierre Gruet^{1,2}

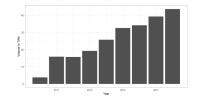
¹EDF Lab ²FiME Lab

May 28th, 2021

Motivation

- Renewable production increases in Europe.
- This production is difficult to forecast when the spot price is settled.
- Producers need to buy or sell electricity on the intraday market.
- Intraday markets also allow to increase the value of storage assets.





Renewable capacity evolution in Germany ¹

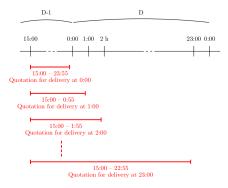
Yearly transaction volumes on the German intraday market¹

¹Source: Auction and continuous market for power: organization and microstructure, Clara Balardy.

Motivation - what are intraday markets?

EPEX Spot German intraday market, organized in continuous trading:

- Opens at 15:00 the day before;
- Possibility to buy/sell physical delivery contracts for the 24 periods 0:00–1:00, ..., 23:00–24:00;
- Closes 5 minutes before beginning of delivery.



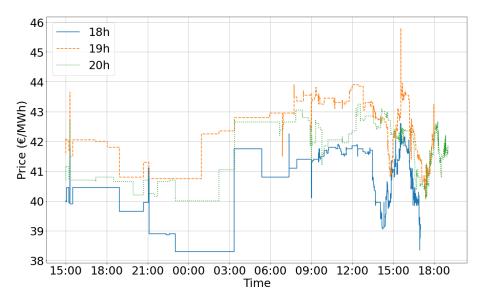
Objectives

- To assess the quality of trading strategies or to value assets, need for a price model that captures risks on the market.
- Needs to represent different stylized facts that we identify.
- Few literature on intraday markets modeling:
 - Favetto (2019); Graf von Luckner and Kiesel (2020) : order arrivals modeling
 - Kiesel and Paraschiv (2017) : econometric analysis
- We propose a price model with a focus on the representation of the volatility.

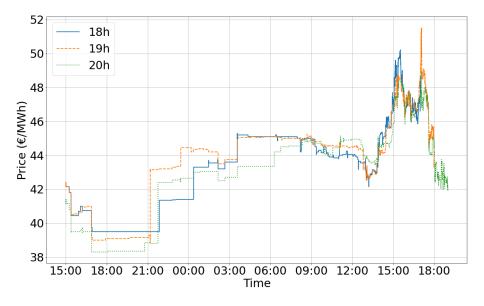
Data

- German electricity intraday mid-prices between July and September 2017 for products with a delivery period of one hour.
- Mid-prices built using order book data from EPEX Spot.
- Mid-prices sampled at the second frequency for simplicity (available at milliseconds frequency).
- Market opens at 3 p.m. the day before delivery and closes 5 minutes before delivery...
- Yet, one hour before delivery, cross-border trading is not possible anymore.
- Also, thirty minutes before delivery, transactions are only possible into each of the four control areas in Germany and not across them.
- \implies We only consider prices until one hour before delivery.

Data: 2017-07-11



Data: 2017-08-30



Outline

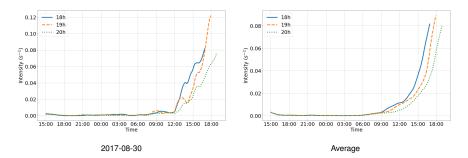
Empirical stylized facts

2 Model

Outline

2 Model

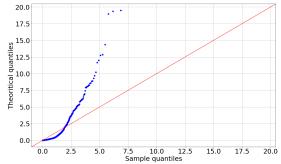
Increasing intensity of arrival price changing times



Estimated intensity of price changing times with an Epanechnikov kernel and a window of 300 seconds

- Quasi null activity at the beginning of the trading session...
- then an exponential increase near the end of the trading period.

Non Poissonian arrival price changing times



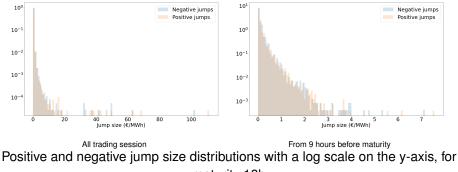
QQ-plot between the time-changed jump time intervals and an exponential distribution for the trading session of August, 30th, 2017 and for maturity 18h

For an inhomogeneous Poisson process with cumulated intensity $\Lambda(t) = \int_0^t \lambda(s) ds$ jumping at times $(\tau_i)_i$,

$$\Lambda(\tau_i) - \Lambda(\tau_{i-1}) \stackrel{iid}{\sim} \mathcal{E}(1).$$

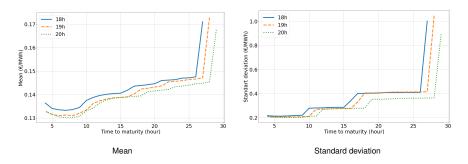
Inhomogeneous Poisson process modeling not suitable.

Jump sizes distribution (1/2)



- maturity 18h
- Positive and negative jumps seem to have the same law (confirmed if we consider only the first two moments).
- Time dependency in the distribution of jumps with big jumps at the beginning, featuring a lack of liquidity.

Jump sizes distribution (2/2)



Mean and standard deviation of jump sizes (positive and negative considered indifferently) against time to maturity: x-axis corresponds to the number of hours before maturity at which the estimation starts

From now on, one considers only data from 9 hours before maturity.

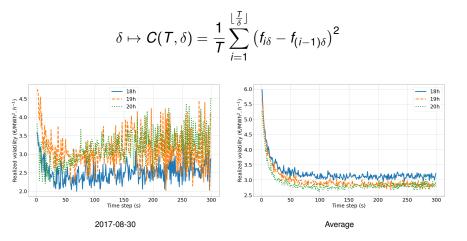
Volatility estimation

• Classical estimator of volatility of $f_t = \int_0^t \mu_s ds + \int_0^t \sigma_s dW_s$:

$$C(T, \Delta_n) = \frac{1}{T} \sum_{i=1}^{\lfloor \frac{T}{\Delta_n} \rfloor} (f_{i\Delta_n} - f_{(i-1)\Delta_n})^2 \xrightarrow{\Delta_n \to 0} \frac{1}{T} \int_0^T \sigma_s^2 ds.$$

- One then wants to consider the highest frequency Δ_n^{-1} .
- Presence of microstructure noise in high-frequency financial data:
 - volatility estimator unstable when frequency is very high ;
 - mean reverting behavior of price.

Signature plot



- Same behavior than financial data, see Bacry et al. (2013a).
- Instability at high-frequencies, fast decreasing then stabilization.

Outline

Empirical stylized facts

2 Model

Price at macroscopic scale

Point process modeling

- Consider a sequence of arrival times 0 < τ₁ < τ₂ < ... defined on (Ω, F, ℙ) endowed with a filtration (F_t)_{t≥0} (complete and right continuous).
- Let (*J_i*)_{*i*≥1} be a sequence of positive i.i.d. r.v. defined on (Ω, *F*, ℙ), with *J_i* ~ *J* and 𝔼(*J*²) < ∞.
- Mark the arrival times (τ_i)_i: (τ_i⁺)_i (price increase) and (τ_i⁻)_i (price decrease), associated with (J_i⁺)_i and (J_i⁻)_i.

Hawkes modeling

Hawkes modeling on [0, T]:

$$\begin{pmatrix} \lambda_t^+ \\ \lambda_t^- \end{pmatrix} = \mu \left(\frac{t}{T} \right) \begin{pmatrix} 1 \\ 1 \end{pmatrix} + \int_0^t \varphi(t-s) \begin{pmatrix} J_s dN_s^+ \\ J_s dN_s^- \end{pmatrix}$$

with

- $\mu : [0, 1] \rightarrow \mathbb{R}_+$ a non decreasing bounded function,
- φ : ℝ₊ → ℝ^{2,2} a locally bounded function with positive components such that spectral radius of E(J) ∫₀[∞] |φ(u)|du is less than 1.

The intraday price is given by

$$f_t = f_0 + f_t^+ - f_t^-$$

with

$$\begin{pmatrix} f_t^+ \\ f_t^- \end{pmatrix} = \int_0^t \begin{pmatrix} J_s dN_s^+ \\ J_s dN_s^- \end{pmatrix}.$$

Parametrization

- Simple parameterisation with only four parameters.
- Tractable model with nice theoretical properties.
- A priori, allows one to represent the different characteristics of the prices.

Estimation

Maximisation of IIh, equal for one trading session to $\mathcal{L}^- + \mathcal{L}^+$ to

$$\mathcal{L}^{\mp} = \int_0^T \log(\lambda_t^{\mp}) dN_t^{\mp} + \int_0^T (1 - \lambda_t^{\mp}) dt,$$

see (Daley and Vere-Jones, 2003, Proposition 7.2III), that is

$$\mathcal{L}^{\mp} = \sum_{i=1}^{N_{T}^{\mp}} \log \left(\mu_{0} \boldsymbol{e}^{\kappa \frac{\tau_{i}^{\mp}}{T}} + \sum_{j=1}^{N_{\tau_{i}^{\mp}}^{\pm}} \alpha J_{j}^{\pm} \boldsymbol{e}^{-\beta \left(\tau_{i}^{mp} - \tau_{j}^{pm}\right)} \right) + T - \frac{\mu_{0} T}{\kappa} \left(\boldsymbol{e}^{\kappa} - 1 \right) - \sum_{i=1}^{N_{T}^{\pm}} \frac{\alpha}{\beta} J_{i}^{\pm} \left(1 - \boldsymbol{e}^{-\beta \left(T - \tau_{i}^{\pm}\right)} \right).$$

Initialization:

for μ₀, α, β, minimization of the L² distance between the theoretical signature plot in the case κ = 0 and the empirical one;
κ = 0.1.

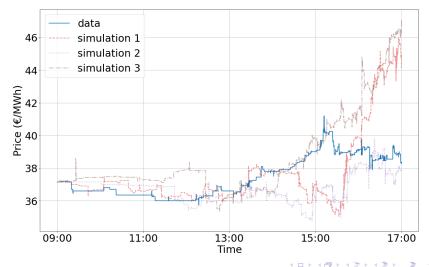
Estimation on the whole dataset by taking the sum of the individual Ilh.

Maturity	$\mu_0 \left(h^{-1} ight)$	κ	α (h^{-1})	β (h^{-1})	$\mathbb{E}(J)$	$\mathbb{E}(J^2)$
18h	2.49	3.51	864.39	237.30	0.13	0.066
19h	3.01	3.50	2344.97	639.64	0.13	0.061
20h	3.06	3.51	3100.46	859.11	0.13	0.058

We do not estimate the law of *J*.

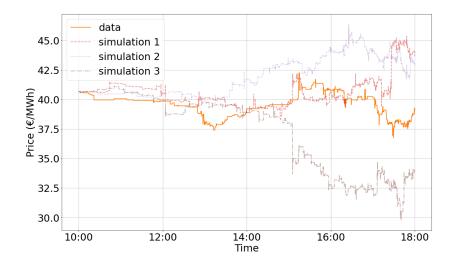
Simulation: Illustration for maturity 18h

Simulation with thinning algorithm Ogata (1981) bootstrapping jump sizes.



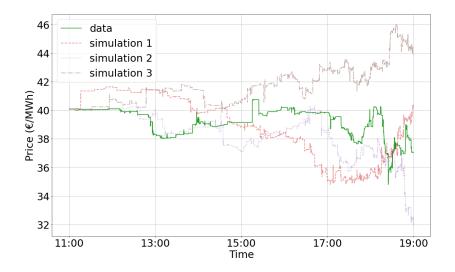
22/35

Simulation: Illustration for maturity 19h



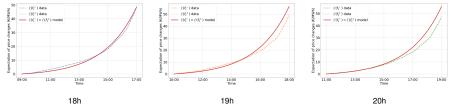
23/35

Simulation: Illustration for maturity 20h



Expectation

$$\mathbb{E}(f_t^+) = \mathbb{E}(f_t^-) = \mu_0 \mathbb{E}(J) \left(\frac{\beta + \frac{\kappa}{T}}{\frac{\kappa}{T} \left(\beta - \alpha \mathbb{E}(J) + \frac{\kappa}{T}\right)} e^{\kappa \frac{t}{T}} + \frac{\alpha \mathbb{E}(J)}{\left(\beta - \alpha \mathbb{E}(J)\right) \left(\beta - \alpha \mathbb{E}(J) + \frac{\kappa}{T}\right)} e^{-(\beta - \alpha \mathbb{E}(J))t} - \frac{\beta}{\frac{\kappa}{T} \left(\beta - \alpha \mathbb{E}(J)\right)} \right)$$



18h

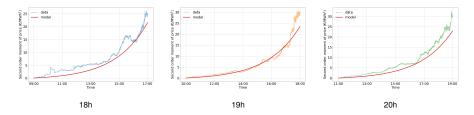
20h

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト 2

25/35

Second order moment

Closed formula for the second order moment.

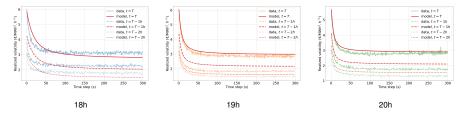


Sketch of the proof:

- Find integro-differential equation for characteristic function of (f_t^+, f_t^-) using cluster representation of Hawkes processes as in El Euch and Rosenbaum (2019).
- Then derive integro-differential equations for moments that can be solved.

Signature plot

$$\begin{split} \mathcal{C}(t,\delta) &= \frac{1}{t} \left(\mathbb{E}(f_{\lfloor \frac{t}{\delta} \rfloor \delta}^2) - f_0^2 \right) - \\ & \frac{1}{t} \frac{(1 - e^{-(\beta + \alpha \mathbb{E}(J))\delta})}{(\beta + \alpha \mathbb{E}(J))} \sum_{i=0}^{\lfloor \frac{t}{\delta} \rfloor - 1} \left(\frac{d\mathbb{E}(f_s^2)}{ds}(i\delta) - 2\mathbb{E}(J^2)\mathbb{E}(\lambda_{i\delta}^+) \right). \end{split}$$



- Generalization of the results of Bacry et al. (2013a): we include random jumps and time-dependent intensity baseline.
- Increasing of the signature plot when time approaches to delivery: Samuelson effect for each frequency.

Signature plot: asymptotics

Microscopic scale: $\delta \rightarrow 0$

$$C^{\textit{micro}}(t) = 2\mathbb{E}(J^2) rac{\mathbb{E}\left(\int_0^t \lambda_s^+ ds\right)}{t}.$$

Macroscopic scale: $\delta \to \infty$, $\frac{\delta}{t} \to 0$

$$C^{macro}(t) \sim rac{2\mathbb{E}(J^2)}{\left(1+rac{lpha \mathbb{E}(J)}{eta}
ight)^2 \left(1-rac{lpha \mathbb{E}(J)}{eta}
ight)}rac{\int_0^t \mu(rac{s}{T}) ds}{t}.$$

When $t \to \infty$,

$$C(t,\delta) \sim \frac{2\mathbb{E}(J^2) \int_0^t \mu(\frac{s}{T}) ds}{t \left(1 - \frac{\alpha \mathbb{E}(J)}{\beta}\right)} \left(R^2 + \left(1 - R^2\right) \left(\frac{1 - e^{-(\beta + \alpha \mathbb{E}(J))\delta}}{(\beta + \alpha \mathbb{E}(J))\delta}\right)\right)$$

with
$$R^2 = \frac{1}{\left(1 + \frac{\alpha \mathbb{E}(J)}{\beta}\right)^2}$$
.

<ロ> <回> <回> <回> <回> <回> <回> <回> <回</p>

Outline

Empirical stylized facts

2 Model

Central limit theorem

Assume $\mathbb{E}(J^4) < \infty$.

$$\left(\frac{1}{\sqrt{T}}\left(f_{vT}-f_{0}\right)\right)_{v\in[0,1]}\rightarrow\left(\sqrt{\frac{2E(J^{2})}{\left(1+\frac{\alpha\mathbb{E}(J)}{\beta}\right)^{2}\left(1-\frac{\alpha\mathbb{E}(J)}{\beta}\right)}}\int_{0}^{v}\sqrt{\mu(s)}dW_{s}\right)_{v\in[0,1]}$$

in law for the Skorokhod topology when $T \to \infty$, where *W* is a 1-dimensional Brownian motion.

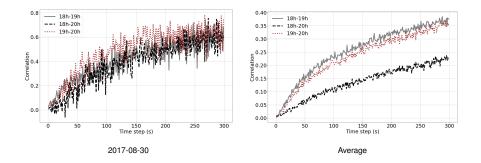
- Diffusive behavior at macroscopic scale.
- Samuelson effect: macroscopic volatility increases when time gets closer to delivery.
- More results are given that generalize limit theorems of Bacry et al. (2013b) considering time dependent baseline intensity and random jumps.

Conclusion

- Highlighting of the presence of microstructure noise in intraday electricity markets;
- Proposition of a price model allowing to represent the different empirical stylized facts, in particular the signature plot;
- Closed formula for moments and signature plot (at different dates);
- Diffusive limit at macroscopic scale;
- Samuelson effect identified for each frequency and in the diffusive limit.

Perspectives

- A more complete analysis and modeling of jumps distribution.
- Multidimensional modeling for the different maturities.



Epps effect

Thank you for your attention.

Bibliography I

- Bacry, E., Delattre, S., Hoffmann, M., and Muzy, J.-F. (2013a). Modelling microstructure noise with mutually exciting point processes. *Quantitative finance*, 13(1):65–77.
- Bacry, E., Delattre, S., Hoffmann, M., and Muzy, J.-F. (2013b). Some limit theorems for Hawkes processes and application to financial statistics. *Stochastic Processes and their Applications*, 123(7):2475–2499.
- Daley, D. J. and Vere-Jones, D. (2003). *An Introduction to the Theory of Point Processes. Volume I: Elementary Theory and Methods, Second Edition.* Springer.
- El Euch, O. and Rosenbaum, M. (2019). The characteristic function of rough Heston models. *Mathematical Finance*, 29(1):3–38.
- Favetto, B. (2019). The European intraday electricity market: a modeling based on the Hawkes process. Available on hal.archives-ouvertes.fr.
- Graf von Luckner, N. and Kiesel, R. (2020). Modeling market order arrivals on the intraday market for electricity deliveries in Germany with the Hawkes process. Available at SSRN.

Bibliography II

- Kiesel, R. and Paraschiv, F. (2017). Econometric analysis of 15-minute intraday electricity prices. *Energy Economics*, 64:77–90.
- Ogata, Y. (1981). On Lewis' simulation method for point processes. *IEEE transactions on information theory*, 27(1):23–31.