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A “theorem-proof’-free bird’s eye perspective of......

.....Infinite dimensional modelling of forward prices

.....Heath-Jdarrow-Morton models in infinite dimensions
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Aim for the talk:

» Propose a class of stochastic models for the forward dynamics
in power/commodity

(t, 7)) F(t,T), 0<t<T<

* Markets:
» “Classical” forward markets (day, month...)
» Intraday-markets in power (hour, quarter)
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 Forward market in power: delivery periods

I
[ F(t, T)dT

T

2 41

* Intraday power market: hourly delivery

h+1
ID(t, h) = J F@t, T)dT
h
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BACKGROUND: FORWARD CURVES IN
COMMODITIES AND INFINITE
DIMENSIONAL STOCHASTIC MODELS
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Two-factor Lucia-Schwartz spot model

« Two Brownian motion factors

dX(t) = a(u — X(¥))dt + odB,(1)
dY(t) = ndBy(1)

* Forward price, x=T-tis
Ft,T):=ft, T—1) :=E[XT)+ YT | F,

J(t,x) = p+ e (X)) — p) + Y(2)
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* Fix two maturities: Any other maturity can be perfectly hedged
by these two!
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« Empirical evidence for

* many factors across maturities

« ~9 factors according to Feron & Gruet (2021)

. price changes/returns
* heavy tailed distributions

 And Samuelson effect
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Risk-neutral forward dynamics Lucia-Schwartz

dBl(f)>

df(t, x) = 0, f(t, x)dr + (6e™*", ) <dB (1)
2

Many factor model....infinite

df(t,x) = 0, f(t. x)dt + ) o(t, \)dB(?)
n=1

df(t) = 0. f(1)dt + 2(1)dB(1) €H

€ L(H)
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Why infinite-dimensional? A detour to US interest rates

Correlation function

« US vyield curves: 2000-2020

* Residuals from dynamic
Nelson-Siegel

 Correlation as rather
than high-dimensional matrix

Fitted correlation function
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Why infinite-dimensional?

. of all contracts by a finite selection of
maturities

» Many factors require many parameters
» Correlation functions may be
» ...previous slide: 2 parameters in fitted correlation function!

* Opens for across maturities
« Although maybe non-stationary

1"
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EEX quarterly power futures

« Evidence for Samuelson effect, heavy tails and stochastic
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Two questions

...for the driving noise B

« The Hilbert space determines the trace class/nuclear
operators

» |tis expected that correlations are non-stationary in maturity

« Samuelson effect

* Distributional properties of the returns

13
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: STATE SPACE AND COVARIANCE
OPERATORS



UiO ¢ Department of Mathematics
University of Oslo

Filipovic space

- His space of absolutely continuous real-valued function on R ,:

g: R, - R

» Differentiable (weakly), finite in norm

(0 9)

|8 |2 = g(0)2 + [ w(x)g’(x)zdx, w(0) = 1, Increasing

0

* Properties

Flat forward curves in long end: g'(c0) = 0
Separable Hilbert space

Evaluation operator continuous linear functional: e (g) = g(x)
Shift semigroup is strongly continuous, generator is 0.

15
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Covariance operator

 Bis a Wiener process in H, with covariance operator Q
E[(B, g)(B, )] = (s A1)(Og, h)

* Q) is positive definite and of trace class
(08.8) 20,  TrQ) =) (Qe,e)= ) 4 <o
n=1 n=1
* Q@ can be represented by a covariance function

Ele(B)e(B)] =t - g(x,y)

16
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Covariance function (or correlation by standardization)

e qis , but in its arguments
q(x,y) # q(|x=y|)
« Limit behaviour (fundamental theorem of calculus)

Iim g(x+ A, x) =1, Iim g(x+ A,x) >0

X—00 A— o0

« Example (US yields again...)

Fitted correlation function

2+ =e (1 —e)
Ve2+ (1 —e )2 /c2+ (1 — e 1)

q(x,y) =

17
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: ROUGH VOLATILITY IN INFINITE
DIMENSIONS

18
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Recall set-up for forward dynamics

df(t) = 0, f()dt + 2(t)dB(1)

f(?) is H-valued stochastic process, B(?) is Wiener process in H
with covariance operator O

Stochastic volatility process 2.(f) with values in L(H)
» Goal: to propose a “rough model” for it!

Basic tool is the & (the matrix outer product in
infinite dimensions):

f®geLH), (f®Mh) = (Mg

19
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Heston-type rough volatility model
- FixazeH,|z| =1

(=Y ®z  ZMOFI() = Y1)
« Defined via Y with covariance operator QOy(7, 5)

Qy(t,5) = E[Y(?)  Y(s)],
[E[<Y(t)9 g><Y(S)9h>] — <QY(t9 S)g9 h> — <g’ QY(Sa t)h>

20
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Volatility scaling at each maturity

« Evaluation at maturity x:

5

U(x) := exJ 2(5)dB(s)
0

. from quadratic variation

d
6/() 1= — (UG, U)), = V(.0 P Q52 I

. of the volatility determined by the regularity of O,

Elo7(0)] ~ (e,0y(t, e )"

21
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Y-process: rough Ornstein-Uhlenbeck-process

A OU with with a € (0,1)

DY (t) —y) =AY(®) + W (?)

- A € L(H), Wis Gaussian process with y-regular paths,
yeO,Danda+y > 1

Y(t) =y + IYAY)(1) + J (t — $)* L dW(s)
0

« Riemann-Liouville fractional integration and differentiation
« time-derivative in Frechet sense

a d a—1 f 1 t p—1
D%(g)(1) = _dtl (2)), 17(g)(1) = %) (t—s5)"""g(s)ds,p >0
0 22
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Explicit p—regular solution, p <y +a — 1
t
Y(1) = E, (Ar*) + J (t — )" 'E, (A(t — 5))dW(s)
0

Mittag-Leffler operator

o0 Ak},.k
EaplAn) = gf) [(ak + )

Covariance operator Qy/(7, s) explicitly known
» Requires rough path integration (see B., Harang (2020))

« Regularity inherited from the fractional derivative o and Qy,(7, 5)

If Qy/(2,5)is f € (0,1)-regularand f + a > 1, then Oy(t, 5) is n—
regular,n < f+a — 1

23
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« Regularity of covariance operator gives regularity of moments of
vol!

El67(x)] ~ (e,0y(t, Def 1)

* |.e., mix of regularity from
« fractional differentiation

- ..and f# from covariance of driving noise W (fractional
Brownian motion, say)

24
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Simulated ATM-skew for spread options (bivariate example)

Margrabe ATM Skew
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Plot prepared by Alexander Lobbe (Oslo)

« Payoff max($,(7") — 5,(7),0), GBMs with rough Bergomi model

» All noises correlated
» Hurst parameter 0.1 for both

25
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Extension 1: Samuelson effect

- Multiplication operator on the Banach algebra H
M, € LH,), Mh=g-h
» Volatility term in forward dynamics

df(t) = 0, f(r) dt + .M Z(H)dW(2)

1.8

e gcan be an exponential function <l EEX data, B. Paraschiv JBF 2018 |

volatility (EUR)

g(x) = exp(—px)
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Extension 2: Heavy-tailed “returns” and NIG

« Change Gaussian assumption
« Subordination of Wiener process W
» Preserves the covariance operator of W

L(1) = W(U(1))

» Define normal inverse Gaussian (NIG) “returns”
 Use inverse Gaussian subordinator

2

Normal density

Kernel (empirical) density
15 NIG with Moment Estim.
— NIG with ML

T 1f

0.5 &
0 L L L

-15 -10 -5 0 5 10

epsilon t(90)

EEX data, B. Paraschiv JBF 2018
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Conclusions

* Infinite-dimensional modeling of forward curves
* Argued for high-dimensionality in HIM-models
« State space being Filipovic space
« Non-stationary covariance operator

* Rough volatility as fractional OU process in infinite dimensions

« Samuelson effect
« NIG

28
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THANK YOU FOR LISTENING!
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