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…..infinite dimensional modelling of forward prices


…..Heath-Jarrow-Morton models in infinite dimensions

A “theorem-proof”-free bird’s eye perspective of……
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Aim for the talk:

• Propose a class of stochastic models for the forward dynamics 
in power/commodity


• Markets:

• “Classical” forward markets (day, month…)

• Intraday-markets in power (hour, quarter)
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(t, T ) ↦ F(t, T ), 0 ≤ t ≤ T < ∞



• Forward market in power: delivery periods


• Intraday power market: hourly delivery
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ID(t, h) = ∫
h+1

h
F(t, T )dT

F(t, T1, T2) =
1

T2 − T1 ∫
T2

T1

F(t, T )dT



BACKGROUND: FORWARD CURVES IN 
COMMODITIES AND WHY INFINITE 
DIMENSIONAL STOCHASTIC MODELS
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Two-factor Lucia-Schwartz spot model

• Two Brownian motion factors


• Forward price, x=T-t is time to maturity
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f(t, x) = μ + e−αx(X(t) − μ) + Y(t)

dX(t) = α(μ − X(t))dt + σdB1(t)
dY(t) = ηdB2(t)

F(t, T ) := f(t, T − t) := 𝔼[X(T ) + Y(T ) | ℱt]



• Fix two maturities: Any other maturity can be perfectly hedged 
by these two!

7

 



• Empirical evidence for


• “High"-dimensionality: 

• many factors across maturities 


• 5 factors according to Feron & Gruet (2021)


• Non-Gaussian price changes/returns

• heavy tailed distributions


• Stochastic volatility

• And Samuelson effect

∼
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• Risk-neutral forward dynamics Lucia-Schwartz


• Many factor model….infinite
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df(t, x) = ∂x f(t, x)dt +
∞

∑
n=1

σi(t, x)dBi(t)

df(t, x) = ∂x f(t, x)dt + (σe−αx, η)(dB1(t)
dB2(t))

∈ L(H )

∈ Hdf(t) = ∂x f(t)dt + Σ(t)dB(t)



Why infinite-dimensional? A detour to US interest rates

• US yield curves: 2000-2020


• Residuals from dynamic 
Nelson-Siegel


• Correlation as function rather 
than high-dimensional matrix
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Correlation function

Fitted correlation function

On-going work with Marianna Russo (Trondheim) and Florentina Paraschiv (Zeppelin Uni)

M#

M3

M# M#

M6

M84 to
M120



Why infinite-dimensional?

• Avoids perfect hedging of all contracts by a finite selection of 
maturities


• Many factors require many parameters

• Correlation functions may be low parametric

• …previous slide: 2 parameters in fitted correlation function!


• Opens for flexible correlation modelling across maturities

• Although maybe non-stationary
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EEX quarterly power futures

• Evidence for Samuelson effect, heavy tails and stochastic 
volatility
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From B., Paraschiv: JBF 2018



Two questions

• Q1: Specification of state space and correlation function? 

• …for the driving noise B

• The Hilbert space determines the trace class/nuclear 

operators

• It is expected that correlations are non-stationary in maturity 


• Q2: How to define (stochastic) volatility operator?

• Samuelson effect


• Distributional properties of the returns 
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Q1: STATE SPACE AND COVARIANCE 
OPERATORS
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Filipovic space

• H is space of absolutely continuous real-valued function on :


• Differentiable (weakly), finite in norm


• Properties


• Flat forward curves in long end: 

• Separable Hilbert space


• Evaluation operator continuous linear functional: 


• Shift semigroup is strongly continuous, generator is 

ℝ+

g′￼(∞) = 0

ex(g) = g(x)
∂x
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g : ℝ+ → ℝ

|g |2 = g(0)2 + ∫
∞

0
w(x)g′￼(x)2dx, w(0) = 1, increasing



Covariance operator

• B is a Wiener process in H, with covariance operator Q


• Q is positive definite and of trace class


• Q can be represented by a covariance function
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𝔼[⟨Bt, g⟩⟨Bs, h⟩] = (s ∧ t)⟨Qg, h⟩

⟨Qg, g⟩ ≥ 0, Tr(Q) =
∞

∑
n=1

⟨Qen, en⟩ =
∞

∑
n=1

λn < ∞

𝔼[ex(Bt)ey(Bt)] = t ⋅ q(x, y)



Covariance function (or correlation by standardization)

• q is symmetric, but not stationary in its arguments


• Limit behaviour (fundamental theorem of calculus)


• Example (US yields again…)
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q(x, y) ≠ q̃( |x − y | )

lim
x→∞

q(x + Δ, x) = 1, lim
Δ→∞

q(x + Δ, x) > 0

q(x, y) =
c2 + (1 − e−γx)(1 − e−γy)

c2 + (1 − e−γy)2 c2 + (1 − e−γy)2

Fitted correlation function



Q2: ROUGH VOLATILITY IN INFINITE 
DIMENSIONS
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• Recall set-up for forward dynamics


•  is H-valued stochastic process,  is Wiener process in H 
with covariance operator 


• Stochastic volatility process   with values in 

• Goal: to propose a “rough model” for it!


• Basic tool is the tensor product  (the matrix outer product in 
infinite dimensions):

f(t) B(t)
QB

Σ(t) L(H )

⊗
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df(t) = ∂x f(t)dt + Σ(t)dB(t)

f ⊗ g ∈ L(H), ( f ⊗ g)(h) = ⟨ f, h⟩g



Heston-type rough volatility model

• Fix a 


• Defined via Gaussian processY with covariance operator 

z ∈ H, |z | = 1

QY(t, s)
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Σ(t) := Y(t) ⊗ z, Σ(t)*Σ(t) = Y⊗2(t)

QY(t, s) = 𝔼[Y(t) ⊗ Y(s)],
𝔼[⟨Y(t), g⟩⟨Y(s), h⟩] = ⟨QY(t, s)g, h⟩ = ⟨g, QY(s, t)h⟩



Volatility scaling at each maturity

• Evaluation at maturity x:


• Instantaneous “volatility” from quadratic variation


• Power scaling of the volatility determined by the regularity of  QY
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Ut(x) := ex ∫
t

0
Σ(s)dB(s)

σ2
t (x) :=

d
dt

⟨⟨U(x), U(x)⟩⟩t = |Y(t, x) |2 |Q1/2
B z |2

H

𝔼[σ2k
t (x)] ∼ (exQY(t, t)e*x 1)k



-process: rough Ornstein-Uhlenbeck-processY

• A fractional OU with fractional time derivative with  


• , W is Gaussian process with -regular paths, 
 and 


• Riemann-Liouville fractional integration and differentiation 

• time-derivative in Frechet sense 

α ∈ (0,1)

A ∈ L(H ) γ
γ ∈ (0,1) α + γ > 1
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Dα(Y(t) − y) = AY(t) + W′￼(t)

Y(t) = y + Iα(AY )(t) + ∫
t

0
(t − s)α−1dW(s)

Dα(g)(t) =
d
dt

Iα−1(g)(t), Iβ(g)(t) =
1

Γ(β) ∫
t

0
(t − s)β−1g(s)ds, β > 0



• Explicit regular solution, 


• Mittag-Leffler operator


• Covariance operator  explicitly known

• Requires rough path integration (see B., Harang (2020))


• Regularity inherited from the fractional derivative  and 


• If  is -regular and , then  is 
regular,  

ρ− ρ < γ + α − 1

QY(t, s)

α QW(t, s)

QW(t, s) β ∈ (0,1) β + α > 1 QY(t, s) η−
η < β + α − 1

23

Y(t) = Eα,1(Atα) + ∫
t

0
(t − s)α−1Eα,α(A(t − s)α)dW(s)

Eα,β(Ar) :=
∞

∑
k=0

Akrk

Γ(αk + β)



• Regularity of covariance operator gives regularity of moments of 
vol!


• I.e., mix of regularity from 


• fractional differentiation 


• ..and  from covariance of driving noise W (fractional 
Brownian motion, say)

α
β
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𝔼[σ2k
t (x)] ∼ (exQY(t, t)e*x 1)k



Simulated ATM-skew for spread options (bivariate example)

• Payoff , GBMs with rough Bergomi model

• All noises correlated

• Hurst parameter 0.1 for both

max(S1(T ) − S2(T ),0)
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Plot prepared by  Alexander Lobbe (Oslo)



Extension 1: Samuelson effect

• Multiplication operator on the Banach algebra 


• Volatility term in forward dynamics


• g can be an exponential function

Hw
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ℳg ∈ L(Hw), ℳgh = g ⋅ h

df(t) = ∂x f(t) dt + ℳgΣ(t)dW(t)

g(x) = exp(−ρx)

EEX data, B. Paraschiv JBF 2018



Extension 2: Heavy-tailed “returns” and NIG

• Change Gaussian assumption

• Subordination of Wiener process W

• Preserves the covariance operator of W


• Define normal inverse Gaussian (NIG) “returns”

• Use inverse Gaussian subordinator
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L(t) = W(U(t))

EEX data, B. Paraschiv JBF 2018



Conclusions 

• Infinite-dimensional modeling of forward curves


• Argued for high-dimensionality in HJM-models

• State space being Filipovic space

• Non-stationary covariance operator


• Rough volatility as fractional OU process in infinite dimensions


• Samuelson effect 

• NIG
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THANK YOU FOR LISTENING!
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