Random Network Theory

Strategic Preferential Attachment

Conclusion

Network Dynamics and Strategic Preferential Attachment

Louis Bertucci

Institut Louis Bachelier

Journées Ateliers FiME

September 22, 2021

Random Network Theory

Strategic Preferential Attachment

Conclusion

Based on recent work with :

- Pierre-Louis Lions (Collège de France)
- Jean-Michel Lasry (University Paris-Dauphine)
- Charles Bertucci (CNRS, Ecole Polytechnique)

Random Network Theory

Strategic Preferential Attachment

Conclusion

1 Motivations

Random Network Theory

Conclusion

Internet of Things/Agents (IoT/A)

- There are 3 characteristics that enable dense networks of connected objects :
 - Cheap network bandwidth
 - Cheap computing power
 - Cheap memory
- In fact, IoT is not possible without cheap computing power and memory ⇒ connected devices need to be independent and strategic
- This is why cheap network bandwidth is also really important
 devices need to communicate and exchange data and/or value
- \implies What is the resulting dynamics of such graphs ?

Random Network Theory

The Lightning Network : An extreme example

- Fully decentralized payment network built on top of the Bitcoin blockchain
- Nodes in the network connect as they wish to pass on bitcoins without trusted third-parties
- Opening a payment channel (an edge in the graph) is costly but also rewarding
- \implies Game theory aspects of network dynamics

Random Network Theory

Strategic Preferential Attachment

Conclusion 000

Current Network Theory

Random Graph Theory

- Nodes in a graph create edges randomly
- Consider the mean field approximation of graph characteristics (ex: degree)
- Study the limit case $N \to \infty$, the degree distribution can be a power law which is very good for :
 - Social networks
 - WWW
 - Citations in scientific papers

Strategic Network Formation Models

- Study games in which players decide to connect to specific nodes
- Do not use the mean field approximation
- Highly intractable
- \implies Insights from the MFG literature allow to fill the gap

Random Network Theory

Strategic Preferential Attachment

Conclusion

2 Random Network Theory

Random Network Theory

Strategic Preferential Attachment

Conclusion

The Roots of Random Graph Theory

Erdős-Rényi (1960)

- Graphs can be understood as a set of nodes (N) randomly creating edges (E)
- Study the properties of the limit graph $(N
 ightarrow \infty)$
- Probabilistic view : How likely is it that a graph will have a property Q given the edge probability between 2 nodes : p (the same for every edge)
- The degree distribution is a Poisson Law (not realistic for several real-life situations)

Random Network Theory

Strategic Preferential Attachment

Conclusion

Preferential Attachment (1)

- \implies Barabasi and Albert (1999)
 - Random graph generation process
 - Model the dynamics of the generation process of a graph by reducing it to the dynamics of a mean-field
 - Each unit of time (t), a new node enters the graph and creates m edges
 - The likelihood that this new node *i* connects to node *j* is proportional to the degree of node *j* : k_j
 - Considering the mean field approximation for the degree, we have

$$\dot{k}_i(t) = c(t) rac{k_i(t)}{\sum_j k_j(t)}$$

with c(t) an adjustment term.

Random Network Theory

Strategic Preferential Attachment

Conclusion

Preferential Attachment (2)

- Consider the degree distribution $\mu(t,k)$
- Let's define

$$\phi(t,k,\mu) = c(t) \frac{k}{\int_0^\infty k' \mu(t,k') dk'}$$

• We can rewrite the degree dynamics as

$$dk = \phi(t, k, \mu) dt$$

• Which yields the Kolmogorov equation

$$rac{\partial \mu}{\partial t} = -rac{\partial}{\partial k} [\phi(t,k,\mu)\mu(t,k)] ext{ in } (0,\infty)^2$$

Random Network Theory

Strategic Preferential Attachment

Conclusion

Preferential Attachment (3)

Constant deterministic case

• Assume we have $\phi(t, k, \mu) = c_0 k$, we obtain

$$dk = c_0 k dt$$

• And the associated Kolmogorov equation

$$\frac{\partial \mu}{\partial t} = -c_0 \frac{\partial}{\partial k} (k\mu)$$

• Pareto distributions are solution of this equation : assume $\mu(t,k) = \frac{a(t)}{k^{\alpha}}$, we obtain

$$\dot{a}(t) = -c_0(1-\alpha)a(t) \implies a(t) = Ce^{-c_0(1-\alpha)t}$$

• This yields a power law distribution (very typical of many networks)

$$\mu(t,k) = \frac{Ce^{-c_0(1-\alpha)t}}{k^{\alpha}}$$

Random Network Theory

Strategic Preferential Attachment

Conclusion 000

3 Strategic Preferential Attachment

Random Network Theory

Strategic Preferential Attachment

Conclusion

Strategic Interactions

- Instead of random, the new links are now the result of a strategic behavior
- Flow of future gains is given by

$$\int_0^\infty e^{-rt} F(k_i(t),\mu(t)) dt$$

with $\mu(t)$ the degree distribution at time t and F a given function that can depend non-locally on $\mu(t)$

• A node can create links at rate q in which case it pays

 $C(q, k, \mu)$

Random Network Theory

Strategic Preferential Attachment

Conclusion

Degree Dynamics

Preferential attachment + new strategic behavior

$$dk_t^i = c(t) rac{k_t^i}{\int_0^\infty k' \mu(t,k') dk'} dt + q_t^i dt$$

- Nodes can create connections so the rate at which other nodes make connections is also going to affect the degree of node *i*
- Assume all nodes with degree k behave the same way : $q_t(k)$, we have

$$dk_t^i = c(t)k_t^i \frac{\int_0^\infty q_t(k')\mu(t,k')dk'}{\int_0^\infty k'\mu(t,k')dk'}dt + q_t^i dt$$
(1)

Random Network Theory

Conclusion

Equilibrium (1)

• Let's define the value function as

$$u(t,\kappa^{i}) = \max_{(q_{s}^{i})} \mathbb{E}\left[\int_{t}^{\infty} e^{-r(s-t)} F(k_{s}^{i},\mu(s)) - C(q_{s}^{i},k_{s}^{i},\mu(s)) ds\right]$$

where $(k_s^i)_{s\geq 0}$ solves (1) subject to $k_t^i=\kappa^i$

• This value function is the solution to the following HJB equation

$$-\partial_t u + ru + H(k, \partial_k u, \mu(t)) - L(k, \mu(t), q_t) \partial_k u = F(k, \mu(t))$$
in $(0, \infty)^2$

with

$$H(k, p, \mu) = \inf_{q^i \ge 0} \left\{ C(q^i, k, \mu) - q^i p \right\}$$
$$L(k, \mu, \nu) = k \frac{\int_0^\infty \nu(k') \mu(k') dk'}{\int_0^\infty k' \mu(k') dk'}$$

Random Network Theory

Strategic Preferential Attachment

Conclusion

Equilibrium (2)

• Assuming there is a function $q^*(t,k,\mu)$ that gives the control of each node as a function of t,k and μ only, the degree distribution evolves according to

$$\frac{\partial \mu}{\partial t} + \frac{\partial}{\partial k} (\mu(t,k)(q^*(t,k,\mu) + L(k,\mu,q^*(t,\cdot,\mu)))) = 0 \text{ in } (0,\infty)^2$$

Nash Equilibria

• Nash equilibria are characterized by finding a couple (u, μ) solution of

$$\begin{aligned} &-\partial_t u + ru + H(k, \partial_k u, \mu(t)) \\ &- L(k, \mu(t), D_p H(\cdot, \partial_k u(t, \cdot), \mu(t))) \partial_k u = F(k, \mu(t)) \text{ in } (0, \infty)^2 \end{aligned}$$

$$\begin{aligned} \frac{\partial \mu}{\partial t} &+ \frac{\partial}{\partial k} ((D_p H(k, \partial_k u, \mu(t)) \\ &+ L(k, \mu(t), D_p H(\cdot, \partial_k u(t, \cdot), \mu(t))))\mu) = 0 \text{ in } (0, \infty)^2 \end{aligned}$$

Random Network Theory

Strategic Preferential Attachment

Conclusion •00

4 Conclusion

Random Network Theory

Strategic Preferential Attachment

Conclusion

Conclusion

- Strategic Preferential Attachment bridges the gap between Random Graph Theory and Strategic Network Formation
- We can incorporate many graph characteristics beside degree
- Already some interesting use cases :
 - Internet of Things
 - Decentralized Payment Network
- Computation is challenging but we are also working on extending standard numerical techniques to solve for those equilibria

Thank You !

Random Network Theory

Strategic Preferential Attachment

Conclusion

Network Dynamics and Strategic Preferential Attachment

Louis Bertucci

Institut Louis Bachelier

Journées Ateliers FiME

September 22, 2021