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Starting point : Volatility is rough !

Figure – The log volatility of the S&P over about 10 years.
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Our goal

Understanding volatility

It is shown in Gatheral et al. that log-volatility time series behave like
a fractional Brownian motion, with Hurst parameter H of order 0.1.

More precisely, basically all the statistical stylized facts of volatility are
retrieved when modeling it by a rough fractional Brownian motion.

This leads to very accurate volatility forecasts.

Such models also enable us to reproduce very well the behavior of the
implied volatility surface, in particular the ATM skew (without jumps).

This phenomenon is universal : Shown on more than 10.000 assets.

Microstructural foundations for rough volatility : well understood (see
next section). We also want to consider a particularly subtle property
of rough volatility : the Zumbach effect.

Rough volatility and SPX options : well understood. Here we focus on
VIX options and associated conjectures.
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Literature

Rough volatility network

https ://sites.google.com/site/roughvol/

Forthcoming book
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Fractional Brownian motion

Definition

The fractional Brownian motion (fBm) with Hurst parameter H is the only
process WH to satisfy :

Self-similarity : (WH
at )

L
= aH(WH

t ).

Stationary increments : (WH
t+h −WH

t )
L
= (WH

h ).

Gaussian process with E[WH
1 ] = 0 and E[(WH

1 )2] = 1.

Proposition

For all ε > 0, WH is (H − ε)-Hölder a.s.

Mandelbrot-van Ness representation

WH
t =

∫ t

0

dWs

(t − s)
1
2
−H

+

∫ 0

−∞

( 1

(t − s)
1
2
−H
− 1

(−s)
1
2
−H

)
dWs .

Mathieu Rosenbaum Rough volatility 7



Table of contents

1 Introduction

2 Microstructural foundations for rough volatility

3 An important application : The rough Heston formula

4 Quadratic Hawkes and Zumbach effect

5 Quadratic rough Heston model and the VIX market

Mathieu Rosenbaum Rough volatility 8



Building the model

Necessary conditions for a good microscopic price model

We want :

A tick-by-tick model.

A model reproducing the stylized facts of modern electronic markets
in the context of high frequency trading.

A model helping us to understand the rough dynamic of volatility
from the high frequency behavior of market participants.
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Building the model

Stylized facts 1-2

Markets are highly endogenous, meaning that most of the orders have
no real economic motivations but are rather sent by algorithms in
reaction to other orders, see Bouchaud et al., Filimonov and Sornette.

Mechanisms preventing statistical arbitrages take place on high
frequency markets, meaning that at the high frequency scale, building
strategies that are on average profitable is hardly possible.
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Building the model

Stylized facts 3-4

There is some asymmetry in the liquidity on the bid and ask sides of
the order book. In particular, a market maker is likely to raise the
price by less following a buy order than to lower the price following
the same size sell order.

A large proportion of transactions is due to large orders, called
metaorders, which are not executed at once but split in time.
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Building the model

Hawkes processes

Our tick-by-tick price model is based on Hawkes processes in
dimension two.

A two-dimensional Hawkes process is a bivariate point process
(N+

t ,N
−
t )t≥0 taking values in (R+)2 and with intensity (λ+

t , λ
−
t ) of

the form :(
λ+
t

λ−t

)
=

(
µ+

µ−

)
+

∫ t

0

(
ϕ1(t − s) ϕ3(t − s)
ϕ2(t − s) ϕ4(t − s)

)
.

(
dN+

s

dN−s

)
.
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Building the model

The microscopic price model

Our model is simply given by

Pt = N+
t − N−t .

N+
t corresponds to the number of upward jumps of the asset in the

time interval [0, t] and N−t to the number of downward jumps. Hence,
the instantaneous probability to get an upward (downward) jump
depends on the location in time of the past upward and downward
jumps.

By construction, the price process lives on a discrete grid.

Statistical properties of this model have been studied in details.
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Encoding the stylized facts

The right parametrization of the model

Recall that(
λ+
t

λ−t

)
=

(
µ+

µ−

)
+

∫ t

0

(
ϕ1(t − s) ϕ3(t − s)
ϕ2(t − s) ϕ4(t − s)

)
.

(
dN+

s

dN−s

)
.

High degree of endogeneity of the market→ L1 norm of the largest
eigenvalue of the kernel matrix close to one (nearly unstable regime).

No arbitrage→ ϕ1 + ϕ3 = ϕ2 + ϕ4.

Liquidity asymmetry→ ϕ3 = βϕ2, with β > 1.

Metaorders splitting→ ϕ1(x), ϕ2(x) ∼
x→∞

K/x1+α, α ≈ 0.6.
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Rough Heston model

Limit theorem

After suitable scaling in time and space, the long term limit of our price
model satisfies the following rough Heston dynamics :

Pt =

∫ t

0

√
VsdWs −

1

2

∫ t

0
Vsds,

Vt = V0 +
1

Γ(α)

∫ t

0
(t − s)α−1λ(θ − Vs)ds +

λν

Γ(α)

∫ t

0
(t − s)α−1

√
VsdBs ,

with

d〈W ,B〉t =
1− β√

2(1 + β2)
dt.

The Hurst parameter H satisfies H = α− 1/2.
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An even deeper result

No-arbitrage implies rough volatility and power law market impact

We have shown that combining typical behaviours of market
participants at the high frequency scale automatically generates rough
volatility.

We can actually prove that only assuming no-statistical arbitrage
implies rough volatility.

The key phenomenon to obtain this result is the market impact.

In a perfect market from a statistical arbitrage viewpoint, H = 0.

There is a one to one connection between the value of H and the
shape of the market impact curve.

H = 0 corresponds to square-root market impact.
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Deriving the characteristic function of the rough Heston
model

Strategy

From our last theorem, we are able to derive the characteristic
function of our high frequency Hawkes-based price model.

We then pass to the limit.
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Characteristic function of rough Heston models

We write :

I 1−αf (x) =
1

Γ(1− α)

∫ x

0

f (t)

(x − t)α
dt, Dαf (x) =

d

dx
I 1−αf (x).

Theorem

The characteristic function at time t for the rough Heston model is given
by

exp
(∫ t

0
g(a, s)ds +

V0

θλ
I 1−αg(a, t)

)
,

with g(a, ) the unique solution of the fractional Riccati equation :

Dαg(a, s) =
λθ

2
(−a2 − ia) + λ(iaρν − 1)g(a, s) +

λν2

2θ
g2(a, s).
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Comments on the theorem

The rough Heston formula

The formula is the very same as the celebrated Heston formula, up to
the replacement of a classical time derivative by a fractional
derivative.

This formula allows for fast derivatives pricing and risk management.

Thanks to this approach, we can derive the infinite dimensional
Markovian structure underlying rough Heston models, leading to
explicit hedging formulas.
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Further aspects of volatility

Super-Heston rough volatility and Zumbach effect

All the works on microstructural foundations of rough volatility have
produced rough Heston type models.

In the context of rough models, there are other aspects of volatility
that one could wish to understand from a microstructural perspective.

Going beyond the square root associated to the dynamic of the
volatility in the rough Heston model→ additional additive or
multiplicative factor leading to fatter volatility tails : Super-Heston
rough volatility.

Zumbach effect.
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Further aspects of volatility

Zumbach effect (Zumbach et al.) : description

Feedback of price returns on volatility.

Price trends induce an increase of volatility.

In the literature (notably works by J.P. Bouchaud and co-authors), a
way to reinterpret the Zumbach effect is to consider that the
predictive power of past squared returns on future volatility is
stronger than that of past volatility on future squared returns.

To check this on data, one typically shows that the covariance
between past squared price returns and future realized volatility (over
a given duration) is larger than that between past realized volatility
and future squared price returns.

We refer to this version of Zumbach effect as weak Zumbach effect.
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Further aspects of volatility

Weak and strong Zumbach effect

It is shown in Gatheral et al. that the rough Heston model reproduces
the weak form of Zumbach effect.

However, it is not obtained through feedback effect, which is the
motivating phenomenon in the original paper by Zumbach. It is only
due to the dependence between price and volatility induced by the
correlation of the Brownian motions driving their dynamics.

In particular in the rough Heston model, the conditional law of the
volatility depends on the past dynamic of the price only through the
past volatility.

We speak about strong Zumbach effect when the conditional law of
future volatility depends not only on past volatility trajectory but also
on past returns.
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A convenient microscopic model encoding Zumbach effect

Quadratic Hawkes processes

Inspired by Blanc et al., we model high frequency prices using
quadratic Hawkes processes.

Jump sizes of the price Pt are i.i.d taking values −1 and 1 with
probability 1/2 and jump times are those of a point process Nt with
intensity

λt = µ+

∫ t

0
φ(t − s)dNs + Z 2

t , with Zt =

∫ t

0
k(t − s)dPs .

The component Zt is a moving average of past returns.

If the price has been trending in the past, Zt is large leading to high
intensity. On the contrary if it has been oscillating, Zt is close to zero
and there is no feedback from the returns on the volatility. So Zt is a
(strong) Zumbach term.
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Scaling limits

Purely quadratic case

When φ = 0 is equal to zero, choosing appropriate scaling parameters,
we obtain the following limiting model : dP̂t =

√
VtdBt with

Vt = µ+ Z 2
t , Zt =

√
γ

∫ t

0
k(t − s)dP̂s .

The strong Zumbach effect is naturally encoded since the volatility is
a functional of past price returns through Z .

We can rigorously show that conditional on the history of the market
from time 0 to t0, the law of the volatility for t ≥ t0 does depend on
past returns and not only through past volatility.
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Scaling limits

Purely quadratic case (2)

The quadratic feedback of price returns on volatility implies that Vt is
of super-Heston type (essentially log-normal here).

This can be seen for example when µ = 0 :

Zt =
√
γ

∫ t

0
k(t − s)|Zs |dBs .

Taking for example k fractional kernel, we get that volatility has
Hölder regularity H − ε.

From a natural microscopic dynamic, we obtain a super-Heston rough
volatility model with strong Zumbach effect.

We obtain more complex log-normal type rough volatility models in
the other regimes.
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Quadratic rough Heston model

One particular super-Heston rough volatility model

We consider

dSt = St
√
VtdWt , Vt = a(Zt − b)2 + c,

where a, b and c some positive constants and Zt follows

Zt =

∫ t

0
f α,λ(t − s)θ0(s)ds +

∫ t

0
f α,λ(t − s)

√
VsdWs ,

with α ∈ (1/2, 1), λ > 0 and θ0 a deterministic function.

Zt is path-dependent : a weighted average of past returns.

c : minimal instantaneous variance.

b > 0 : asymmetry of the feedback effect.

a : sensitivity of the volatility feedback.
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The Volatility Index

Definition of the VIX

Introduced in 1993 by the CBOE.

VIX is the square root of the price of a specific basket of options on
the S&P 500 Index (SPX) with maturity ∆ = 30 days such that

VIXt = − 2

∆

√
E[log(St+∆/St)|Ft ]× 100,

with S the SPX index.

VIX futures and VIX options exist.
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The joint calibration problem

VIX options

More than 500,000 VIX options traded each day.

Quite wide spreads for VIX options : non-mature market.

VIX is by definition a derivative of the SPX, any reasonable
methodology must necessarily be consistent with the pricing of SPX
options.

Designing a model that jointly calibrates SPX and VIX options prices
is known to be extremely challenging.

This problem is sometimes considered to be the holy grail of volatility
modeling.

We simply refer to it as the joint calibration problem.

Mathieu Rosenbaum Rough volatility 31



The joint calibration problem

Attempts to solve the joint calibration problem

Theoretical approch by J. Guyon : the joint calibration problem is
interpreted as a model-free constrained martingale transport problem.
Perfect calibration of VIX options smile at time T1 and SPX options
smiles at T1 and T2 = T1 + 30 days. Hard to be extended to any set
of maturities and high computational cost.

Models with jumps : most of them fail to reproduce VIX smiles for
maturities shorter than one month.

Continuous models : Unsuccessful so far. Interpretation : the very
large negative skew of short-term SPX options, which in continuous
models implies a very large volatility of volatility, seems inconsistent
with the comparatively low levels of VIX implied volatilities
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The VIX conjecture

The joint calibration problem and continuous models

“So far all the attempts at solving the joint SPX/VIX smile
calibration problem [using a continuous time model] only produced
imperfect, approximate fits”.

“Joint calibration seems out of the reach of continuous-time models
with continuous SPX paths”.

Investigating Guyon’s work one can realise the following : a necessary
condition for a continuous model to fit simultaneously SPX and VIX
smiles is the inversion of convex ordering between volatility and the
local volatility implied by option prices.

The intuition behind this condition could be reinterpreted as some
kind of strong Zumbach effect.

Natural for us to investigate the ability of super-Heston rough
volatility models to solve the joint calibration problem.
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Calibration for one day in history 19 May 2017

Parameters calibration with Deep Learning
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Figure – Implied volatility on SPX options for 19 May 2017. Blue and red points
are bid and ask of market implied volatilities. Model implied volatility smiles from
the model are in green. Strikes are in log-moneyness, maturity in year.
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Calibration for one day in history 19 May 2017

Parameters calibration with Deep Learning
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Figure – Implied volatility on VIX options for 19 May 2017. Blue and red points
are bid and ask of market implied volatilities. Model implied volatility smiles from
the model are in green. Strikes are in log-moneyness, maturity in year.
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Take home message for the joint calibration problem

Thanks to the quadratic rough Heston model

6 parameters.

VIX smiles in the bid-ask spread.

Global shape of the implied volatility surface of the SPX very well
reproduced

Very accurate SPX skews of orders -1.5 (shortest maturites), -1
(longer maturities), as for market data.
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