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Introduction and motivation

Wind and solar energy are expanding renewable generation capacity, experi-
encing record growth in the last years.

Installed Wind and Solar Power over the years
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Figure 1: Worldwide installed wind and solar power 2010–2019 IRENA, 2020. We
recall the importance of accurate forecasts to use green energies optimally.
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Introduction and motivation

Reliable wind power generation forecasting is crucial for the following
applications (see, for example, Giebel et al., 2011, Chang, 2014, Zhou et al.,
2013):

Allocation of energy reserves such as water levels in dams or oil, and
gas reserves.

Operation scheduling of controllable power plants.

Optimization of the price of electricity for different parties such as
electric utilities, Transmission system operator (TSOs), Electricity
service providers (ESPs), Independent power producers (IPPs), and
energy traders.

Maintenance planning such as that of power plants components and
transmission lines.
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Introduction and motivation

In recent years, Uruguay has triggered a remarkable change in its
energy matrix. In (IRENA, 2019, p.23), Uruguay was among those
countries showcasing innovation, like Denmark, Ireland, Germany,
Portugal, Greece and Spain, with proven feasibility of managing annual
variable renewable energy (VRE) higher than 25% in power systems.

According to (REN21, 2019, pp.118–119), in 2018,
Uruguay achieved 36% of its electricity production from variable wind
energy and solar PV, raising the share of generation from wind energy
more than five-fold in just four years, from 6.2% in 2014 to 36% in
2018.

Including hydropower, Uruguay now produces more than 97% of its
electricity from renewable energy sources.
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Introduction and motivation

At present, Uruguay is fostering even higher levels of wind penetration
by boosting regional power trading with Argentina and Brazil. In this
rapidly evolving scenario, it is essential to analyze national data on
wind power production with wind power short-term forecasting to
orientate and assess the strategies and decisions of wind energy actors
and businesses.

Figure 2: Renewables: Top Ten countries according to REN21 in 2018.
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Data description

Wind power production data in Uruguay between April and December 2019,
normalized with respect to the maximum installed wind power capacity
(1474MW). Each day, wind power production recordings are available every
ten minutes. Data from three different forecast providers, available each day
starting at 1 pm.
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Figure 3: Two 24-hour segments with the normalized wind power real production
in Uruguay (blue line) recorded every ten minutes, and the hourly wind power
production forecasted by provider A (black line).
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Wind production forecast error histograms
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Curtailment

Figure 4: A real headache: Example of a day with curtailment

In Figure 4, we plot the real and corrected data corresponding to the day
19/01/2019. We observe from this figure that this day shows signs of curtail-
ment at the beginning. The data "Real" represents the raw real production
and "Real_corrected" is the real production with a tentative correction made
by the provider to curb the curtailment. The days containing curtailment
are removed from the dataset as they induce error.
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Forecast error, no curtailment (147 daily segments)
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Forecast error transition histograms

Figure 5: Forecast error transition histograms, applying the first-order difference
operator to the forecast errors.
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Phenomenological model

Let X = {Xt , t ∈ [0,T ]} be a [0, 1]-valued stochastic process that represents
the normalized wind power production, defined by the following Itô stochastic
differential equation (SDE):{

dXt = a (Xt ; pt , ṗt ,θ) dt + b (Xt ; pt , ṗt ,θ) dWt , t ∈ [0,T ]
X0 = x0 ∈ [0, 1]

(1)

where:
a (·, pt , ṗt ,θ) : [0, 1]→ R denotes a drift function,
b (·; pt , ṗt ,θ) : [0, 1]→ R+ is a diffusion function,
θ is a vector of unknown parameters,
(pt)t∈[0,T ] is the given forecast, taking values in [0,1] and (ṗt)t∈[0,T ] is
its time derivative,
(Wt)t∈[0,T ] is a standard real-valued Wiener process.
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Specification of the drift function

Time-dependent drift function that features the mean-reverting property as
well as derivative tracking:

a (Xt ; pt , ṗt ,θ) = ṗt − θt (Xt − pt) (2)

where (θt)t∈[0,T ] is a positive deterministic function, whose range depends
on θ, that controls the speed of reversion.
Observe: Given E [X0] = p0, apply Itô’s lemma on the forecast error, Vt =
Xt − pt , yielding

dVt = dXt − ṗtdt = −θt Vtdt + btdWt ,

and taking expectations yields, for t > 0,

dE [Vt ]

dt
= −θt E [Vt ]

implying E [Vt ] = 0 for t > 0. [Centering property]
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At this stage, the process defined by (1) with drift (2) satisfies the two
following properties:

it reverts to its mean pt , with a time-varying parameter θt ,
it tracks the time derivative ṗt .

Obs: A mean-reverting model without derivative tracking shows a delayed
path behavior.

Example: Consider the diffusion model (1) with

a(Xt ; pt ,θ) = −θ0(Xt − pt) , θ0 > 0.

Then, given E [X0] = p0, this diffusion has mean

E [Xt ] = pt − e−θ0t
∫ t

0
ṗse

θ0sds 6= pt . [Not Centered]
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Models with and without derivative tracking
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Figure 6: Pointwise confidence bands fitted, for the same daily segment, through
diffusion models without derivative tracking (plot on the left) and with derivative
tracking (plot on the right).
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Specification of the diffusion function

Let θ = (θ0, α), and choose a state-dependent diffusion term that avoids
the process exiting from the range [0, 1] as follows:

b (Xt ;θ) =
√

2αθ0Xt (1− Xt) (3)

where θ0 > 0, α > 0 is an unknown parameter that controls the path
variability.
This diffusion term belongs to the Pearson diffusion family,
in particular, it defines a Jacobi type diffusion.
Recall (Forman and Sørensen, 2008) that a Pearson diffusion is a stationary
solution to a stochastic differential equation of the form

dXt = −θ(Xt − µ)dt +
√

2θ
(
aX 2

t + bXt + c
)
dWt (4)

where θ > 0, and a, b, and c are parameters such that the square root is
well defined when Xt is in the state space.
These parameters, together with µ, determine the state space of the diffusion as
well as the shape of the invariant distribution.
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Normalized wind power production model

Normalized wind power production model

{
dXt = (ṗt − θt (Xt − pt))dt +

√
2αθ0Xt (1− Xt)dWt , t ∈ [0,T ]

X0 = x0 ∈ [0, 1]
(5)

To ensure that Xt is the unique solution to (5) ∀t ∈ [0,T ] with state
space [0,1] a.s., the mean-reversion time-dependent function θt must
satisfy the condition:

θt ≥ max

(
αθ0 + ṗt
1− pt

,
αθ0 − ṗt

pt

)
. (6)
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Theorem (Existence and Uniqueness)

Assume that

∀t ∈ [0,T ], 0 ≤ ṗt + θtpt ≤ θt , and sup
t∈[0,T ]

|θt | < +∞. (A)

Then, there is a unique strong solution to (5) s.t. for all t ∈ [0,T ],
Xt ∈ [0, 1] a.s.
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Truncated prediction function

Issue: If we choose the equality in (6), then θt becomes unbounded
when pt = 0 or pt = 1.
Our approach: Introduce a truncation parameter, 0 < ε << 1.
Consider the following truncated prediction function

pεt =


ε if pt < ε
pt if ε ≤ pt < 1− ε

1− ε if pt ≥ 1− ε

that satisfies pεt ∈ [ε, 1− ε] for any 0 < ε < 1
2 and t ∈ [0,T ], implying

that θt is bounded for every t ∈ [0,T ].

Theorem
Take 0 < ε < 1/2 and let (6) hold. Once we truncate p into pε, the
solution X to (5) does not reach the boundary of [0, 1] a.s.
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Forecast error of the normalized wind power production

Model for the forecast error of the normalized wind power production
The model for the forecast error of the normalized wind power
productionV = {Vt , t ∈ [0,T ]}, Vt = Xt − pt , ∀t ∈ [0,T ] is defined by
the following Itô stochastic differential equation (SDE):{

dVt = −θtVtdt +
√

2αθ0 (Vt + pt) (1− Vt − pt)dWt , t ∈ [0,T ]
V0 = v0 ∈ [−p0, 1− p0]

(7)
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Lamperti transform

John Lamperti (Lamperti, 1964) first showed that the use of Itô’s formula
on a well-chosen transformation of a diffusion process is again a diffusion
process solving a SDE with unit, constant diffusion coefficient.
(Nonlinear) Lamperti transform with unknown parameters:

Zt = h(Vt , t;θ) =

∫
dv

σ(v)

∣∣∣∣∣
v=Vt

=
1√
2αθ0

∫
1√

(v + pt)(1− v − pt)
dv

∣∣∣∣∣
v=Vt

= −
√

2
αθ0

arcsin(
√

1− Vt − pt)

(8)

By Itô’s lemma, if h(v , t) is C 2([−pt , 1 − pt ]) for v and C 1([0,T ]) for t,
then:

dZt =

(
∂th + ∂vh (−θtVt) +

1
2
∂2
vh σ

2
)
dt + ∂vh σ dWt .
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SDE with state independent unit diffusion term

Zt satisfies the SDE with constant, unitary diffusion coefficient,

dZt =

 ṗt − θt
(
1− pt − sin2

(
−
√

αθ0
2 Zt

))
√
2αθ0 cos

(
−
√

αθ0
2 Zt

)
sin
(
−
√

αθ0
2 Zt

)

−1
4

√
2αθ0

(
1− 2 cos2

(
−
√

αθ0
2 Zt

))
cos
(
−
√

αθ0
2 Zt

)
sin
(
−
√

αθ0
2 Zt

)
 dt + dWt

=

[
2ṗt − θt(1− 2pt) + (αθ0 − θt) cos(−

√
2αθ0Zt)√

2αθ0 sin (−
√
2αθ0Zt)

]
dt + dWt .

(9)
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Z-Forecast error transition histograms after Lamperti T.

Figure 7: Lamperti transformed forecast error transition histograms between April
and December 2019 without wind power production curtailment: low-power
(upper-left plot), mid-power (upper-right plot), high-power (lower-left plot), and
the global range of power (lower-right plot).
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Likelihood in the V−space (1/2)

M non-overlapping paths of the continuous-time Itô process V .
Each path is sampled at N + 1 equispaced discrete points with a given
interval length ∆.
We denote this random sample by

VM,N+1 =
{
VN+1
t1 ,VN+1

t2 , . . . ,VN+1
tM

}
,

where tj is the start time of the path j and
VN+1
tj =

{
Vtj+i∆, i = 0, . . . ,N

}
, ∀j ∈ {1, . . . ,M}.

Let ρ(v |vj ,i−1;θ) be the conditional probability density of Vtj+i∆ ≡ Vj ,i

given Vj ,i−1 = vj ,i−1 evaluated at v , where θ = (θ0, α) are the unknown
model parameters.
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Likelihood in the V−space (2/2)

The Itô process defined by the SDE (7) is Markovian.
The likelihood function of the sample VM,N+1 can be written as
follows:

L
(
θ;VM,N+1

)
=

M∏
j=1

{
N∏
i=1

ρ
(
Vj ,i |Vj ,i−1; p[tj,i−1,tj,i ],θ

)}

where tj ,i ≡ tj + i∆ for any j = 1, . . . ,M and i = 0, . . . ,N.

Obs: We have used an independence assumption over the index j in the
likelihood above.
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Moment matching technique

Closed-form expression for the transition densities of V ,
ρ (Vj ,i |Vj ,i−1;θ) are rarely available (Egorov et al., 2003).

Approximate likelihood methods
(Särkkä and Solin, 2019, Chapter 9).
Moment matching technique:

assume a surrogate transition density for V .
match the conditional moments of the surrogate density for V with the
conditional moments of the SDE models (7).

m1(t) ≡ E [Vt |Vtj,i−1 = vj ,i−1] = e
−

∫ t
tj,i−1

θsds
vj ,i−1, for any t ∈ [tj ,i−1, tj ,i [,

j = 1, . . . ,M and i = 1, . . . ,N .

For k ≥ 2, letmk(t) ≡ E
[
V k
t |Vtj,i−1 = vj ,i−1

]
apply Itô’s lemma on g(Vt) =

V k
t , yielding

Ahmed Kebaier SDE model for the wind power error forecast March 17, 2022 27 / 63



28/63

Moment matching technique

dmk(t)

dt
= −k(θt + (k − 1)αθ0)mk(t)

+ k(k − 1)αθ0(1− 2pt)mk−1(t)

+ k(k − 1)αθ0pt(1− pt)mk−2(t). (10)

with initial conditions mk(tj ,i−1) = vkj ,i−1 .

For any t ∈ [tj ,i−1, tj ,i [, the first two moments of V , m1(t) and m2(t), solve
the following ODE system

dm1(t)
dt = −m1(t)θt

dm2(t)
dt = −2(θt + αθ0)m2(t) + 2αθ0(1− 2pt)m1(t)

+2αθ0pt(1− pt)

(11)

with initial conditions m1(tj ,i−1) = vj ,i−1 and m2(tj ,i−1) = v2
j ,i−1 .
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Approximate log-likelihood in the V−space

For any t ∈ [tj ,i−1, tj ,i [, approximate the transition densities of the
process V using a Beta distribution (the invariant distribution of the
Jacobi type processes) with parameters ξ1 and ξ2.

ξ1(t) = −(µt + 1− ε)(µ2
t + σ2

t − (1− ε)2)

2(1− ε)σ2
t

,

ξ2(t) =
(µt − 1 + ε)(µ2

t + σ2
t − (1− ε)2)

2(1− ε)σ2
t

,

(12)

where µt = m1(t) and σ2
t = m2(t)−m1(t)2 .

The approximate log-likelihood ˜̀(·; vM,N+1) of the observed sample
vM,N+1 :
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Approximate log-likelihood in the V−space

˜̀
(
θ; vM,N+1)

=
M∑
j=1

N∑
i=1

log

{
1

2(1− ε)
1

B(ξ1(t−j,i ), ξ2(t−j,i ))

(
vj,i + 1− ε
2(1− ε)

)ξ1(t−j,i )−1

×
(
1− ε− vj,i
2(1− ε)

)ξ2(t−j,i )−1
}
, (13)

where the shape parameters ξ1(t−j ,i ) and ξ2(t−j ,i ), according to (12), de-
pend on the left limit moments, µ(t−j ,i ;θ) and σ2(t−j ,i ;θ), as t ↑ tj ,i . These
are computed solving numerically the initial-value problem (11). B(ξ1, ξ2)
denotes the Beta distribution with parameters ξ1 and ξ2.
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Approximate likelihood in the Z−space

The transition density of the process Z , which has been defined through the
Lamperti transformation (8) of V , can be conveniently approximated by a
Gaussian surrogate density.
The drift coefficient a(Zt ; pt , ṗt ,θ) of the process Z that satisfies (9) is
nonlinear. After linearizing the drift around the mean of Z , µZ (t) ≡ E [Zt ],
we obtain the following system of ODEs to compute, for any t ∈ [tj ,i−1, tj ,i [,
the approximations of the first two central moments of Z , say µ̃Z (t) ≈ E [Zt ]
and ṽZ (t) ≈ Var [Zt ]:{

dµ̃Z (t)
dt = a

(
µ̃Z (t); pt , ṗt ,θ

)
dṽZ (t)

dt = 2a′
(
µ̃Z (t); pt , ṗt ,θ

)
ṽZ (t) + 1

(14)
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Approximate likelihood in the Z−space
with initial conditions µ̃Z (tj ,i−1) = zj ,i−1 and ṽZ (tj ,i−1) = 0 , and where

a′ (µ̃Z (t); pt , ṗt ,θ)

=
(αθ0 − θt)− cos(

√
2αθ0Zt)[θt(1− 2pt)− 2ṗt ]

sin2 (
√
2αθ0Zt)

.

The approximate Lamperti log-likelihood ˜̀
Z

(
·; zM,N+1) for the observed

sample zM,N+1 is given by

˜̀
Z

(
θ; zM,N+1

)
=

M∑
j=1

N∑
i=1

log

 1√
2πṽZ (t−j ,i ;θ)

exp

(
−

(zj ,i − µ̃Z (t−j ,i ;θ))2

2ṽZ (t−j ,i ;θ)

) , (15)

where the limits µ̃Z (t−j ,i ;θ) and ṽZ (t−j ,i ;θ) are computed solving numerically
the initial-value problem (14).
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Initial guess for (θ0, α)

We use least square minimization and quadratic variation over the data to
find an initial guess (θ∗0, α

∗).
We consider the observed data vM,N+1 with length between observations ∆,
where i ∈ {0, . . . ,N − 1} and j ∈ {1, . . . ,M}.

For any t ∈ [tj ,i , tj ,i+1[, the random variable (Vj ,i+1|vj ,i ) has a
conditional mean that can be approximated by the solution of the
following system: {

dE[V ](t) = −θtE[V ](t)dt
E [V ] (tj ,i ) = vj ,i

in the limit t ↑ tj ,i+1, i.e., E [V ] (t−j ,i+1).

If we assume that θt = c ∈ R+ for all t ∈ [tj ,i , tj ,i+1[, then
E [V ] (t−j ,i+1) = vj ,ie

−c∆.
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Initial guess for (θ0, α)

Given M × N transitions, we can write the regression problem for the
conditional mean with L2 loss function as:

c∗ = arg min
c≥0

 M∑
j=1

N−1∑
i=0

(
vj ,i+1 − E[V ]

(
t−j ,i+1

))2


= arg min

c≥0

 M∑
j=1

N−1∑
i=0

(
vj ,i+1 − vj ,ie

−c∆
)2


≈ arg min

c≥0

 M∑
j=1

N−1∑
i=0

(vj ,i+1 − vj ,i (1− c∆))2

 (16)
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Initial guess for (θ0, α)

Least square minimization
As equation (16) is convex in c, then

c∗ ≈
∑M

j=1
∑N−1

i=0 vj ,i (vj ,i − vj ,i+1)

∆
∑M

j=1
∑N−1

i=0 (vj ,i )
2

Set θ∗0 = c∗ .
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Initial guess for (θ0, α)

Quadratic variation
We approximate

the quadratic variation of the ltô’s process V is
[V ]t =

∫ t
0 b(Vs ;θ, ps)2ds

where b(Vs ;θ, ps) =
√

2αθ0 (Vs + ps) (1− Vs − ps)
with
the discrete process quadratic variation :

∑
0<tj,i≤t

(
Vtj,i+1 − Vtj,i

)2.
Initial guess for the diffusion variability coefficient θ0α:

θ∗0α
∗ ≈

∑M
j=1
∑N−1

i=0 (vj ,i+1 − vj ,i )
2

2∆
∑M

j=1
∑N−1

i=0 (vj ,i+1 + pj ,i+1) (1− vj ,i+1 − pj ,i+1)

where ∆ is the length of the time interval between two consecutive
measurements.
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Model specification with the additional parameter δ

To ensure that E (Xt) = pt at all times, we need E [V0] = 0. For most days,
the forecast error at time tj ,0 = 0 is not zero.

1 Assume that there is a time in the past tj ,−δ < tj ,0, such that the
forecast error is zero, Vj ,−δ = 0.

2 Extrapolate backward linearly the truncated prediction function to get
its value at time tj ,−δ, pj ,−δ, and set vtj,−δ = 0.
Given the parameters (θ0, α), find δ by maximizing the likelihood of
initial transitions:

arg max
δ
L̃δ
(
θ, δ; vM,1

)
= arg max

δ

M∏
j=1

ρ0 (vj ,0|vj ,−δ;θ, δ) , (17)

where L̃δ is the approximated δ−likelihood.
Now assume that the initial transition density has a Beta distribution
and apply the moment matching technique.

Ahmed Kebaier SDE model for the wind power error forecast March 17, 2022 37 / 63



38/63

Model specification with the additional parameter δ

The approximated complete likelihood L̃c , which estimates the vector (θ0, α, δ),
is given by

L̃c
(
θ, δ; vM,N+1

)
= L̃

(
θ; vM,N+1

)
L̃δ
(
θ, δ; vM,1

)
, (18)

where L̃
(
θ; vM,N+1) is the non-log version of (13). As we can provide initial

guesses for θ and δ, we have a starting point for the numerical optimization
of the approximated complete likelihood (18).
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Application: Uruguay wind and forecast dataset

Partition the 147 segments of normalized wind power production, each 24-
hours long. Select 73 non-contiguous segments for the models’ calibration
procedure, assigning them to the training set. The other 74 non-contiguous
segments compose the test set.

Optimal parameters in the V -space: (θV0 , α
V ) = (1.93, 0.050)

Optimal parameters in the Z -space: (θZ0 , α
Z ) = (1.87, 0.043)
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Application: Uruguay wind and forecast dataset

Model comparison and assessment of the forecast providers.

Model 1: (Elkantassi et al., 2017, p.383): This model does not feature
derivative tracking:{

dXt = −θ0(Xt − pt)dt +
√

2αθ0Xt(1− Xt)dWt , t ∈ [0,T ]
X0 = x0 ∈ [0, 1],

(19)

with θ0 > 0, α > 0.

Model 2: This model features derivative tracking and time-varying
mean-reversion parameter, θt = max

(
θ0,

αθ0+|ṗt |
min(pt ,1−pt)

)
,

{
dXt =

(
ṗt − θt(Xt − pt)

)
dt +

√
2αθ0Xt(1− Xt)dWt , t ∈ [0,T ]

X0 = x0 ∈ [0, 1],
(20)

with θ0 > 0, α > 0 and θt satisfying condition (6).
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Application: Uruguay wind and forecast dataset

Table 1: Model comparison.

Model
Forecast
Provider

Method
Product
θ0α

AIC BIC

Model 1 Provider A Gaussian Proxy 0.105 -58226 -58211
Shoji-Ozaki 0.104 -58226 -58211
Beta Proxy 0.104 -58286 -58271

Provider B Gaussian Proxy 0.105 -58226 -58211
Shoji-Ozaki 0.104 -58226 -58211
Beta Proxy 0.104 -58288 -58273

Provider C Gaussian Proxy 0.105 -58226 -58211
Shoji-Ozaki 0.104 -58226 -58211
Beta Proxy 0.104 -58286 -58271

Model 2 Provider A Beta Proxy 0.097 -73700 -73685
Provider B Beta Proxy 0.098 -73502 -73487
Provider C Beta Proxy 0.108 -72518 -72503
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Application: Uruguay wind and forecast dataset

The optimal estimates of the parameters of Model 2, for the three forecast
providers, with Beta surrogates for the transition density:

Table 2: Optimal parameters for the three different forecast providers using Model
2 with Beta proxies.

Forecast Provider Parameters (θ0, α) Product θ0α

Provider A (1.93, 0.050) 0.097
Provider B (1.42, 0.069) 0.098
Provider C (1.38, 0.078) 0.108
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Application: Uruguay wind and forecast dataset
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Figure 8: Two days with five simulated wind power production paths.

Given optimal estimates of the parameters of the complete likelihood for
Model 2, obtain empirical pointwise confidence bands for wind power pro-
duction (5000 simulations per day).
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Application: Uruguay wind and forecast dataset
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Figure 9: Empirical pointwise confidence bands for the wind power production
using the approximate MLEs for Model 2.
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Summary and conclusions

A methodology is developed to assess the short-term forecast of the
normalized wind power, which is agnostic of the wind power forecasting
technology.

We built a phenomenological stochastic differential equation model
for the normalized wind power production forecast error, with time-
varying mean-reversion parameter and time-derivative tracking of the
forecast in the linear drift coefficient, and state-dependent and time
non-homogenous diffusion coefficient.

The Lamperti transform with unknown parameters provides a version of
the proposed model with a unit diffusion coefficient.

We used approximate likelihood-based methods for models’ calibration.

The incorporation of an early transition with an additional parameter
accounts for the forecast’s uncertainty at the beginning of each future
period.
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Summary and conclusions

We obtained a robust procedure for synthetic data generation that, using
the available forecast input, embraces future wind power production
paths through empirical pointwise bands with prescribed confidence.

Application to the wind power production and three forecast providers
dataset in Uruguay between April and December 2019.

An objective tool is available for forecast assessment and comparison
through model selection.

This work contributes toward the efficient management of renewable
energies.

Ahmed Kebaier SDE model for the wind power error forecast March 17, 2022 46 / 63



47/63

Main references

Alfonsi, A. (2015). Affine Diffusions and Related Processes: Simulation, The-
ory and Applications (Vol. 6). Springer.

Badosa, J., Gobet, E., Grangereau, M., & Kim, D. (2018). Day-ahead proba-
bilistic forecast of solar irradiance: A stochastic differential equation
approach (P. Drobinski, M. Mougeot, D. Picard, R. Plougonven,
& P. Tankov, Eds.). In P. Drobinski, M. Mougeot, D. Picard, R.
Plougonven, & P. Tankov (Eds.), Renewable energy: Forecasting and
risk management, Cham, Springer International Publishing.

Caballero, R., Kebaier, A., Scavino, M., & Tempone, R. (2021). Quantifying
uncertainty with a derivative tracking SDE model and application to
wind power forecast data. Stat. Comput., 31(5), Paper No. 64, 19.
https://doi.org/10.1007/s11222-021-10040-8

Carlsson, J., Moon, K.-S., Szepessy, A., Tempone, R., & Zouraris, G. (2010).
Stochastic differential equations: Models and numerics. Lecture notes.

Ahmed Kebaier SDE model for the wind power error forecast March 17, 2022 47 / 63

https://doi.org/10.1007/s11222-021-10040-8


48/63

Main references

Chang, W.-Y. (2014). A Literature Review of Wind Forecasting Methods.
Journal of Power and Energy Engineering, 2(4), 161–168. https :
//doi.org/10.4236/jpee.2014.24023

Egorov, A. V., Li, H., & Xu, Y. (2003). Maximum likelihood estimation of
time-inhomogeneous diffusions. Journal of Econometrics, 114, 107–
139.

Elkantassi, S., Kalligiannaki, E., & Tempone, R. (2017). Inference and Sensi-
tivity in Stochastic Wind Power Forecast Models. In M. Papadrakakis,
V. Papadopoulos, & G. Stefanou (Eds.), 2nd ECCOMAS Thematic
Conference on Uncertainty Quantification in Computational Sciences
and Engineering (pp. 381–393). Rhodes Island, Greece, Eccomas
Proceedia UNCECOMP 2017. https://doi.org/10.7712/120217.
5377.16899

Ahmed Kebaier SDE model for the wind power error forecast March 17, 2022 48 / 63

https://doi.org/10.4236/jpee.2014.24023
https://doi.org/10.4236/jpee.2014.24023
https://doi.org/10.7712/120217.5377.16899
https://doi.org/10.7712/120217.5377.16899


49/63

Main references

Forman, J. L., & Sørensen, M. (2008). The Pearson diffusions: A class of
statistically tractable diffusion processes. Scandinavian Journal of
Statistics, 35(3), 438–465.

Giebel, G., Brownsword, R., Kariniotakis, G., Denhard, M., & Draxl, C.
(2011). The state-of-the-art in short-term prediction of wind power:
A literature overview. ANEMOS. plus.

Iacus, S. M. (2008). Simulation and Inference for Stochastic Differential
Equations: With R Examples. New York, Springer.

IRENA. (2019). Innovation landscape for a renewable-powered future: Solu-
tions to integrate variable renewables. Abu Dhabi.

IRENA. (2020). Renewable Energy Statistics 2020 The International Renew-
able Energy Agency. Abu Dhabi.

Jang, H. S., Bae, K. Y., Park, H.-S., & Sung, D. K. (2016). Solar power
prediction based on satellite images and support vector machine.
IEEE Transactions on Sustainable Energy, 7(3), 1255–1263.

Ahmed Kebaier SDE model for the wind power error forecast March 17, 2022 49 / 63



50/63

Main references

Karatzas, I., & Shreve, S. E. (1998). Brownian motion. In Brownian motion
and stochastic calculus (pp. 47–127). New York, NY, Springer New
York. https://doi.org/10.1007/978-1-4612-0949-2_2

Kuo, H. (2006). Introduction to stochastic integration. universitext, Springer
New York.

Lamperti, J. (1964). A simple construction of certain diffusion processes. J.
Math. Kyoto Univ., 4(1), 161–170. https://doi.org/10.1215/kjm/
1250524711

Møller, J. K., Zugno, M., & Madsen, H. (2016). Probabilistic Forecasts of
Wind Power Generation by Stochastic Differential Equation Models.
Journal of Forecasting, 35(3), 189–205.

Rana, M., Koprinska, I., & Agelidis, V. G. (2016). Univariate and multivariate
methods for very short-term solar photovoltaic power forecasting.
Energy Conversion and Management, 121, 380–390.

REN21. (2019). Renewables 2019 Global Status Report. Paris.

Ahmed Kebaier SDE model for the wind power error forecast March 17, 2022 50 / 63

https://doi.org/10.1007/978-1-4612-0949-2_2
https://doi.org/10.1215/kjm/1250524711
https://doi.org/10.1215/kjm/1250524711


51/63

Main references

Särkkä, S., & Solin, A. (2019). Applied Stochastic Differential Equations.
Cambridge University Press.

Wu, Y.-K., Chen, C.-R., & Abdul Rahman, H. (2014). A novel hybrid model
for short-term forecasting in pv power generation. International Jour-
nal of Photoenergy, 2014.

Zhou, Z., Botterud, A., Wang, J., Bessa, R., Keko, H., Sumaili, J., & Mi-
randa, V. (2013). Application of probabilistic wind power forecasting
in electricity markets. Wind Energy, 16(3), 321–338. https://doi.
org/10.1002/we.1496

Ahmed Kebaier SDE model for the wind power error forecast March 17, 2022 51 / 63

https://doi.org/10.1002/we.1496
https://doi.org/10.1002/we.1496


52/63

Thank you very much for your attention!
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Behavior of δ as function of θ

The initial time δ decreases as θ0α increases. This is a consequence of
the increment in the diffusion as θ0α increases. As there is more
diffusion, less time is needed for the initial transition density to cover
the initial error observations.

The initial time δ increases as θ0 increases. As we increment θ0, the
mean reversion becomes larger and reduces the variance for the initial
transition density. Then, more time is needed for the initial transition
density to cover the initial error observations.
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Behavior of δ as function of θ

Figure 10: Initial value for δ as a function of the elements of the parameter vector
θ.
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Theorems

For a time horizon T > 0, a parameter α > 0, and (θt)t∈[0,T ] a positive
deterministic function, let us consider the model given by{

dXt =
(
ṗt − θt(Xt − pt)

)
dt +

√
2αθ0Xt(1− Xt)dWt , t ∈ [0,T ]

X0 = x0 ∈ [0, 1],
(21)

where (pt)t∈[0,T ] denotes the prediction function that satisfies 0 ≤ pt ≤ 1 for
all t ∈ [0,T ]. This prediction function is assumed to be a smooth function
of the time so that

sup
t∈[0,T ]

(
|ps |+ |ṗs |

)
< +∞.

The following proofs are based on standard arguments for stochastic pro-
cesses that can be found e.g. in Alfonsi, 2015 and Karatzas and Shreve,
1998 that we adapted to the setting of our model (21).
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Theorems

Theorem

Assume that

∀t ∈ [0,T ], 0 ≤ ṗt + θtpt ≤ θt , and sup
t∈[0,T ]

|θt | < +∞. (A)

Then, there is a unique strong solution to (21) s.t. for all t ∈ [0,T ],
Xt ∈ [0, 1] a.s.

Let us first consider the following SDE for t ∈ [0,T ]

Xt = x0 +

∫ t

0

(
ṗs − θs(Xs − ps)

)
ds

+

∫ t

0

√
2αθ0|Xs(1− Xs)|dWs , 0 ≤ x0 ≤ 1. (22)
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Theorems

According to Proposition 2.13, p.291 of Karatzas and Shreve, 1998, under
assumption (A) there is a unique strong solution Xt to (22). Moreover, as
the diffusion coefficient is of linear growth, we have for all p > 0

E

[
sup

t∈[0,T ]
|Xt |p

]
<∞. (23)

Then, it remains to show that for all t ∈ [0,T ], Xt ∈ [0, 1] a.s. For this aim,
we need to use the so-called Yamada function ψn that is a C2 function that
satisfies a bunch of useful properties:

|ψn(x)| →
n→+∞

|x |, xψ′n(x) →
n→+∞

|x |,

|ψn(x)| ∧ |xψ′n(x)| ≤ |x |, ψ′n(x) ≤ 1,

and ψ′′n(x) = gn(|x |) ≥ 0 with gn(x)x ≤ 2
n

for all x ∈ R.
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Theorems

See the proof of Proposition 2.13, p. 291 of Karatzas and Shreve, 1998 for
the construction of such function. Applying Itô’s formula we get

ψn(Xt) = ψn(x0) +

∫ t

0
ψ′n(Xs)(ṗs + θsps − θsXs

)
ds

+

∫ t

0
ψ′n(Xs)

√
2αθ0|Xs(1− Xs)|dWs

+ αθ0

∫ t

0
gn(|Xs |)|Xs(1− Xs)|ds.

Now, thanks to (A), (23), and to the above properties of ψn and gn, we get

E [ψn(Xt)] ≤ ψn(x0) +

∫ t

0

(
ṗs + θsps − θsE[ψ′n(Xs)Xs ]

)
ds

+
2αθ0
n

∫ t

0
E [|1− Xs |] ds.
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Theorems

Therefore, letting n tends to infinity, we use Lebesgue’s theorem to get

E [|Xt |] ≤ x0 +

∫ t

0
(ṗs + θsps − θsE [|Xs |]) ds.

Besides, taking the expectation of (22), we get

E [Xt ] = x0 +

∫ t

0

(
ṗs + θsps − θsE [Xs ]

)
ds,

and thus we have

E [|Xt | − Xt ] ≤
∫ t

0
θsE [|Xs | − Xs ] ds.
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Theorems

Then, Gronwall’s lemma gives us E [|Xt |] = E [Xt ] and thus for any t ∈ [0,T ]
Xt ≥ 0 a.s. The same arguments work to prove that for any t ∈ [0,T ]
Yt := 1− Xt ≥ 0 a.s. since the process (Yt)t∈[0,T ] is solution to

dYt =
(
θt(1− pt)− ṗt − θtYt

)
dt −

√
2αθ0Yt(1− Yt)dWt .

Then similarly, we need to assume that ṗt + θtpt ≥ 0. This completes the
proof.
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Theorems

Theorem

Assume that assumptions of Theorem 3 hold with x0 ∈]0, 1[. Let
τ0 := inf{t ∈ [0,T ], Xt = 0} and τ1 := inf{t ∈ [0,T ], Xt = 1} with the
convention that inf ∅ = +∞. Assume in addition that for all t ∈ [0,T ],
pt ∈]0, 1[ and that

θt ≥ max

(
αθ0 + ṗt
1− pt

,
αθ0 − ṗt

pt

)
. (B)

Then, τ0 = τ1 = +∞ a.s.

For t ∈ [0, τ0[, we have

dXt

Xt
=

(
ṗt + θtpt

Xt
− θt

)
dt +

√
2αθ0(1− Xt)

Xt
dWt
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Theorems

so that

Xt = x0 exp

(∫ t

0

ṗs + θsps − θ0α
Xs

ds + αθ0t −
∫ t

0
θsds + Mt

)
,

where Mt =
∫ t
0

√
2αθ0(1−Xs)

Xs
dWs is a continuous martingale. Then as for all

t ∈ [0,T ], we have ṗt + θtpt − θ0α ≥ 0, we deduce that

Xt ≥ x0 exp

(
αθ0t −

∫ t

0
θsds + Mt

)
.

By way of contradiction let us assume that {τ0 < ∞}, then letting t → τ0
we deduce that

lim
t→∞

1{τ0<∞}Mt∧τ0 = −1{τ0<∞}∞ a.s.
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Theorems

This leads to a contradiction since we know that continuous martingales
likewise the Brownian motion cannot converge almost surely to +∞ or −∞.
It follows that τ0 =∞ almost surely. Next, recalling that the process (Yt)t≥0
given by Yt = 1− Xt is solution to

dYt =
(
θt(1− pt)− ṗt − θtYt

)
dt −

√
2αθ0Yt(1− Yt)dWt ,

we deduce using similar arguments as above τ1 = ∞ a.s. provided that
θt(1− pt)− ṗt − αθ0 ≥ 0.
Remark: As the diffusion coefficient of Xt given by x 7→

√
2αθ0x(1− x) is

strictly positive for all x ∈]0, 1[, the condition (B) ensures that the transfor-
mation between Zt and Xt is bijective, so that we deduce the properties of
existence and uniqueness of Zt from those of Xt .
The application of Itô’s formula is subjected to the condition (B) that avoids
the process Xt hits the boundaries of the interval ]0, 1[, otherwise the Lam-
perti transform is not applicable.

Ahmed Kebaier SDE model for the wind power error forecast March 17, 2022 63 / 63


	Introduction and motivation
	Wind power production and forecast providers data in Uruguay
	Model Building: Phenomenological Model
	Normalized wind power production model

	State independent diffusion term: Lamperti transform
	 Likelihood functions of the forecast error data and optimization algorithm
	Likelihood in the V-space
	Approximate likelihood in the V-space
	Approximate likelihood in the Z-space
	Algorithm for the approximate maximum likelihood estimations
	Initial guess for the parameters (0, )

	Application: Uruguay wind and forecast dataset
	Summary and conclusions
	Main references
	Main references

