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Presentation

Let (Xt)t∈Z be a time series, a natural question is to quantify the asymptotic
independence of this process at the times:

This problem is considered through elementary ideas and applications adapted to
large sample data

Outline:

From independence to dependence

Models

Technique

Applications, estimation, resampling, Ecology
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Independence

Independence

We wish to answer the question
How to weaken the independence relation

P(A ∩ B) = P(A)P(B) ?

relating the events A ∈ σ(P) of the past history with those B ∈ σ(F )
in a (not so close) future.
This relation is also restated as:

Cov(f (P), g(F )) = 0, ∀f , g , ‖f ‖∞, ‖g‖∞ ≤ 1

(Variables P , F denote here Past and Future)
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Mixing

Mixing (Rosenblatt, 1956)

α(σ(P), σ(F )) = sup
A,B
|P(A ∩ B)− P(A)P(B)|

=
1

2
sup

‖f ‖∞,‖g‖∞≤1
|Cov(f (P), g(F ))|

X = (Xt)t∈Z, P = (Xi1 , . . . ,Xiu ),F = (Xj1 , . . . ,Xjv ),

i1 ≤ · · · ≤ iu, j1 ≤ · · · ≤ jv and r = j1 − iu is large:

α(r) = sup
P,F

α(σ(P), σ(F ))→r→∞ 0

See Rio 2000 for sharp technical results, see also Doukhan 1994 and Bradley 2007

Some nonmixing models

Xt = 1
2 (Xt−1 + ξt) , ξt ∼ b

(
1
2

)
iid, Andrews-Rosenblatt (1984) (Xt−1 = frac(2Xt))

Xt = ξt(1 + aXt−1), P(ξ0 = ±1) = 1/2, a ∈
(
3−
√
5

2 , 12
]

, (Xt =
∑

j≥0 a
jξt · · · ξt−j)

Paul Doukhan, CY University , FRANCE Applications of weak dependence to Ecology



Presentation Dependences Models Technique Applications

Covariance

Covariances versus independence

Independence sometimes coincides with orthogonality
Cov(X ,Y ) = 0 =⇒ independence of a random vector (X ,Y ) if

X ,Y ∈ {0, 1} admit Bernoulli distributions
(X,Y) is a Gaussian vector
(X,Y) is an associated vector (see below)

X ∈ Rp associated ⇔ Cov(f (X ), g(X )) ≥ 0 for f , g : Rp → R (coordinatewise ↑)

Then |Cov(f (X ), g(Y ))| ≤
∑
i,j

aibj |Cov(Xi ,Yj)|,

for (X ,Y ) ∈ Rp+q associated or Gaussian

|f (x1, . . . , xp)− f (y1, . . . , yp)| ≤ a1|x1 − y1|+ · · ·+ ap|xp − yp|
|g(x1, . . . , xq)− g(y1, . . . , yq)| ≤ b1|x1 − y1|+ · · ·+ bq|xq − yq|

Counterexamples: independent vectors, stability through ↑ images
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Linear processs

A linear process

Xt =
∞∑

j=−∞

ajξt−j ,
∞∑

j=−∞

|aj | <∞, ‖ξ0‖m <∞, (ξt)t∈Z iid

X p
t =

∑
|j|<p

ajξt−j ⇒ ‖Xt − X p
t ‖m ≤ ‖ξ0‖m

∑
|j|≥p

|aj |,

t − s > 2p ⇒ (X p
s ,X

p
t ) independent.

|Cov(f (Xs), g(Xt))| ≤ |Cov(f (Xs)− f (X p
s ), g(Xt))|

+ |Cov(f (X p
s ), g(X p

t ))| + |Cov(f (X p
s ), g(Xt)− g(X p

t ))|
≤ 2Lip g‖f ‖∞‖Xs − X p

s ‖1 + 2Lip f ‖g‖∞‖Xt − X p
t ‖1

A definition of weak dependence should be flexible enough to include both this
example (which includes ARMA models) and that of associated processes.
It should also yield reasonable limit theory in order to work out the consistency of
statistical procedures.
Bickel & Bühlmann (1999) also define weak dependence to bootstrap such models:
in this case innovations do not admit a density.
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General formulation

General formulation (Doukhan & Louhichi, 1999)

(Xt)t∈Z (∈ E ), f : E u → R from F , g : E v → R from G:

|Cov (f (Xi1 , . . . ,Xiu), g(Xj1 , . . . ,Xjv ))| ≤ Ψ(f , g)ε(r), ε(r) ↓ 0

Ψ(f , g) = vLip g , ε(r) = θ(r),
= uLip f + vLip g + uvLip f · Lip g , ε(r) = λ(r)

Lip f = sup
(y1,...,yu) 6=(x1,...,xu)

|f (y1, . . . , yu)− f (x1, . . . , xu)|
‖y1 − x1‖+ · · ·+ ‖yu − xu‖

.

Noncausal coefficients correspond to symmetric Ψ’s.

Random fields or metric index sets are also considered (think of point processes).
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vector LARCH(∞) models

Xt = ξt

(
a +

∞∑
j=1

ajXt−j

)
, Xt(n × 1), ξt(n × p), a(p × 1), aj(p × n)

φ = ‖ξ0‖m
∑

j ‖aj‖ < 1, a Lm-solution for (8) writes

Xt = ξt
(
a +

∞∑
k=1

∑
j1,...,jk≥1

aj1ξt−j1 · · · ajk ξt−j1−···−jk a
)

Then θ(t) ≤ C t−b, C (q ∨ φ)
√
t , C e−bt

if respectively A(s) ≤ C ′s−b, C ′qs , or aj = 0, j > C ′

A(s) = ‖ξ0‖m
∑

j≥s ‖aj‖

GARCH(p, q) (Engle, Granger) rt = σtεt , σ
2
t =

∑p
j=1 βjσ

2
t−j + γ0 +

∑q
j=1 γj r

2
t−j

ARCH(∞) (Surgailis et al. 2001) rt = σtεt , σ2
t = β0 +

∑∞
j=1 βj r

2
t−j

Bilinear (Giraitis, Surgailis, 2003) Xt = ζt
(
a +

∑∞
j=1 ajXt−j

)
+ b +

∑∞
j=1 bjXt−j
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General memory models

Xt = F (Xt−1,Xt−2,Xt−3, . . . ; ξt), (ξt)t∈Z iid, F : (Rd)N × RD → Rd

with ‖F (x1, x2, x3, . . . ; ξt)− F (y1, y2, y3, . . . ; ξt)‖m ≤
∞∑
j=1

aj‖xj − yj‖, then:

‖F (0, 0, 0, . . . ; ξt)‖m <∞, a =
∑∞

j=1 aj < 1 (m ≥ 1) imply existence in Lm,
stationarity and weak dependence:

θ(r) ≤ C inf
N>0

(∑
j≥N

aj + a
r
N

)

Regression models Xt = f (Xt−1, . . . ,Xt−k) + ζtg(Xt−1, . . . ,Xt−k) + ξt

variations on LARCH Xt = ξt
(
a +

∑∞
j=1 aj(Xt−j)

)
, aj Lipschitz

Mean fields type models Xt = f
(
ξt ,
∑

s≥1 asXt−s

)
, f Lipschitz
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Integer valued models

Thining, Steutel & van Harn operator is defined as

a ◦ X = sign(X )
∑|X |

i=1 Yi for a > 0, X ∈ Z,
(Yi )i is iid, context-independent, EY0 = a (e.g. Poisson or Bernoulli).

Galton-Watson process with immigration, INAR Xt = a ◦ Xt−1 + ξt

Integral bilinear models Xt = a ◦ Xt−1 + b ◦ (εt−1Xt−1) + εt
Estimation from moments (Doukhan, Latour, Oraichi, 2006).

INLARCH(∞) Xt = ξt

(
a0 +

∑∞
j=1 aj ◦ Xt−j

)
QMLE (Latour, Truquet 2008).

GLM integer models Xt |Ft−1 ∼ P(λt) with λt = g(λt−1,Xt−1, . . .) with
Fokianos and Tjostheim, 2011 and with Fokianos and Rynkiewicz (2021).

More recent papers on
http://doukhan.perso.cyu.fr/publications.html

Existence of strictly stationary solutions, weak dependence properties
=⇒ limit theory in estimation procedures.

Allowing Xt ≤ 0 also gives non-associated and perhaps non-mixing processes
Paul Doukhan, CY University , FRANCE Applications of weak dependence to Ecology

http://doukhan.perso.cyu.fr/publications.html


Presentation Dependences Models Technique Applications

Limit theorems are fundamental to prove consistencies

Moment inequalities

for integer moments, Doukhan & Louhichi use combinatorial methods
for causal coefficients Louhichi, Prieur use Lindeberg method
for (2 + δ)−order Doukhan & Wintenberger extend Ibragimov (1975) argument

Exponential inequalities

For iid rvs, Bernstein inequality writes P(Sn ≥ t
√
n) ≤ C exp

{
− t2

2σ2+K t√
n

}
Doukhan, Louhichi use moment combinatorics to get ≤ Ce−c

√
t ,

Doukhan, Neumann use cumulant techniques ≤ C exp
{
− t2

2σ2 + K(t/
√
n)α

}
,

Rio (2000) and Dedecker (1999) extend Nagaev-Fuk maximal inequalities
Dedecker & Prieur use coupling arguments under causality. See also Rio,
Merlevède and Peligrad (2010).
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Limits in distribution enable goodness of fit tests I

A) Donsker invariance principles,

Xn stationary, with EX0 = 0, with σ2 =
∑∞

k=−∞ Cov(X0,Xk) ≥ 0 (well defined),
then

1√
n

[nt]∑
k=1

Xk
D[0,1]−→ n→∞ σWt

if one of those conditions holds

E|X0|2+δ <∞ and λ(i) = O(i−a) for a > 2 + 2/δ

E|X0|2+δ <∞ and κ(i) = O(i−a) for a > 2

E|X0|2+δ <∞ and
∑

i>0 i
1/δθ(i) <∞,

E|X0|2 log+ |X0| <∞ and θ(i) = O(ai ) for some 0 < a < 1.

Dedecker, Doukhan, Louhichi, Prieur, Wintenberger
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Limits in distribution enable goodness of fit tests II

B) Empirical Central Limit Theorem

Xn stationary, then
1√
n

n∑
k=1

(1(Xk ≤ x)− F (x))
D[R]−→n→∞ Z (x) where (Z (x))x∈R is

the centered Gaussian process with covariance

Γ(x , y) =
∞∑

k=−∞

Cov(1(X0 ≤ x), 1(Xk ≤ y))

if F (x) ≡ x , and a weak dependence condition is assumed

θ(i) = O(i−a) for a > 1 (Dedecker and Prieur)

λ(i) = O(i−a) for a > 15/2 (under association: a > 4 is enough: Louhichi)

η(i) = O(i−a) for a > 2 + 2
√

2 ≈ 4.8 · · · (Prieur)
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Applications

Estimation
- Moment method for integer valued bilinear models (with Latour, Oraichi),
- QMLE for ARCH(∞), INLARCH(∞)(Bardet, Latour, Truquet, Wintenberger)
- Whittle estimator, empirical periodogram contrast (with Bardet, & León)

- Kernel estimation Xn = f (Xn−1, . . . ,Xn−p) + ξng(Xn−1, . . . ,Xn−q) (with Ango Nze,

Dedecker, Louhichi, Prieur, Ragache, & Wintenberger), and prediction...

Random fields, reliability of multicomponent systems (with Lang, Louhichi,

Truquet, Ycart)

Hard resampling is possible under nonparametric autoregression, since
innovations dont need to have a density (with Neumann 2008, Neumann,
Paparoditis, 2006)

Stochastic algorithms, Sparsity, regression and density estimation (with
Brandière, Alquier)

Ripley statistics for point processes, uses spatial definitions for the dependence
of such models (with Lang, 2016) ,we define weakly dependent point processes
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A tool for CLT: Lindeberg Method

Zi ∈ Rd 0-mean, An =
∑n

i=1 E
(
‖Zi‖2+δ

)
<∞, 0 < δ ≤ 1

for Yi ∼ N (0,Var Zi ) independent and f ∈ C3b and n ∈ N∗:

∆n =
∣∣∣E(f (Z1 + · · ·+ Zn)− f (Y1 + · · ·+ Yn)

)∣∣∣ (1)

Lemma 1 [standard Lindeberg Lemma under independence, 1922]

∆n ≤ 3 ‖f (2)‖1−δ∞ ‖f (3)‖δ∞ · An.

Lemma 2 [Dependent Lindeberg (Bardet, Doukhan, Lang & Ragache, 2007)]

Set f (x) = e i<t,x> for t ∈ Rd , Tt(n) =
n∑

j=1

∣∣Cov(e i<t,X1+···+Xj−1>, e i<t,Xj>)
∣∣ then

∆n ≤ Tt(n) + 3‖t‖2+δAn.
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Kernel density estimation (a typical application)

(Xi )i∈N stationary with marginal density f . K : R→ R bounded Lipschitz,∫∞
−∞ K (t) dt = 1, f̂ (x) = 1

n

∑n
i=1

1
hn

K
(

x−Xi

hn

)
for x ∈ R, hn → 0, nhn →∞.

Proposition 2

If ‖f ‖∞ <∞, supi 6=j ‖fi,j‖∞ <∞ (joint marginal densities), then

√
nhn

(
f̂ (x)− Ef̂ (x)

)
D−→

n→∞
N
(

0, f (x)

∫
R
K 2(t) dt

)
if for example θ(r) = O(r−θ) with θ > 3, hn = o(1).

The random variables Zi,n = (Ui,n − EUi,n)/
√
nh are pairwise asymptotically

independent as n→∞ where Ui,n = K
(

x−Xi

hn

)
. This will allow us to use directly

our Lindeberg lemma.
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Moment inequalities

In order to derive CLT for the partial sums a way is to make use of Bernstein blocks, this
means splitting the indices in a sample {1, . . . , n} into k blocs distant at least q with
n ∼ k(p + q). Then rvs are replaced by sums inside large blocks with size p while small blocks
with size q are ignored.

Hence moments of partial sums are needed. Let (Xt)t≥1 be a centered and stationary sequence:

Mp(n) = |E(X1 + · · ·+ Xn)p| ≤
∑

1≤i1,...,ip≤n

|E(Xi1 · · ·Xip )|

≤ p!
∑

1≤i1≤···≤ip≤n

|E(Xi1 · · ·Xip )| ≡ p!Ap(n)

The following inequality may essentially be found in Billingsley:

Ap(n) ≤ Cp(n) +

p−2∑
k=2

Ak(n)Ap−k(n), Cp(n) = (p − 1)
n−1∑
r=1

(r + 1)p−2cp(r)

cp(r) = max
∣∣Cov(Xj1 · · ·Xjk ,Xjk+1

· · ·Xjp )
∣∣ where j1 ≤ · · · ≤ jk ≤ jk + r ≤ jk+1 ≤ · · · ≤ jp. . .
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Estimating a variance: D., Jakubowicz, León (2009) I

If
1√
n

n∑
k=1

Xk →n→∞ Nd(0,Σ), with Σ =
∞∑

k=−∞

EX0X
′
k

Self-normalized results yield asymptotic confidence sets, Σ is estimated by:

Spectrum: Σ̂ = f̂ (0) if the matrix-spectral density is estimated

Donsker: 1√
n

∑
ns<i<nt Xi → Z (t)− Z (s) Brownian, Z (1) ∼ Nd(0,Σ)

∆j,n =
1√
n

∑
i∈Bj

Xi → Z (tj)− Z (sj) (Bj = [nsj , ntj ] ∩ N)

Then for suitable choices of F , and 0 = s1 < t1 ≤ s2 < · · · ≤ sm < tm = 1

F̃n =
1

m

m∑
j=1

F (∆j,n)→ EF
(
Nd(0,Σ)

)
Carlstein (1986) mixing, Peligrad-Shao (1995) ρ-mixing use both ti = si+1
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Estimating a variance: D., Jakubowicz, León (2009) II

In order to derive a self-normalized CLT, D., Jakubowicz, León (2009) set ti < si+1

and, under weak dependence:

√
Nn√(

Ĝn − F̂ 2
n

)+(F̃n − EF (Nd(0,Σ)
)
→ N (0, 1), (G ≡ F 2)

Applications to
- Linear models with dependent inputs
- Sea waves modeling, Xt = F (Yt) for F approximately linear
- Crossing numbers of oscillatory systems
For such explicit examples for which such procedures is proved to be useful through
simulation studies.
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Ecodep

Ecodep

http://doukhan.perso.cyu.fr/ecodep.html

This is a project of ecology funded by CYU for 4 years, some details and some tasks
are described on http://doukhan.perso.cyu.fr/abstract.html

People http://doukhan.perso.cyu.fr/members.html

Publications http://doukhan.perso.cyu.fr/publications.html

Related institutions http://doukhan.perso.cyu.fr/links.html

Regular seminar now at IHP on wednesday afternoon
https://indico.math.cnrs.fr/category/621/

a special attention for the date of March 15 conference
https://indico.math.cnrs.fr/event/9238/
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Ecodep

Taylor’s law

This law provides a qualitative property of probability distributions: consider
distributions on [0,∞) such that the f discrepancy condition

VarX = c(EX )α

holds for fixed constants c , α in case X belongs to this family of distributions.
So the problem turns to the asymptotic behaviours of the empirical counterpart T̂
of c = VarX/(EX )α. A test for the exponent α is obtained through a CLT for T̂ in
de la Pena, Doukhan, Salhi (2022) JAP. For this one needs one sample of the
distribution. If we have two samples then both c and α may be fitted in an ongoing
project. In fact with de la Pena and Salhi we consider samples from a time series
and in this case VarX is rather replaced by the standard limit variance in the CLT
under weak dependence,

σ2 =
∞∑

j=−∞

Cov(X0,Xj)

and we get it through a Bernstein block idea.
Even in the independent case the validity of the Taylor’s law need a precise
estimation of the centring; ongoing work Cohen, Doukhan, Truquet
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