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Motivations

A central planner wants to charge optimally a huge fleet of EVs over a finite time
horizon. Different constraints must be taken into account:

Satisfy EV owner requirements.

Exploit EVs flexibility, in particular Vehicle-to-Grid (V2G).

State variable :
Xt = (It ,St)

It mode of charging (fast
charging, idle, V2G...)

St level of battery
[Seguret et al., 2022, Seguret, 2022]
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Piecewise Deterministic Markov Process (PDMP)
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Description of the process

Let Xt = (It ,St) ∈ I × [0, 1] be a PDMP(b, α) :
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Figure 1: Evolution of the hybrid state variable Xt = (It , St) over the time

It is a jump process with values in I = {0, 1, . . . , d}, switching
spontaneously, at jump times {Tk}k∈N given by a Poisson process with
intensity α.

St follows a deterministic dynamics between two consecutive jumps:

d

dt
St = b(It ,St) ∀t ∈ [Tk ,Tk+1)

Adrien Séguret A mean field control problem of PDMP and its application for smart chargingSéminaire du Fime 5 / 46



6/46

Construction
Knowing Tk and XTk

= (ITk
,STk

), one obtains (Tk+1,XTk+1) as follows:

For any j ∈ I
Tk+1,j := inf

{
t ≥ Tk : Ek+1,j <

∫ t

Tk
αj(r ,Xr )dr

}
where Ek+1,j ∼ Exp(1)

Tk+1 := minj∈I Tk+1,j

ITk+1 = min
{
j ∈ I : Tk+1,j = Tk+1

}
STk+1 :=

∫ Tk+1
Tk

b(It ,St)dt

XTk+1 = (ITk+1 ,STk+1)
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Figure 2: Evolution of the hybrid state variable Xt = (It , St) over the time
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These processes are introduced rigorously in [Davis, 1984].
Multiple applications in system reliability and maintenance
[De Saporta and Zhang, 2013], oil production [Zhang et al., 2014],
biology [Lin and Buchler, 2018], insurance
[Marciniak and Palmowski, 2016], communication
networks[Hespanha, 2005] etc...
Existence of a large literature on the optimal control of PDMP using
dynamic programming [Costa et al., 2016, De Saporta et al., 2017,
Huang and Guo, 2019, Verms, 1985] or BSDE representation
[Bandini, 2018].
Existence of a growing literature on the analysis of the mean field
limit of population of PDMPs [Diez, 2020, Monmarché, 2018].
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The mean field control problem
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The N agents problem

Let N PDMP X 1,α1
, . . . ,XN,αN

, with empirical initial distribution
m0 ∈ PN

(
I × [0, 1]

)
, controlled by α1, . . . , αN ∈

AN := {α ∈ C 0([0,T ]× (I × [0, 1])N ,Rd
+) : ∀i ∈ I, αi (·, i , ·) = 0}.

Objective function:

JN(α1, . . . , αN) :=

E
[ ∫ T

0
f

(
t,

1
N

N∑
n=1

p(t,X n,αn

t )

)
︸ ︷︷ ︸

coupling cost

dt
]

+
1
N

N∑
n=1

E
[ ∫ T

0
c(t,X n,αn

t ) +
∑
j∈I

L(αn
j (t, {X

k,αk

t }k))dt + g(X n,αn

T )︸ ︷︷ ︸
individual cost

]
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The Mean Field Limit Control problem

Let Xα be a PDMP(b, α), with initial distribution m0 ∈ PN
(
I × [0, 1]

)
,

controlled by α ∈ A := {α ∈ C 0([0,T ]× I × [0, 1],Rd
+) : ∀i ∈ I, αi (·, i , ·) = 0}.

Objective function:

J(α) :=

∫ T

0
f
(
t,E
[
p(t,Xα

t )
])︸ ︷︷ ︸

mean field interraction

dt

+E
[ ∫ T

0
c(t,Xα

t ) +
∑
j∈I

L(αj(t,X
α
t ))dt + g(Xα

T )
]

Optimization problem:
min
α∈A

J(α) (P)

1 Out of the scope of optimal control of PDMP.

2 Problem (P) is a priori not convex.

3 Numerical Approximation?
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Mean field control literature

On the Mean Field Control literature:
Itô processses : [Lacker, 2017, Carmona and Delarue, 2015,
Carrillo et al., 2020, Pham and Wei, 2018]
Common noise : [Djete et al., 2022]
Discrete Markov processes : [Cecchin, 2021]
Regime switching processes : [Bayraktar et al., 2021]
Optimal stopping : [Talbi et al., 2021]
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Assumptions

Assumptions on the dynamics: b ∈ C 1(I × [0, 1]) and b(i , 0) = b(i , 1) = 0
for any i ∈ I .

Assumptions on the coupling cost: p ∈ C 1([0,T ]× I × [0, 1]) and
f ∈ C 1([0,T ]× R) is strictly convex, with Lipschitz continuous gradient
w.r.t. the second variable, and there exists C > 0 such that, for any
(t, x) ∈ [0,T ]× R,

x2

2Cf
− Cf ≤ f (t, x) ≤ Cf

x2

2
+ Cf .

Assumptions on the local cost: c ∈ C 1([0,T ]× I × [0, 1]) and
g ∈ C 1(I × [0, 1]). The function L ∈ C 1(R+,R+) is increasing, strongly
convex and there exists C > 0 such that for any x ∈ R+:

x2

C
− C ≤ l(x) ≤ C (x2 + 1),
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Lagrangian decomposition

Let J̄ be defined for any v ∈ L2(0,T ) and α ∈ A by:

J̄(α, v) :=

∫ T

0
f (t, v(t))dt

+E
[ ∫ T

0
c(t,Xα

t ) +
∑
j∈I

L(αj(t,X
α
t ))dt + g(Xα

T )
]

Problem (P) is equivalent to

min
α∈A,v∈L2(0,T )

J̄(α, v),

s.t E[p(t,Xα
t )]− v(t) = 0 a.e on [0,T ]

(P̄)
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Lagrangian decomposition

Lagrangian L : A× L2(0,T )× L2(0,T )→ R:

L(α, v , λ) := J̄(α, v) + ⟨E[p(t,Xα)]− v , λ⟩L2(0,T ) = L1(α, λ) + L2(v , λ) ,

where

L1(α, λ):= E
[ ∫ T

0
c(t,Xα

t ) +
∑
j∈I

L(αj(t,X
α
t )) + p(t,Xα

t )λ(t)dt + g(Xα
T )
]
,

L2(v , λ):=

∫ T

0
f (t, v(t))− v(t)λ(t)dt ,

Dual function W : L2(0,T )→ R:

W(λ) := inf
α∈A
L1(α, λ)︸ ︷︷ ︸

optimal control of PDMP

+ inf
v∈L2(0,T )

L2(v , λ)︸ ︷︷ ︸
convex problem

. (1)
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Dual Problem

Dual Problem :
max

λ∈L2(0,T )
W(λ). (D)

Lemma

There exists a unique λ̄ ∈ L2(0,T ) such that λ̄ = argmax
λ∈L2(0,T )

W(λ).

☞ Existence of a saddle point?
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Dual Problem

Dual Problem :
max

λ∈L2(0,T )
W(λ). (D)

Theorem (Le Corre, Oudjane, S. (2022))

There is no duality gap associated with Problem (D), i.e.,

max
λ∈L2(0,T )

W(λ) = min
α∈A,v∈L2(0,T )

J̄(α, v).

Besides,
∃ᾱ ∈ argmin

α∈A
L1(α, λ̄), ∃v̄ ∈ argmin

v∈L2(0,T )

L2(v , λ̄).

((ᾱ, v̄), λ̄) is a saddle point of the Lagrangian L.
ᾱ is a solution of Problem (P).
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Sketch of the proof

Key result:

Lemma
The map λ 7→ W(λ) is Gâteaux differentiable in L2(0,T ).

Having: λ̄ = argmax
λ∈L2(0,T )

W(λ), ᾱ ∈ argmin
α∈A

L1(α, λ̄), v̄ ∈ argmin
v∈L2(0,T )

L2(v , λ̄)

Lemma implies:

∂(−W)(λ̄) is a singleton.

E[p(t,X ᾱ
t )]− v̄(t) = 0

(ᾱ, v̄) admissible for Problem (P̄).

No duality gap.

((ᾱ, v̄), λ̄) is a saddle point of the Lagrangian L.
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Sketch of the proof

Key result:

Lemma
The map λ 7→ W(λ) is Gâteaux differentiable in L2(0,T ).

λ 7→ inf
v∈L2(0,T )

L2(v , λ) is Gâteaux differentiable in L2(0,T )

☞ strict convexity of f .

λ 7→ inf
α∈A
L1(α, λ) is Gâteaux differentiable in L2(0,T ).

There exists a selection λ 7→ α[λ] ∈ argmin
α∈A

L1(α, λ), such that the

map λ 7→ α[λ] is locally Lipschitz continuous;

the map λ 7→ E[p(Xα[λ])] is continuous;

differentiability obtained by adapting the proof of Danskin’s Theorem.
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Overview

1 Initial problem (P) is a MFC of PDMP;
2 Introduction of an equivalent problem (P̄);
3 Introduction of the associated Lagrangian L and dual function W;
4 Existence of a saddle point for L;
5 Distributed implementation : λ̄ is sent to each EV which locally

computes ᾱ ∈ argminα L1(α, λ̄)).
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Application to smart charging

Adrien Séguret A mean field control problem of PDMP and its application for smart chargingSéminaire du Fime 18 / 46



19/46

Settings (1/2)

We consider a large fleet of EVs controlled by a central planner during their
charging period [0,T ] (with T = 10h). The central planner aims at:

satisfying EV’s owner requirement;

making the consumption profile of the fleet to be close to a given profile
r = (rt)0≤t≤T .

The state of an Electric Vehicle (EV) Xα := (Iα,Sα) is a controlled PDMP(b, α)
where

Iαt ∈ I := {−1, 0, 1} is the mode of charging, 0 stands for idle mode, 1 for
charging and −1 for injection.

Sα
t ∈ [0, 1] is the State of Charge (SoC).
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Settings (2/2)

The charging rate b(i , ·) is proportional to the power consumption of the EV and
is such that

i = −1, V2G mode, with b(−1, ·) ≤ 0.

i = 0, non-charging mode, with b(0, ·) = 0,

i = 1, charging mode, with b(1, ·) ≥ 0.

Cost settings

c(t, i , s) = 0, L(a) = a2

2 , g(i , s) := κ1 × (1− eκ2(s−0.75))+

p(t, i , s) := b(i , s), f (v , t) := κ3(v − r(t))2

J(α) :=

∫ T

0
κ3

(
E
[
b(Iαt ,Sα

t )
]︸ ︷︷ ︸

mean consumption

−r(t)
)2

dt + E
[ ∫ T

0

∑
j∈I

(
αj(t,X

α
t )

)2

2
dt + g(Xα

T )
]
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Results (1/2)
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Figure 3: Controlled consumption
compared to the profile and nominal
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Figure 4: Evolution of the proportion
of vehicles per mode
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Results (2/2)
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Figure 5: Representation of the SoC of
10 PDMP

Figure 6: Initial and Final distribution
of the SoC
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PDE formulation
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A constrained optimal control problem

Let Xα = (Iα,Sα) be a PDMP(b, α) controlled by α ∈ A.
Objective function:

J(α) := E
[ ∫ T

0
c(t,Xα

t ) +
∑
j∈I

L(αj(t,X
α
t ))dt + g(Xα

T )
]
.

Constraint, let D ∈ C 0([0,T ],R∗
+),

P(Iαt = i) ≤ Di (t) ∀(t, i) ∈ [0,T ]× I (2)

Optimization problem:
min
α∈A

J(α)

s.t. (2) is satisfied.
(P)
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Constrained Mean field control literature

Constraints of the type : Ψ
(
L(Xt)

)
≤ 0

[Daudin, 2021, Germain et al., 2021]
Constraints in Wasserstein spaces [Bonnet, 2019]
Stochastic target problems [Soner and Touzi, 2002]
Stochastic control problems with expectation constraints
[Pfeiffer et al., 2021]
Local constraints [Cardaliaguet et al., 2016]
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Reformulation of the problem

Let m(t) ∈ P(I × [0, 1]) be the distribution of the mean field population of
PDMP(α, b), with initial distribution m0 ∈ P(I × [0, 1]).
The objective function

J(α) := E
[ ∫ T

0
c(t,Xα

t ) +
∑
j∈I

L(αj(t,X
α
t ))dt + g(Xα

T )
]
,

is equivalent to

J(m, α) :=

∫ T

0

∫ 1

0

∑
i∈I

ci (t, s)mi (t, ds) +
∑
j∈I

L
(
αi,j(t, s)

)mi (t, ds)dt

+
∑
i∈I

∫ 1

0
gi (s)mi (T , ds).
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Reformulation of the problem

The constraint
P(Iαt = i) ≤ Di (t) ∀(t, i) ∈ [0,T ]× I,

is equivalent to ∫ 1

0
mi (t, ds) ≤ Di (t) ∀(t, i) ∈ [0,T ]× I (3)

(m, α) is a weak solution on [0,T ]× I × [0, 1] of the continuity equation:

∂tmi + ∂s(mibi ) = −
∑

j∈I,j ̸=i

(αj(i)mi − αi (j)mj),

mi (0) = m0
i ,

(CE)
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Problem (P) is equivalent to

inf
(m,α)

J(m, α)

s.t. (m, α) is a weak sol. (CE) and satisfies (3)
(P̃)

Lemma
Problem (P̃) admits a solution.

Characterization of the solutions of Problem (P̃)?

Regularity of the Lagrange multiplier?

Numerical approximation?
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Optimality conditions

Theorem (S. 2021)
Assume there exists ε0 > 0 such that:

ε0 < Di (t)−m0
i ([0, 1]) ∀(t, i) ∈ [0,T ]× I ,

then (m, α) is a solution to (P̃), if and only if there exists a pair
(φ, λ) ∈

(
Lip([0,T ]× I × [0, 1]) + BV ([0,T ]× I )

)
×M+([0,T ]× I ) such that

αj(i) = H ′(φi − φj) and (φ, λ,m) is a weak solution of the following system on
[0,T ]× I × [0, 1]:

−∂tφi − bi∂sφi − ci − λi +
∑

j∈I ,j ̸=i H(φj − φi ) = 0

∂tmi + ∂s(mibi ) +
∑

j ̸=i (H
′(φi − φj)mi − H ′(φj − φi )mj) = 0

mi (0, s) = m0
i (s), φi (T , s) = gi (s)∫ 1

0 mi (t, ds)− Di (t) ≤ 0, λi ≥ 0∑
i∈I

∫ T

0

(∫ 1
0 mi (t, ds)− Di (t)

)
λi (dt) = 0

(S)

where H is the Fenchel conjugate of L and H ′ its derivative.
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Regularity Results

Theorem (S. 2022)
If the congestion parameter D is time independent, and there exists ε0 > 0 such
that:

ε0 < Di −m0
i ([0, 1]) ∀i ∈ I ,

then for any solution (m, α) of Problem (P̃), there exists
(φ, λ) ∈ Lip([0,T ]× [0, 1]× I )×M+([0,T ]× I ) such that (φ, λ,m) is a weak
solution of (S) and for any i ∈ I

λi = λac
i L+ βiδT ,

with λac
i ∈ L∞

(
(0,T ),R+

)
and βi ≥ 0. This yields α ∈ Lip([0,T ]× [0, 1]× I ).

Remark

If there exists g ∈ C 1([0, 1]) such that g = gi for any i ∈ I , then β = 0.

L∞(0,T ) is the best regularity that one can a priori expect.
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Numerical approximation

Find (φ, λ, β)

∂tφi + bi∂sφi + ci + λi −
∑

j∈I,j ̸=i H(φj − φi ) ≤ 0,

φi (T ) ≤ gi + βi .
(HJ)

Ã(φ, λ, β) :=
∑
i∈I

∫ 1

0
−φi (0, s)m0

i (ds) +

∫ T

0
D(t)λ(t)dt + Di (T )β.

inf
(φ,λ,β)

Ã(φ, λ, β)

(φ, λ, β) weak sol (HJ)
(D)

Time and space discretization of Problem (D).
Explicit finite difference scheme for the discretization of (HJ).

Adrien Séguret A mean field control problem of PDMP and its application for smart chargingSéminaire du Fime 31 / 46



32/46

Use case : peak and off peak hours pricing

5h period, I = {0, 1}, where 0: idle; and 1: charging, D0 = 1 and
D1 = 1/5, g(s) := Cec((0.7−s)+)2
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Figure 7: Optimal Lagrangian multiplier λ
and proportion of EVs in mode 1 over the
time
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Thank you for your attention!
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Appendix
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Stochastic Uzawa algorithm

Objective: numerically approximate λ̄ := max
λ∈L2(0,T )

W(λ).

Algorithm 1 Uzawa

1: Initialization λ0 ∈ L∞(0,T ), set {ρk} and M ∈ N∗

2: k ← 0.
3: for k = 0, 1, . . . do
4: vk ← argmin

v∈L2(0,T )

L2(v , λ
k).

5: αk ← argmin
α∈A

L1(α, λ
k).

6: Uk+1 ← vk − E[p(·,Xαk

· )] .
7: λk+1 ← λk + ρk U

k+1 .
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Stochastic Uzawa algorithm

Objective: numerically approximate λ̄ := max
λ∈L2(0,T )

W(λ).

Algorithm 4 Stochastic Uzawa

1: Initialization λ0 ∈ L∞(0,T ), set {ρk} and M ∈ N∗

2: k ← 0.
3: for k = 0, 1, . . . do
4: vk ← argmin

v∈L2(0,T )

L2(v , λ
k).

5: αk ← argmin
α∈A

L1(α, λ
k).

6: Generate M independent states realizations (X 1,αk
, . . . ,XM,αk

).
7: Uk+1 ← vk − 1

M

∑M
j=1 p(·,X

j ,αk

· ) .

8: λk+1 ← λk + ρk U
k+1 .
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Convergence results

Theorem
Let {(λk , αk)}k∈N be a sequence generated by Stochastic Uzawa Algorithm, then
the following assertions hold

1 The sequence {λk}k converges to λ̄ a.s. in L2(0,T ).

2 The sequence {αk}k∈N converges a.s. to a solution of Problem (P) w.r.t.
the norm ∥ · ∥∞.

3 The sequence {J(αk)}k∈N converges a.s. to min
α∈A

J(α).

Sketch of the proof:

1 Direct adaptation of Stochastic Gradient Algorithm in Hilbert space.

2 Continuity of the map: λ 7→ α[λ] ∈ argminα∈A L1(α, λ).

3 Continuity of the map α 7→ J(α).
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Sketch of the proof

For δ, ε > 0, we define the penalized problem

inf
(m,α)

J(m, α) +
∑

i∈I

∫ T

0
1
εΨ

+
i (mi (t))dt +

∑
i∈I

1
δΨ

+
i (mi (T )),

(m, α) weak sol. (CE)
(Dε,δ)

where Ψi (µ) := µi ([0, 1])− Di

Optimality conditions of Problem (Dε,δ)?

Link between the solutions of Problem (P̃) and Problem (Dε,δ)?
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Proposition
Problem (Dε,δ) has at least a solution and for any solution (m, α) there exists
(φ, λ, β) ∈ Lip([0,T ]× I × [0, 1])× L∞([0,T ]× I ,R+)× (R+)

|I | such that
αi,j = H ′(φi − φj) on {mi > 0} and (φ, λ, β,m) is a weak solution of the
following system on [0,T ]× [0, 1]× I :

−∂tφi − bi∂sφi − ci −
λi

ε
+
∑

j∈I ,j ̸=i

H(φi − φj) = 0,

∂tmi + ∂s(mibi ) +
∑
j∈I

H ′(φi − φj)mi − H ′(φj − φi )mj = 0,

mi (0) = m0
i , φi (T ) = gi +

βi

δ
,

(Sε,δ)

and (λ, β) satisfies

λi (t) =

 0 if Ψi (m(t)) < 0,
∈ [0, 1] if Ψi (m(t)) = 0,
1 if Ψi (m(t)) > 0,

βi :=

 0 if Ψi (m(T )) < 0,
∈ [0, 1] if Ψi (m(T )) = 0,
1 if Ψi (m(T )) > 0.
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Proposition
There exists ε∗, δ∗ > 0, such that for any (ε, δ) ∈ (0, ε∗)× (0, δ∗), Problems (P̃)
and (Dε,δ) have the same solutions.

Proof by contradiction:

Uniform bound on ∥α∥∞ + ∥∂sα∥∞, independently of ε and δ.

For any δ < δ∗, Ψi (m(T )) ≤ 0.

Assume for any ε > 0, there exists tε > 0 such that Ψi (m(tε)) > 0

For any ε < ε∗ and a.e. t ∈ [0,T ] satisfying Ψi (m(t)) > 0:

d2

dt2
Ψi (m(t)) ≥ C

∑
j∈I

∫ 1

0

( 1
C
√
ε
− C )(αi,jmi (t) + αj,imj(t)) ≥ 0

Since Ψi (m
0) < 0, there exists τ ∈ (0, tε) such that Ψi (m(τ)) > 0 and

d
dtΨi (m(τ)) > 0.

Then the map t 7→ Ψi (m(t)) is strictly increasing on [τ,T ]. Then,
Ψi (m(T )) > 0 (contradiction)

Adrien Séguret A mean field control problem of PDMP and its application for smart chargingSéminaire du Fime 39 / 46



40/46

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

5 · 10−2

0.1

0.15

0.2

State of Charge

P
ro

po
rt

io
n

Initial distribution
Final distribution

Figure 9: Marginal distribution of the State of Charge (s) at initial and final time
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