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@ Piecewise Deterministic Markov Process (PDMP)
© The mean field control problem
© Application to smart charging

@ PDE formulation
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A central planner wants to charge optimally a huge fleet of EVs over a finite time
horizon. Different constraints must be taken into account:

@ Satisfy EV owner requirements.

@ Exploit EVs flexibility, in particular Vehicle-to-Grid (V2G).

@ State variable :
Xt = (It7 St)

@ Iy mode of charging (fast
charging, idle, V2G...)

@ S; level of battery

§
\
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Piecewise Deterministic Markov Process (PDMP)
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Description of the process

Let X; = (I, S:) € T x [0,1] be a PDMP(b, o) :

081, =1 I, =0 Iy =2\l =11
0.6 |- f
@ 0.4 \\ b
02| N\ y
0
To T T, T3

t

Figure 1: Evolution of the hybrid state variable X; = (I, St) over the time

@ Iy is a jump process with values in Z = {0,1,...,d}, switching
spontaneously, at jump times { Tx }xen given by a Poisson process with
intensity a.

@ S, follows a deterministic dynamics between two consecutive jumps:

d
Est == b(lt,st) Vt c [Tk, Tk+1)
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Knowing Ty and X7, = (I1,, S1,), one obtains ( Tx+1, X7,,,) as follows:

Forany jeZ
Tkt1,j = inf {t > Tk Expj < f;k aj(r,X,)dr} where Eji1j ~ Exp(1)

Tiy1 :=minjez Thyyj

I7,., = min {j €T : Typ1j= Tk+1}
St = [ b1, Se)dt

XTia = (/Tk+17STk+1)
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Figure 2: Evolution of the hybrid state variable X; = (I¢, St) over the time
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These processes are introduced rigorously in [Davis, 1984].

Multiple applications in system reliability and maintenance

[De Saporta and Zhang, 2013], oil production [Zhang et al., 2014],
biology [Lin and Buchler, 2018], insurance

[Marciniak and Palmowski, 2016], communication
networks[Hespanha, 2005] etc...

Existence of a large literature on the optimal control of PDMP using
dynamic programming [Costa et al., 2016, De Saporta et al., 2017,
Huang and Guo, 2019, Verms, 1985] or BSDE representation
[Bandini, 2018|.

Existence of a growing literature on the analysis of the mean field
limit of population of PDMPs [Diez, 2020, Monmarché, 2018].
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The mean field control problem
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The N agents problem

Let N PDMP xbe' .. xN:e™ \ith empirical initial distribution
m® € PN(I x [0, 1]) controlled by al,...,aV

AN = {a e C%[0, T] x (T x [0, 1)V, RY) : Vi € T, (-, i, ) = O}.
Objective function:

Nt ... o) =

E[/OTf <t7 % ip(t,Xﬁ’“”)) dt]
n=1

coupling cost

+12E[/0 EXP) 4+ 30 Laf(e (X Tt + g (X )

n=1 Jjel

individual cost
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The Mean Field Limit Control problem

Let X be a PDMP(b, &), with initial distribution m® € PN(Z x [0,1]),
controlled by v € A := {a € C°([0, T] x Z x [0,1],RY) : Vi € Z, c;(-,i,) = O}.
Objective function:
-
J(a) = / f(t,Elp(t, X)) dt
0
mean field interraction

jel

Optimization problem:

min J(«) (P)

a€A

@ Out of the scope of optimal control of PDMP.
@ Problem (P) is a priori not convex.

© Numerical Approximation?
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Mean field control literature

On the Mean Field Control literature:

@ It6 processses : [Lacker, 2017, Carmona and Delarue, 2015,
Carrillo et al., 2020, Pham and Wei, 2018]

Common noise : [Djete et al., 2022]

Discrete Markov processes : [Cecchin, 2021]

Regime switching processes : [Bayraktar et al., 2021]
Optimal stopping : [Talbi et al., 2021]
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@ Assumptions on the dynamics: b € CY(/ x [0,1]) and b(i,0) = b(i,1) =0
for any i € I.

@ Assumptions on the coupling cost: p € C*([0, T] x I x [0,1]) and
f € C1([0, T] x R) is strictly convex, with Lipschitz continuous gradient
w.r.t. the second variable, and there exists C > 0 such that, for any
(t,x) €[0, T] xR,

2

X
- — < < —
2 Cr f(t X) Cf‘ + Cr.

@ Assumptions on the local cost: ¢ € CY([0, T] x I x [0,1]) and
g € CY(I x [0,1]). The function L € C}(Ry,R,) is increasing, strongly
convex and there exists C > 0 such that for any x € Ry:

X2

f—Cgl(x) < C(x* +1),
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Lagrangian decomposition

Let J be defined for any v € L%(0, T) and a € A by:

i
T, v) = /0 F(t, v(£))dt

]
v [ [ eltxe) + X Lyt XNt + g(x5)]

Jjel

Problem (P) is equivalent to

min  J(a,v),
ach,vel?(0,T)

s.t E[p(t, X*)] — v(t) =0a.eon [0, T]
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Lagrangian decomposition

Lagrangian £: A x L?(0,T) x L?(0, T) = R:

E(a, v, )‘) = (Oz, V) + <E[p(t, Xa)] -V )‘>L2(0,T) = ’Cl(av )‘) + 'C2(Vv )‘) )

where

-
La(0 \)=E| / (£ X) + 3 Lay(t.X7)) + (£ XTN()de + g(X5)]
. Jjel
£2(v,>\)::/ f(t,v(t)) — v(t)A(t)dt,
0
Dual function W: L?(0, T) — R:

W(A) = inf La(a,A) + velen(f)’T) Lo(v, A). (1)

—— —_—
optimal control of PDMP  convex problem
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Dual Problem

Dual Problem :

max_ W(A).
AeL2(0,T)

(D)

There exists a unique \ € L?(0, T) such that A = arg max W()\).

15 Existence of a saddle point?
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Dual Problem

Dual Problem :

W(AN). D
el V) 2

Theorem (Le Corre, Oudjane, S. (2022))

There is no duality gap associated with Problem (D), i.e
max W(\) = min _ J(a, v).
AEL2(0,T) ach,vel?(0,T)

Besides,

e Ja € argmin L4(a, 5\), dv € argmin Eg(v,j\).

ach vel2(0,T)
o ((&,¥), ) is a saddle point of the Lagrangian L.
@ & is a solution of Problem (P).
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Sketch of the proof

Key result:

The map A — W()) is Gateaux differentiable in L2(0, T).

Having: A = argmaxW()\),a € argmin L1(, \), 7 € argmin La(v, \)
AEL2(0,T) ach vel2(0,T)

Lemma implies:
@ (—W)(])) is a singleton.
o E[p(t, X{)] - 7(t) = 0
@ (@, ) admissible for Problem (P).
@ No duality gap.

@ ((@, V), ) is a saddle point of the Lagrangian L.
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Sketch of the proof

Key result:

The map A — W()) is Gateaux differentiable in L2(0, T).

o\ |n£ Lo(v, ) is Gateaux differentiable in L2(0, T)
velL2
15 strict convexity of f.

® A inf L1(cv, ) is Gateaux differentiable in L2(0, T).
(¢3S

o There exists a selection A — a[)] € arg min L1(a, A), such that the
acA

map A — a[)\] is locally Lipschitz continuous;

o the map \ — E[p(X*!N)] is continuous;
o differentiability obtained by adapting the proof of Danskin's Theorem.
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@ Initial problem (P) is a MFC of PDMP;

@ Introduction of an equivalent problem (P);

© Introduction of the associated Lagrangian £ and dual function W;
@ Existence of a saddle point for £;

@ Distributed implementation : X is sent to each EV which locally
computes & € arg min,, L1(a, A)).
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Application to smart charging
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Settings (1/2)

We consider a large fleet of EVs controlled by a central planner during their
charging period [0, T] (with T = 10h). The central planner aims at:

@ satisfying EV's owner requirement;

@ making the consumption profile of the fleet to be close to a given profile
r= (ft)ogth-

The state of an Electric Vehicle (EV) X® := (/*,5%) is a controlled PDMP(b, &)
where

@ I €Z:={-1,0,1} is the mode of charging, 0 stands for idle mode, 1 for
charging and —1 for injection.

@ SX €[0,1] is the State of Charge (SoC).
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Settings (2/2)

The charging rate b(/,) is proportional to the power consumption of the EV and
is such that

@ /= —1, V2G mode, with b(—1,-) <O0.
@ i/ =0, non-charging mode, with b(0,-) =0,
@ /=1, charging mode, with b(1,-) > 0.
Cost settings
@ c(t,i,s)=0, L(a) = % g(i,s) :=ry x (1 — er2(s=0.75))+
@ p(t,i,s):=b(i,s), f(v,t) = r3(v — r(t))?

J(a) ::/OTm.( E[b(I¢, 58] r(t))zdt+E[/oTZWdt+g(x%)]

2
. jeT
mean consumption

Adrien Séguret
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Results (1/2)
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Figure 3: Controlled consumption Figure 4: Evolution of the proportion
compared to the profile and nominal of vehicles per mode

Proportion of vehicles
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Results
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PDE formulation
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A constrained optimal control problem

Let X* = (/*,5%) be a PDMP(b, o) controlled by o € A.
Objective function:

.,
J(a) = E[/O et XE) + 3 L{ag(t, X)) de + g(X7) .

Jje€T
Constraint, let D € C°([0, T],R%),
P(I¢ =1) < Di(t) V(t,i)e[0, T]xT (2)
Optimization problem:
min J(a
:iAQ() i)s satisfied. (P)
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Constrained Mean field control literature

o Constraints of the type : W(L(X;)) <0
[Daudin, 2021, Germain et al., 2021]

e Constraints in Wasserstein spaces [Bonnet, 2019]
@ Stochastic target problems [Soner and Touzi, 2002]

@ Stochastic control problems with expectation constraints
[Pfeiffer et al., 2021]

@ Local constraints [Cardaliaguet et al., 2016]
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Reformulation of the problem

Let m(t) € P(Z x [0,1]) be the distribution of the mean field population of
PDMP(a, b), with initial distribution m® € P(Z x [0, 1]).
The objective function

T
So)i= B[ [ ele.Xe)+ 3 Loyt X0t + £(05)]

jeT

is equivalent to

//Z( (t,s)m;(t,ds) +Z oz,,ts)))m,-(t,ds)dt

iel Jjel

+Z/ gi(s)mi(T,ds).

iel
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Reformulation of the problem

The constraint
P(I¢ = i) < Di(t) Y(t,i) €0, T] x Z,

is equivalent to

/1 mi(t,ds) < Di(t) ¥(t,i) € [0, T] x T (3)

(m, @) is a weak solution on [0, T] x Z x [0, 1] of the continuity equation:

demi + 05(mib) = — > (ay(i)mi — ci(j)my),
JETj#i (CE)

m,-(O) = m?v
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Problem (P) is equivalent to

inf J(m, ) -
(msex) ) (P)
s.t. (m,a) is a weak sol. (CE) and satisfies (3)

Problem (P) admits a solution.

@ Characterization of the solutions of Problem (P)?
@ Regularity of the Lagrange multiplier?

@ Numerical approximation?
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Optimality conditions

Theorem (S. 2021)
Assume there exists € > 0 such that:
e < Di(t) — m2([0,1]) V(t,i)€[0,T]x I,
then (m, ) is a solution to (P), if and only if there exists a pair
(¢, A) € (Lip([0, T] x I x [0,1]) + BV([0, T] x 1)) x M ([0, T] x ) such that

aj(i) = H'(¢i — ¢j) and (@, A\, m) is a weak solution of the following system on
[0, T] x I x[0,1]:

—0wpi — biOspj — ¢ — i + Zjelj;éi H(‘Pj —i)=0

Orm; + as(mibi) + Zj;s,'(H/((PI SDJ) H/(QOJ @i)mj) =0
mi(0,s) = mY(s), pi(T,s) = gi(s) (S)
Jo mi(t, ds) — Di(t) <0, \; >0

Sier Jo (Jo mi(t,ds) = Di()) Ai(dt) = 0

where H is the Fenchel conjugate of L and H' its derivative.

- = = = TYATYTRA
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Regularity Results

Theorem (S. 2022)

If the congestion parameter D is time independent, and there exists €© > 0 such
that: .
? 9 < D — mP([0,1]) Vi€l

then for any solution (m, ) of Problem (P), there exists
(¢, A) € Lip([0, T] x [0,1] x 1) x MT([0, T] x 1) such that (p, A\, m) is a weak
solution of (S) and for any i € |

Ai = AL+ BidT,

with A2 € L°°((0, T),R..) and B; > 0. This yields o € Lip([0, T] x [0,1] x /).

@ If there exists g € C1([0,1]) such that g = g; for any i € I, then 3 = 0.

@ L°°(0, T) is the best regularity that one can a priori expect.
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Numerical approximation

Find (¢, A, 5)

Oepi + biOspi + ci+ Ai = X jeq iz Hpj — 0i) <0,

0i(T) < gi + Bi.

(HJ)

Ale, N, B) ::Z/O —go,-(O,s)m?(ds)+/0 D(t)A\(t)dt + D;(T)B.

i€l

inf A(p, \,
ot (¢, A, B) (D)

(¢, A\, B) weak sol (HJ)

e Time and space discretization of Problem (D).

e Explicit finite difference scheme for the discretization of (HJ).
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Use case : peak and off peak hours pricing

@ 5h period, | = {0, 1}, where 0: idle; and 1: charging, Dy = 1 and
Dy =1/5, g(s) := Cec((07-5)")?

Il l.
1.5 m XX{*O.IS
1 //I[X
S
/11

25

Proportion of charging vehicles

\J/ } 45-1072
0 2 3 : 5 0 ‘ ‘ ‘ ‘
Time (h) 0 1 2 3 4 5
Time (h)
Figure 7: Optimal Lagrangian multiplier A
and proportion of EVs in mode 1 over the Figure 8: Price of electricity over the time

time
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Thank you for your attention!

100% Charged
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Appendix
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Stochastic Uzawa algorithm

Objective: numerically approximate X := max W(\).
jective: numerically approxi AeLZ(C))(,T) (N

Algorithm 1 Uzawa

1: Initialization A\° € L>°(0, T), set {px} and M € N*
2. k <+ 0.

3: for k=0,1,... do

4

vk < argmin La(v, \F).
vel?2(0,T)
k

5: ok« argmin L1 (a, \¥).
a€A

6: Ukt vk — E[p(.ﬂx_a")] .
)\kJrl — )\k + pi Uk+1 .
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Stochastic Uzawa algorithm

Objective: numerically approximate X := max W(\).
jective: numerically approxi AeLZ(C))(,T) (N

Algorithm 4 Stochastic Uzawa

1: Initialization A\° € L>°(0, T), set {px} and M € N*
2. k+ 0.

3: for k=0,1,... do

4: vE < argmin Lo(v, \F).

velL2(0,T)
5: ok < argmin L1(a, \F).
achA
6: Generate M independent states realizations (X1, ... XMa®),
7: Ukl vk — & J’-\il p(-,X/.’O‘k).
g AL AKgp UKL
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Convergence results

Let {(\¥,a*)}ren be a sequence generated by Stochastic Uzawa Algorithm, then
the following assertions hold

@ The sequence {\¥}, converges to X a.s. in L2(0, T).

@ The sequence {a*}yen converges a.s. to a solution of Problem (P) w.r.t.
the norm || - || -

© The sequence {J(a*)}xen converges a.s. to meig J(a).
«

Sketch of the proof:
@ Direct adaptation of Stochastic Gradient Algorithm in Hilbert space.
@ Continuity of the map: A — a[A] € argmin,c, L1(a, A).
© Continuity of the map a — J(«).
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Sketch of the proof

For 0, > 0, we define the penalized problem

(rir?,i) Sm, @)+ 2ies oT SV (mi(8))dt + 3 3V (mi(T)),
(m, ) weak sol. (CE)

where V;(11) == 1([0,1]) — D;
@ Optimality conditions of Problem (D?)?

@ Link between the solutions of Problem (P) and Problem (D%)?
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Proposition

Problem (D%%) has at least a solution and for any solution (m, c) there exists
(0, A, B) € Lip([0, T] x I x [0,1]) x L>=([0, T] x I,R,) x (R )l such that
a;j = H'(pi — ;) on {m; > 0} and (¢, \, B, m) is a weak solution of the
following system on [0, T] x [0,1] x /:

Ai B
—Orpi — bidspi — i — -t Z _H(<Pi — ;) =0,
JElj#i
dem; + 0s(miby) + ) H'(¢; — w5)mi — H'(¢; — wi)m; = 0, (5°)
Jjel
0 _ Bi
m,(O) =m;, SOI(T) = &i + F,
and (A, B) satisfies
0 if Wi(m(t)) <0, 0 if W;j(m(T)) <0,
Ai(t) = { €[0,1] ifVi(m(t))=0, B;:= { €[0,1] ifVi(m(T))=0,
1 if W;(m(t)) > 0, 1 if W;(m(T)) > 0.

Adrien Séguret A mean field control problem of PDMP a Séminaire du Fime 38 /46



Proposition

There exists £*,6* > 0, such that for any (e,0) € (0,&*) x (0,6*), Problems (P)
and (D) have the same solutions.

Proof by contradiction:

Uniform bound on ||a||oc + ||0s@||s, independently of & and 6.
For any ¢ < ¢*, W;(m(T)) <O0.
Assume for any € > 0, there exists t© > 0 such that W;(m(t%)) >0
For any ¢ < ¢* and a.e. t € [0, T] satisfying W;(m(t)) > 0:
d? vl
Vi) = €3 [ (e = Oam(®) + aymi(6) 0

jel
Since W;(m®) < 0, there exists 7 € (0, t°) such that W;(m(7)) > 0 and
4w;(m(r)) > 0.

Then the map t — W;(m(t)) is strictly increasing on [, T]. Then,
V;(m(T)) > 0 (contradiction)
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Figure 9: Marginal distribution of the State of Charge (s) at initial and final time
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