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Balancing the power grid

Generation (supply) Consumption (demand)

▶ Difficulties on the supply side:
▶ Integration of renewable energy → intermittent nature
▶ Energy storage devices and energy importation → costly

alternatives
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Demand-Side Management

▶ Solution: adjust energy consumption to better match the
energy supply

Generation (supply) Consumption (demand)
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Demand-Side Management

▶ TCLs: Thermostatically Controlled Loads
▶ Electrical heating or cooling elements controlled by a

thermostat: water-heaters, ar conditioners, refrigerators, etc
▶ Flexible loads

▶ Smart meters
▶ Allow communication between load and supplier in near real

time
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Control of a population of water-heaters
▶ Goal: Control the average consumption of a population of

water-heaters (Busic and Meyn, 2016; Bendotti et al., 2021)

Individual consumption
(time step n)
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(time step n)
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▶ in order to track a reference profile (γn) by sending a control
signal (πn)

πn =⇒

device 1 → ON1
n

device i → ON i
n

device M → ONM
n

=⇒ 1

M

M∑
i=1

ON i
n︸ ︷︷ ︸

average cons.

≈ γn︸︷︷︸
target

5/24



Control of a population of water-heaters
▶ Goal: Control the average consumption of a population of

water-heaters (Busic and Meyn, 2016; Bendotti et al., 2021)
Individual consumption

(time step n)
1 2 i M

ON1
n ON2

n ON i
n ONM

n

Average consumption
(time step n)

=⇒ 1
M

∑M
i=1ON i

n

▶ in order to track a reference profile (γn) by sending a control
signal (πn)

πn =⇒

device 1 → ON1
n

device i → ON i
n

device M → ONM
n

=⇒ 1

M

M∑
i=1

ON i
n︸ ︷︷ ︸

average cons.

≈ γn︸︷︷︸
target 5/24



Setting and Model
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Water-heater uncontrolled dynamics

▶ [Tmin, Tmax] = temperature deadband

drain

Joule effect
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Water-heater controlled dynamics

▶ Goal: Control the average consumption of a population of
water-heaters

▶ Idea: probability of turning ON/OFF before leaving
[Tmin,Tmax]

▶ Formulation as a Markov Decision Process:

▶ state space X : ON/OFF and temperature
▶ action space A: turn ON/OFF
▶ policy (πn)n≤N = control signal to learn

▶ πn(an|xn) = probability of choosing action an (turn
ON/OFF) given current state xn (ON/OFF and temperature)

▶ probability kernel xn+1 ∼ pn(·|xn, an) (drains)
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Optimisation problem and mean field approach
▶ M water-heaters
▶ Goal: find a control signal (πn) to approach a reference

profile (γn)

min
π∈(∆A)X×N

E

 N∑
n=1

(
1

M

M∑
i=1

ON i
n(π)− γn

)2


▶ mean field limit M → ∞:
▶ µπ

n(x, a) = P(xn = x, an = a|π, (pn)n)= state-action
distribution induced by π

1

M

M∑
i=1

ON i
n(π) −→ Eµπ

n
[{ONn(π)}]︸ ︷︷ ︸

average cons.
▶ Control problem (C)

min
π∈(∆A)X×N

F (µπ) :=

N∑
n=1

(Eµπ
n
[{ONn(π)}]− γn)

2
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Optimisation vs. Learning
Main problem:

min
π∈(∆A)X×N

F (µπ),

where µπ
n(x, a) := P(xn = x, an = a|π, (pn)n)

Optimisation
▶ p = (pn)n is known
▶ Today’s talk: A novel

approach to solve the main
problem with known p

Learning
▶ Reality: (pn)n is unknown

▶ User’s water consumption
behavior is unknown

▶ Challenge: Learning the
model while optimizing

▶ Work in progress
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Convex/Concave Utility Reinforcement Learning (CURL)

min
π∈(∆A)X×N

F (µπ)

▶ This applies to many others machine learning problems:
▶ Reinforcement learning (Sutton and Barto, 2018):

F (µπ) := −⟨µπ, r⟩, for a reward function r
▶ Imitation learning (Ghasemipour et al., 2020):

F (µπ) := −Df (µ
π, µ∗), where Df is a Bregman divergence

induced by a function f
▶ Potential games in mean field games (Geist et al., 2022):

when the reward of the game is −∇F (µπ)

▶ Few algorithms in the literature for CURL: Hazan et al.
(2019) (Frank-Wolfe), Geist et al. (2022) (Online Mirror
Descent/ Fictitious Play)

▶ We present a new approach for CURL
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Algorithmic approaches
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Problem reformulation

min
π∈(∆A)X×N

F (µπ) :=

N∑
n=1

(Eµπ
n
[{ONn(π)}]− γn)

2

gradient on π? convexity?

=⇒ min
µ∈?

F (µ)

gradient on µ! convexity!

Mµ0 :=

{
(µn)n

∣∣∑
a′

µn(x
′, a′) =

∑
x,a

pn(x
′|x, a)µn−1(x, a)

}

µ∈ Mµ0 −→ π ∈ (∆A)
X×N such that µπ = µµπ = µµπ = µ
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Iterative scheme
▶ Consider the following iterative scheme at iteration k

µk+1 ∈ arg min
µπ∈Mµ0

{
⟨∇F (µk), µπ⟩+ 1

τk
Γ(µπ, µk)

}
(1)

▶ where Γ is a non-standard regularization

Γ(µπ, µπ′
) :=

N∑
n=1

E(x,a)∼µπ
n(·)

[
log
(
πn(a|x)
π′
n(a|x)

)]

First result:
▶ Dynamic Programming yielding in a simple closed-form

solution for (1): µk+1 := µπk+1 such that

πk+1
n (a|x) :=

πk
n(a|x) exp

(
τkQ̃

k
n(x, a)

)
∑

a′∈A πk
n(a

′|x) exp
(
τkQ̃k

n(x, a
′)
)
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MD-MFC Algorithm

Algorithm MD-MFC

1: for k = 0, ...,K − 1 do
2: µk = µπk

3: Compute Q̃k
N (x, a) for all (x, a) ∈ X ×A

4: for n = N, ..., 1 do
5: ∀(x, a) ∈ X ×A :

6: πk+1
n (a|x) = πk

n(a|x) exp(τkQ̃k
n(x,a))∑

a′ π
k
n(a

′|x) exp(τkQ̃k
n(x,a

′))

7: Compute Q̃k
n−1(x, a)

8: end for
9: end for

10: return µπK
, πK
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Convergence analysis

Second result:

Theorem (MD-MFC convergence)
Let π∗ a minimizer and K the number of iteration, thus

min
0≤s≤K

F (µπs
)− F (µπ∗

) ≤ O
( 1√

K

)

Proof idea:
▶ Γ is a Bregman divergence and is 1-strongly convex with

respect to the sup1≤n≤N ∥ · ∥1 norm
▶ ⇒ MD-MFC converge as a Mirror Descent algorithm
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Experiments
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Target = uncontrolled dynamics + deviation
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(a) Average consumption.

0 5 10 15 20
−10

−5

0

5

Time (hours)

De
via

tio
n

(%
of

m
ax

.c
on

s.)

(b) Eight hours step deviation signal.

▶ Nb of water-heaters = 104

▶ Time horizon = one day
▶ Time step = 10 minutes
▶ Heaters are homogeneous and randomly initialised
▶ Drains adapted from SMACH data
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Results
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(a) Consumption simulation
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(b) Objective function

▶ FP-MFG (Perrin et al., 2020), OMD-MFG (Pérolat et al.,
2021)
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Optimal policy from FP-MFG and MD-MFC
▶ Different policies may lead to the same consumption
▶ Regularization in MD provides more interesting solutions from

an operational point of view

(a) Policy FP-MFG (b) Policy MD-MFC

Figure: Optimal policy FP-MFG and MD-MFC
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Work in progress...
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Learning: Online protocol idea for unknown dynamics

Now we want to calculate a policy every day t over an horizon T ,
but we need to learn the model dynamics

Day t

1 2
. . .

n
. . .

Nt t + 1
Play πt

Observe data

Learning Problem:
Update model p̂t+1

Optimisation Problem:
Compute πt+1 using p̂t+1

t + 2

Day t+ 1

Play πt+1 Repeat
until day T
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Conclusion

▶ Goal: Control the average energy consumption of a
water-heater’s population to better match a target signal
▶ Innovative modelling of water-heaters as MDPs
▶ New algorithm with theoretical results
▶ Experimental results

▶ Validating the efficacy of MD-MFC
▶ Showing that MD-MFC is relevant to the industrial problem

▶ Extension of the algorithm to a more realistic case (unknown
dynamics and adversarial objective function)

Thank you for your attention! Questions?
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Optimal policy with nominal initialization

(a) Nominal policy deviation (b) Policy MD-MFC

Figure: Optimal policies for Fictitious Play and Mirror Descent.
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Greedy-MD

Greedy Mirror Descent:
▶ Initialize algorithm with π1

▶ For each episode t ∈ {1, ..., T}:
▶ Play πt and observe data (xt

1, a
t
1, . . . , x

t
N , atN )

▶ Use data to update a probability kernel estimation pt such that
∥pt(·|x, a)− p(·|x, a)∥1 ≤ O

(
1√
t

)
▶ Observe objective function F t

▶ Compute πt+1 solving one iteration of MD-MFC with F t,
πt, and pt

▶ Greedy Mirror Descent achieves sub-linear regret!
▶ O(

√
T log(T ))
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