Learning methods for mean-field models: application to power consumption control

Bianca Marin Moreno^{1,2}

Margaux Brégère¹, Pierre Gaillard² and Nadia Oudjane¹ ¹EDF R&D, Palaiseau, France ²INRIA Grenoble, THOTH, Grenoble, France

Balancing the power grid

- Difficulties on the supply side:
 - ▶ Integration of renewable energy → intermittent nature
 - ► Energy storage devices and energy importation → costly alternatives

Demand-Side Management

Solution: adjust energy consumption to better match the energy supply

Demand-Side Management

TCLs: Thermostatically Controlled Loads

- Electrical heating or cooling elements controlled by a thermostat: water-heaters, ar conditioners, refrigerators, etc
- Flexible loads

Smart meters

 Allow communication between load and supplier in near real time

Control of a population of water-heaters

 Goal: Control the average consumption of a population of water-heaters (Busic and Meyn, 2016; Bendotti et al., 2021) Control of a population of water-heaters

 Goal: Control the average consumption of a population of water-heaters (Busic and Meyn, 2016; Bendotti et al., 2021)

Individual consumption

(time step n)

Average consumption (time step n)

in order to track a reference profile (γ_n) by sending a control signal (π_n)

$$\pi_{n} \implies \begin{cases} \text{device } 1 \to ON_{n}^{1} \\ \vdots \\ \text{device } i \to ON_{n}^{i} \implies \\ \vdots \\ \text{device } M \to ON_{n}^{M} \end{cases} \qquad \underbrace{\frac{1}{M} \sum_{i=1}^{M} ON_{n}^{i}}_{\text{average cons.}} \approx \underbrace{\gamma_{n}}_{\text{target}} \frac{1}{5/24} \end{cases}$$

$Setting \ \text{and} \ Model$

- Goal: Control the average consumption of a population of water-heaters
- Idea: probability of turning ON/OFF before leaving [T_{min},T_{max}]
- Formulation as a Markov Decision Process:

- Goal: Control the average consumption of a population of water-heaters
- Idea: probability of turning ON/OFF before leaving [T_{min},T_{max}]
- Formulation as a Markov Decision Process:
 - state space \mathcal{X} : ON/OFF and temperature

- Goal: Control the average consumption of a population of water-heaters
- Idea: probability of turning ON/OFF before leaving [T_{min},T_{max}]
- Formulation as a Markov Decision Process:
 - state space \mathcal{X} : ON/OFF and temperature
 - action space A: turn ON/OFF

- Goal: Control the average consumption of a population of water-heaters
- Idea: probability of turning ON/OFF before leaving [T_{min},T_{max}]
- Formulation as a Markov Decision Process:
 - state space \mathcal{X} : ON/OFF and temperature
 - action space A: turn ON/OFF
 - policy $(\pi_n)_{n \leq N}$ = control signal to learn
 - ▶ π_n(a_n|x_n) = probability of choosing action a_n (turn ON/OFF) given current state x_n (ON/OFF and temperature)

- Goal: Control the average consumption of a population of water-heaters
- Idea: probability of turning ON/OFF before leaving [T_{min},T_{max}]
- Formulation as a Markov Decision Process:
 - state space X: ON/OFF and temperature
 - action space A: turn ON/OFF
 - policy $(\pi_n)_{n \leq N}$ = control signal to learn
 - ▶ π_n(a_n|x_n) = probability of choosing action a_n (turn ON/OFF) given current state x_n (ON/OFF and temperature)
 - probability kernel $x_{n+1} \sim p_n(\cdot | x_n, a_n)$ (drains)

Optimisation problem and mean field approach

- M water-heaters
- Goal: find a control signal (π_n) to approach a reference profile (γ_n)

$$\min_{\pi \in (\Delta_{\mathcal{A}})^{\mathcal{X} \times N}} \mathbb{E}\left[\sum_{n=1}^{N} \left(\frac{1}{M} \sum_{i=1}^{M} ON_{n}^{i}(\pi) - \gamma_{n}\right)^{2}\right]$$

Optimisation problem and mean field approach

- M water-heaters
- Goal: find a control signal (π_n) to approach a reference profile (γ_n)

$$\min_{\pi \in (\Delta_{\mathcal{A}})^{\mathcal{X} \times N}} \mathbb{E}\left[\sum_{n=1}^{N} \left(\frac{1}{M} \sum_{i=1}^{M} ON_{n}^{i}(\pi) - \gamma_{n}\right)^{2}\right]$$

• mean field limit $M \to \infty$:

• $\mu_n^{\pi}(x,a) = \mathbb{P}(x_n = x, a_n = a | \pi, (p_n)_n) = \text{state-action}$ distribution induced by π $\frac{1}{M} \sum_{n=1}^{M} ON_n^i(\pi) \longrightarrow \mathbb{E}_{\mu_n^{\pi}}[\{ON_n(\pi)\}]$

$$\sum_{i=1} ON_n^{\circ}(\pi) \longrightarrow \underbrace{\mathbb{E}_{\mu_n^{\pi}}[\{ON_n(\pi)\}]}_{\text{average cons.}}$$

• Control problem (\mathcal{C})

$$\min_{\pi \in (\Delta_{\mathcal{A}})^{\mathcal{X} \times N}} F(\mu^{\pi}) := \sum_{n=1}^{N} (\mathbb{E}_{\mu_n^{\pi}}[\{ON_n(\pi)\}] - \gamma_n)^2$$

Optimisation vs. Learning

Main problem:

$$\min_{\pi \in (\Delta_{\mathcal{A}})^{\mathcal{X} \times N}} F(\mu^{\pi}),$$

where
$$\mu_n^{\pi}(x,a):=\mathbb{P}(x_n=x,a_n=a|\pi,(p_n)_n)$$

Optimisation

- ▶ $p = (p_n)_n$ is known
- Today's talk: A novel approach to solve the main problem with known p

Optimisation vs. Learning

Main problem:

$$\min_{\pi \in (\Delta_{\mathcal{A}})^{\mathcal{X} \times N}} F(\mu^{\pi}),$$

where $\mu_n^{\pi}(x,a):=\mathbb{P}(x_n=x,a_n=a|\pi,(p_n)_n)$

Optimisation

- ▶ $p = (p_n)_n$ is known
- Today's talk: A novel approach to solve the main problem with known p

Learning

- Reality: $(p_n)_n$ is unknown
 - User's water consumption behavior is unknown
- Challenge: Learning the model while optimizing
- Work in progress

Optimisation vs. Learning

Main problem:

$$\min_{\pi \in (\Delta_{\mathcal{A}})^{\mathcal{X} \times N}} F(\mu^{\pi}),$$

where $\mu_n^{\pi}(x,a):=\mathbb{P}(x_n=x,a_n=a|\pi,(p_n)_n)$

Optimisation

- ▶ $p = (p_n)_n$ is known
- Today's talk: A novel approach to solve the main problem with known p

Learning

- Reality: $(p_n)_n$ is unknown
 - User's water consumption behavior is unknown
- Challenge: Learning the model while optimizing
- Work in progress

Convex/Concave Utility Reinforcement Learning (CURL)

$$\min_{\pi \in (\Delta_{\mathcal{A}})^{\mathcal{X} \times N}} F(\mu^{\pi})$$

This applies to many others machine learning problems:

- ► Reinforcement learning (Sutton and Barto, 2018): $F(\mu^{\pi}) := -\langle \mu^{\pi}, r \rangle$, for a reward function r
- Imitation learning (Ghasemipour et al., 2020): F(μ^π) := −D_f(μ^π, μ^{*}), where D_f is a Bregman divergence induced by a function f
- ▶ Potential games in mean field games (Geist et al., 2022): when the reward of the game is $-\nabla F(\mu^{\pi})$
- Few algorithms in the literature for CURL: Hazan et al. (2019) (Frank-Wolfe), Geist et al. (2022) (Online Mirror Descent/ Fictitious Play)
- We present a new approach for CURL

Algorithmic approaches

Problem reformulation

$$\min_{\pi \in (\Delta_{\mathcal{A}})^{\mathcal{X} \times N}} F(\mu^{\pi}) := \sum_{n=1}^{N} (\mathbb{E}_{\mu_n^{\pi}}[\{ON_n(\pi)\}] - \gamma_n)^2$$

 \bigwedge gradient on π ? convexity?

Problem reformulation

$$\min_{\pi \in (\Delta_{\mathcal{A}})^{\mathcal{X} \times N}} F(\mu^{\pi}) := \sum_{n=1}^{N} (\mathbb{E}_{\mu_{n}^{\pi}}[\{ON_{n}(\pi)\}] - \gamma_{n})^{2}$$

$$\bigwedge \text{ gradient on } \pi? \quad \text{convexity}?$$

$$\Longrightarrow \min_{\mu \in ?} F(\mu)$$

gradient on μ ! convexity!

Problem reformulation

$$\min_{\pi \in (\Delta_{\mathcal{A}})^{\mathcal{X} \times N}} F(\mu^{\pi}) := \sum_{n=1}^{N} (\mathbb{E}_{\mu_{n}^{\pi}}[\{ON_{n}(\pi)\}] - \gamma_{n})^{2}$$

$$\bigwedge \text{ gradient on } \pi? \quad \text{convexity}?$$

$$\implies \min_{\mu \in ?} F(\mu)$$

$$\text{gradient on } \mu! \quad \text{convexity!}$$

$$\mathcal{M}_{\mu_{0}} := \left\{ (\mu_{n})_{n} | \sum_{a'} \mu_{n}(x', a') = \sum_{x, a} p_{n}(x'|x, a) \mu_{n-1}(x, a) \right\}$$

 $\mu \in \mathcal{M}_{\mu_0} \longrightarrow \pi \in (\Delta_{\mathcal{A}})^{\mathcal{X} imes N}$ such that $\mu^{\pi} = \mu$

13/24

Iterative scheme

 \blacktriangleright Consider the following iterative scheme at iteration k

$$\mu^{k+1} \in \operatorname*{arg\,min}_{\mu^{\pi} \in \mathcal{M}_{\mu_0}} \left\{ \langle \nabla F(\mu^k), \mu^{\pi} \rangle + \frac{1}{\tau_k} \Gamma(\mu^{\pi}, \mu^k) \right\}$$
(1)

 \blacktriangleright where Γ is a non-standard regularization

$$\Gamma(\mu^{\pi}, \mu^{\pi'}) := \sum_{n=1}^{N} \mathbb{E}_{(x,a) \sim \mu_n^{\pi}(\cdot)} \left[\log \left(\frac{\pi_n(a|x)}{\pi'_n(a|x)} \right) \right]$$

Iterative scheme

 \blacktriangleright Consider the following iterative scheme at iteration k

$$\mu^{k+1} \in \operatorname*{arg\,min}_{\mu^{\pi} \in \mathcal{M}_{\mu_0}} \left\{ \langle \nabla F(\mu^k), \mu^{\pi} \rangle + \frac{1}{\tau_k} \Gamma(\mu^{\pi}, \mu^k) \right\}$$
(1)

 \blacktriangleright where Γ is a non-standard regularization

$$\Gamma(\mu^{\pi}, \mu^{\pi'}) := \sum_{n=1}^{N} \mathbb{E}_{(x,a) \sim \mu_n^{\pi}(\cdot)} \left[\log \left(\frac{\pi_n(a|x)}{\pi'_n(a|x)} \right) \right]$$

First result:

• Dynamic Programming yielding in a simple closed-form solution for (1): $\mu^{k+1} := \mu^{\pi^{k+1}}$ such that $\pi_n^{k+1}(a|x) := \frac{\pi_n^k(a|x) \exp\left(\tau_k \tilde{Q}_n^k(x,a)\right)}{\sum_{a' \in \mathcal{A}} \pi_n^k(a'|x) \exp\left(\tau_k \tilde{Q}_n^k(x,a')\right)}$

MD-MFC Algorithm

Algorithm MD-MFC

1: for
$$k = 0, ..., K - 1$$
 do
2: $\mu^k = \mu^{\pi^k}$
3: Compute $\tilde{Q}_N^k(x, a)$ for all $(x, a) \in \mathcal{X} \times \mathcal{A}$
4: for $n = N, ..., 1$ do
5: $\forall (x, a) \in \mathcal{X} \times \mathcal{A}$:
6: $\pi_n^{k+1}(a|x) = \frac{\pi_n^k(a|x) \exp(\tau_k \tilde{Q}_n^k(x, a))}{\sum_{a'} \pi_n^k(a'|x) \exp(\tau_k \tilde{Q}_n^k(x, a'))}$
7: Compute $\tilde{Q}_{n-1}^k(x, a)$
8: end for
9: end for
10: return μ^{π^K}, π^K

Convergence analysis

Second result:

Theorem (MD-MFC convergence) Let π^* a minimizer and K the number of iteration, thus $\min_{0 \le s \le K} F(\mu^{\pi^s}) - F(\mu^{\pi^*}) \le O(\frac{1}{\sqrt{K}})$

Convergence analysis

Second result:

Theorem (MD-MFC convergence) Let π^* a minimizer and K the number of iteration, thus $\min_{0 \le s \le K} F(\mu^{\pi^s}) - F(\mu^{\pi^*}) \le O(\frac{1}{\sqrt{K}})$

Proof idea:

- ▶ Γ is a Bregman divergence and is 1-strongly convex with respect to the $\sup_{1 \le n \le N} \| \cdot \|_1$ norm
- $\blacktriangleright \Rightarrow$ MD-MFC converge as a Mirror Descent algorithm

Experiments

$Target = uncontrolled \ dynamics + deviation$

(a) Average consumption.

(b) Eight hours step deviation signal.

- Nb of water-heaters $= 10^4$
- Time horizon = one day
- Time step = 10 minutes
- Heaters are homogeneous and randomly initialised
- Drains adapted from SMACH data

Results

FP-MFG (Perrin et al., 2020), OMD-MFG (Pérolat et al., 2021)

Optimal policy from FP-MFG and MD-MFC

- Different policies may lead to the same consumption
- Regularization in MD provides more interesting solutions from an operational point of view

Figure: Optimal policy FP-MFG and MD-MFC

Work in progress...

Conclusion

 Goal: Control the average energy consumption of a water-heater's population to better match a target signal

- Innovative modelling of water-heaters as MDPs
- New algorithm with theoretical results
- Experimental results
 - Validating the efficacy of MD-MFC
 - Showing that MD-MFC is relevant to the industrial problem
- Extension of the algorithm to a more realistic case (unknown dynamics and adversarial objective function)

Conclusion

Goal: Control the average energy consumption of a water-heater's population to better match a target signal

- Innovative modelling of water-heaters as MDPs
- New algorithm with theoretical results
- Experimental results
 - Validating the efficacy of MD-MFC
 - Showing that MD-MFC is relevant to the industrial problem
- Extension of the algorithm to a more realistic case (unknown dynamics and adversarial objective function)

Thank you for your attention! Questions?

References

- Bendotti, P., Oudjane, N., and Wan, C. (2021). Distributed control of ï¬ exible loads by mean-ï¬ eld inversion.
- Busic, A. and Meyn, S. (2016). Distributed randomized control for demand dispatch. pages 6964–6971.
- Geist, M., Pérolat, J., Laurière, M., Elie, R., Perrin, S., Bachem, O., Munos, R., and Pietquin, O. (2022). Concave utility reinforcement learning: The mean-field game viewpoint. In *Proceedings of the 21st International Conference on Autonomous Agents and Multiagent Systems*, AAMAS '22, page 489â 497, Richland, SC. International Foundation for Autonomous Agents and Multiagent Systems.
 Ghasemipour, S. K. S., Zemel, R., and Gu, S. (2020). A
 - divergence minimization perspective on imitation learning methods. In Kaelbling, L. P., Kragic, D., and Sugiura, K., editors, *Proceedings of the Conference on Robot Learning*, volume 100 of *Proceedings of Machine Learning Research*, pages 1259–1277. PMLR.

Hazan, E., Kakade, S., Singh, K., and Van Soest, A. (2019).

24/24

Optimal policy with nominal initialization

Figure: Optimal policies for Fictitious Play and Mirror Descent.

Greedy Mirror Descent:

- \blacktriangleright Initialize algorithm with π^1
- For each episode $t \in \{1, ..., T\}$:
 - $\blacktriangleright \text{ Play } \pi^t \text{ and observe data } (x_1^t, a_1^t, \ldots, x_N^t, a_N^t)$

Greedy Mirror Descent:

- Initialize algorithm with π^1
- For each episode $t \in \{1, ..., T\}$:
 - \blacktriangleright Play π^t and observe data $(x_1^t, a_1^t, \ldots, x_N^t, a_N^t)$
 - Use data to update a probability kernel estimation p^t such that $\|p^t(\cdot|x,a) p(\cdot|x,a)\|_1 \le O\left(\frac{1}{\sqrt{t}}\right)$

Greedy Mirror Descent:

- Initialize algorithm with π^1
- For each episode $t \in \{1, ..., T\}$:
 - ▶ Play π^t and observe data $(x_1^t, a_1^t, \dots, x_N^t, a_N^t)$
 - ▶ Use data to update a probability kernel estimation p^t such that $\|p^t(\cdot|x,a) p(\cdot|x,a)\|_1 \le O\left(\frac{1}{\sqrt{t}}\right)$

Observe objective function F^t

Greedy Mirror Descent:

- Initialize algorithm with π^1
- For each episode $t \in \{1, ..., T\}$:
 - \blacktriangleright Play π^t and observe data $(x_1^t, a_1^t, \ldots, x_N^t, a_N^t)$
 - Use data to update a probability kernel estimation p^t such that $\|p^t(\cdot|x,a) p(\cdot|x,a)\|_1 \le O\left(\frac{1}{\sqrt{t}}\right)$
 - Observe objective function F^t
 - Compute π^{t+1} solving one iteration of MD-MFC with F^t , π^t , and p^t

Greedy Mirror Descent:

- Initialize algorithm with π^1
- For each episode $t \in \{1, ..., T\}$:
 - \blacktriangleright Play π^t and observe data $(x_1^t,a_1^t,\ldots,x_N^t,a_N^t)$
 - ▶ Use data to update a probability kernel estimation p^t such that $\|p^t(\cdot|x,a) p(\cdot|x,a)\|_1 \le O\left(\frac{1}{\sqrt{t}}\right)$
 - Observe objective function F^t
 - Compute π^{t+1} solving one iteration of MD-MFC with F^t , π^t , and p^t
- Greedy Mirror Descent achieves sub-linear regret!
 - $\blacktriangleright O(\sqrt{T \log(T)})$