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From: a decarbonization of large financial markets via the mean field game
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Firms:

• ∞-number of heterogeneous firms;
• Control their economical value via their production level and maximize

their financial value.
• compete for capital allocation;
• GHG emissions associated with production.

Investors:

• 2-investors: A brown investor and a green investor (averse to climate
change);
• Optimize their wealth under budget constraint.

Equilibrium:

• Between firms and investors occurs through a market clearing
condition.
• Nash equilibrium between the firms competing for capital allocation on

the market.
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Structure of interactions

Firm’s problem
sup
ψ

J[ξ](ψ)

Investor’s problem

sup
W

Gi [ξ](W )

Market Clearing

E
[

V ξ
T

∣∣∣F0
T

]
=

∑
i∈{r,g}

W j,ξ

Optimal value V ξ Optimal wealth W i,ξ

Stochastic discount factor ξ Stochastic discount factor ξ

Figure 1: Structure of interactions.
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Representative firm problem

Its criterion J[ξ] is given by

J[ξ](ψ) = E
[
Sξ,ψ0 −

∫ T

0

αt |ψt |2

2
dt
]
, Sξ,ψt =

1
ξt
E
[
ξVψ

T

∣∣∣Ft

]
,

where Sξ,ψ is the share price for a given discount factor of interaction ξ and a
strategy of emissions ψ.

The value of the representative firm has the following dynamics:

dVt = Vt (µt dt + σt dBt + σ0
t dB0

t ) + βtψt dt , V0 = V .

where µ, σ, σ0, c, ψ are F-adapted.

Lemma

Assume that E[ξET ] < +∞, and ψξ ∈ L2
α(F), where ψξt := βt

αt
E[ξEt,T |Ft ].

Then the unique optimal solution of the representative firm problem is given
by ψξ.
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Investors’ problem

The regular investor solves the optimization problem

min
W r

EP[e−γ
r W r

] subject to E[ξW r ] ≤ w r .

The green investor solves

min
W g

EPg [e−γ
g W g

] subject to E[ξW g ] ≤ wg ,

where the probability measure of the green investor Pg , is defined by

dPg

dP
= Z , Z = e−

∫ T
0 λsdB0

s−
1
2
∫ T

0 |λs|2ds.

The solutions to the optimization problems are of the form

W g =
1
γg ln

ξ

Z
+ cg , W r =

1
γr ln ξ + cr ,

for some constants cg and cr to be determined.
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Market equilibrium

In the mean-field market, assuming unlimited supply of the risk-free asset,
the market clearing condition takes the form:

W g + W r = E
[
VT |F0

T

]
+ c

for an arbitrary constant c. Substituting the explicit formulas, this is equivalent
to

ξ =
exp

(
ρ ln(Z )− γ∗E

[
VT |F0

T

])
E
[
exp

(
ρ ln(Z )− γ∗E

[
VT |F0

T

])] ,
with 1

γ∗ = 1
γr + 1

γg and where ρ := γr

γg +γr ∈ (0, 1) can be interpreted as the
proportion of green investors in the market.
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Mean-field game equilibrium

Mean-field game equilibrium problem: find a tuple
(ψ̄, ξ̄, m̄) ∈ L2

α(F)× Ξ× P(P(Ω)):

ψ̄ = arg min
ψ∈L2

α(F)

J[ξ̄](ψ), ξ̄ = I(m̄), m̄ = L
(

V ψ̄
T |F

0
T

)
. (NE)

In our setting, it is enough to look for a fixed point in the space Ξ.

Then, Nash equilibrium problem reduces to the fixed point problem: find
ξ ∈ Ξ, s. t.

ξ =
exp

(
ρ ln(Z )− γ∗E[V ξ

T |F
0
T ]
)

E
[
exp

(
ρ ln(Z )− γ∗E[V ξ

T |F0
T ]
)] . (FP)
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Existence, uniqueness and algorithm

Under appropriate assumptions we have the following results.

Theorem

Then there a unique solution ξ̄ ∈ Ξ to the fixed-point problem (FP).

Algorithm

Let (αk )k∈N be a sequence in [0, 1]. Let ξ0 ∈ C. Consider the sequence
(ξk , ηk )k∈N defined as follows

ηk =
exp

(
−γ∗E[V ξk

T |F
0
T ] + ρ ln Z

)
E
[
exp

(
−γ∗E[V ξk

T |F0
T ] + ρ ln Z

)] ,
ξk+1 = αkηk + (1− αk )ξk .

Theorem

The sequence (ξk )k∈N weakly converges in C for αk = 2/(k + 2).
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Extension

• In the problem studied, investors do not behave dynamically,
• The investors are impacted by the emission only through the discount

factor ξ at equilibrium.

Refinements

Suppose one can apply the martingale representation theorem, and there
exists (θt )t∈[0,T ] such that the tuple of price and volatility (S, σ) is solution to
the following BSDE

dSt

St
= σt (θt dt + dW 0

t ), ST = S.

Mean variance criterion

The investor now maximizes a penalized mean variance criterion,

E
[
X δ

T −
∫ T

0
|δtσt |2dt −

∫ T

0
|δtϕt |2dt

]
,

where the dynamics of the portfolio (Xt )t∈[0,T ] is given in quantities by

dXt = δt dSt , X0 = X .

and ϕt = E[ψt |F0
t ] is the total market emissions. 10



To a quadratic pricing BSDE

The first order condition and market clearing condition are given by

θtσtSt = δt (ϕ
2
t + σ2

t ), δt = 1, ST = E
[
VT |F0

T

]
.

Plugging into the pricing equation, we are now looking for a solution (S, σ) to
the quadratic BSDE parametrized by the flow of emission (ϕt )t∈[0,T ]

dSt = (ϕ2
t + σ2

t )dt + σt dW 0
t , ST = E

[
VT |F0

T

]
.

The mean field game problem of the firms is now to find (ψ,m, ϕ) such that

ψ ∈ arg max
ψ′

E
[
Sm,ϕ,ψ′

0 −
∫ T

0

αt |ψ′t |2

2
dt
]
,

mt = L(Xψ
t |F

0
t ), ϕt = E[ψt |F0

t ].

Such formulation is non-standard in mean field games.

Can we develop a ”general” theory with non-linear evaluation of the
terminal interaction terms ?
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To: a mean field game theory with
quadratic BSDEs



Framework

For any couple of F0 adapted random law (ν,m), consider the individual
problem

inf
ψ
J [ν,m](ψ) = E

[
h(Yψ,ν,m

0 ) +

∫ T

0
L(ψt )dt

]
.

where (Yψ,ν,m,Zψ,ν,m,Xψ) is solution to the FBSDE{
−dYt = f (Yt ,Zt , νt )dt − Zt dW 0

t , YT = g(XT ,mT ),

dXt = b(Xt , ψt )dt + σ(Xt )dWt + σ0(Xt )dW 0
t , X0 = η.

Where we assume that

• L is convex quadratic, h, b, σ and σ0 are Lipschitz continuous.

• g is bounded, i.e g(XT ,mT ) ∈ L∞(F0).

• f is a quadratic driver, that is to say

|f (y , z, ν)| ≤ C
(

1 + |y |+ |z|2
)
, almost surely.
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Mean field game problem

The mean field game problem is to find a tuple (ψ,Y ,Z ,X , ν,m) such that
(i) ψ ∈ arg minψ′ J [ν,m](ψ′),

(ii) (Y ,Z ,X ) = (Yψ,ν,m,Zψ,ν,m,Xψ),

(iii) (νt ,mt ) = (L(ψt |F0
t ),L(Xt |F0

t )),

(MFG)

Difficulty

1. Common noise setting.
2. The quadratic BSDE framework is not investigated in the MFG

literature...
3. Even the Pontryagin maximum principle for this kind of optimization

problem seems unavailable.

Approach

• Start from classical works on quadratic BSDE for existence, uniqueness
of solutions, a priori estimates and stability results Kobylanski (2000),
Ankirchner et al. (2007), Zhang (2017).
• Establish a Pontryagin maximum principle (for a fixed couple (m, ν)),
• Show existence and uniqueness of a MFG equilibrium. 13



Example: the entropic risk measure case

Example Consider the following simple case

inf
ψ
J [ν,m](ψ) = E

[
Yψ,ν,m

0 +

∫ T

0

1
2
|ψt |2dt

]
.

where (Yψ,ν,m,Zψ,ν,m,Xψ) is solution to the FBSDE{
−dYt = 1

2γ |Zt |2dt − Zt dW 0
t , YT = g(XT ,mT ),

dXt = ψt dt + σdWt + σ0dW 0
t , X0 = η.

Explicit solution to the BSDE Consider a solution (P,Q) to the following
linear BSDE

−dPt = Qt dW 0
t , PT = e−

1
γ

g(XT ,mT )
.

(So Pt = E
[
e−

1
γ

g(XT ,mT )|F0
t

]
). Then by the Hopf-Cole transformation, we

have that (Y ,Z ) defined as

Yt = −γ ln(Pt ), Zt = −γQt/Pt ,

is solution to the BSDE part.

14



Example: the entropic risk measure case

Then the control problem is now of the following form

inf
ψ
J [ν,m](ψ) = ργ(g(XT ,mT )) + E

[∫ T

0

1
2
|ψt |2dt

]
.

where ργ is the entropic risk measure

ργ(g(XT ,mT )) = −γ lnE
[
e−

1
γ

g(XT ,mT )
]
.

(Remark: the entropic risk measure has dual representation, see Barrieu and
Karoui (2007)).
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Pontryagin maximum principle

Fix (even forget about) the interaction terms (m, ν). Road to Pontryagin
maximum principle:

• Consider an optimal control ψ and a perturbation εϕ.

ε−1 (J (ψ + εϕ)− J (ψ)) ≥ 0.

• Establish derivatives (y , z, x) for the states variables (Y ,Z ,X ) with
respect to the control variable ψ that is to say show that

lim
ε→0
‖∆Y ε‖S2p(G) + ‖∆Z ε‖M2p(G) + ‖∆X ε‖L2(G) = 0.

where

∆Y ε = ε−1(Yψ+εϕ − Yψ)− y , ∆Z ε = ε−1(Zψ+εϕ − Zψ)− z,

∆X ε = ε−1(Xψ+εϕ − Xψ)− x .

and 
−dyt = (yt∂y ft + zt∂z ft ) dt − zt dW 0

t ,

yT = E
[
xT∂x gT |F0

T

]
,

dxt = ϕt∂ψbt dt + xt
(
∂x bt dt + ∂xσt dWt + ∂xσ

0
t dW 0

t
)
,

x0 = 0.
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Pontryagin maximum principle

• Define adjoint variables (p, k , k0, q) to the derivatives (y , z, x), which are
themselves solutions to the FBSDE{

−dpt = pt∂x bt dt − kt dWt − k0
t dW 0

t , pT = qT∂x gT ,

dqt = qt∂y ft dt + qt∂z ft dW 0
t , q0 = ∂y h(Y0).

• Define the Hamiltonian

H(Xt , pt , ψt ) = L(ψt ) + ptb(Xt , ψt ).

and show that any optimal control ψ satisfies

〈∂ψH(Xt , pt , ψt ), ϕt − ψt〉 ≥ 0,

a.s, for any direction ϕ.
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Ongoing work

Existence and uniqueness of MFG equilibrium:

• Existence of MFG equilibrium : Picard fixed point ?
• Uniqueness holds under the following conditions:

1. Lasry-Lions monotonicity condition∫
R

(g(x ,m1)− g(x ,m2))d(m1 −m2)(x) ≥ 0.

2. h is convex and strictly increasing, that is to say, there exists C > 0 such that

h(y1) ≥ h(y2) +
1
C

(y1 − y2).
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Conclusion

Futur research

• Application: solve the initial green finance problem (and variants)

• Application to MFG with risk management (g-expectation criterion).

• Malliavin calculus for PMP principle and MFG.

• Numerical resolution via Euler schemes and regressions for the FBSDE
system.

• Is there a potential formulation ?
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Thank you for your attention.
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Illustrations



Model specification

Let B0 be a 2-dimensional Brownian motions with components (B0,1,B0,2).

• The emission efficacy (βt ) is constant in time for each firm, βt = C, and
the emission penalty (αt ) is the same for all firms (and F0-measurable).

• We model the differences in initial firm values and emission efficacies by
introducing F0-measurable random variables V and C.

• The emission penalty (αt ) is a stochastic process defined by

αt = eγB0,2
t −

γ2
2 t , γ ∈ R+.

• The density of the change of measure of the green investor is defined by

Z = eλB0,2
T −λ

2T/2, λ ∈ R+.



Model specification

The parameters of the firm value dynamics σ, σ0 and µ are constant, and we
let

E t,T = eσ
0B0,1

t +(µ−(σ0)2/2)t .

The fixed point equation then writes

ξ =
exp

(
−γ∗V ξ

T + ρ(λB0,2
T − λ

2t/2)
)

E
[
exp

(
−γ∗V ξ

T + ρ(λB0,2
T − λ2T/2)

)] ,
V ξ

T = V ET +

∫ T

0
C2

0 e−γB0,2
t +|γ|2t/2E t,T E[ξE t,T |F0

t ]dt ,

where we denote C2
0 = E[C2

0 ] and V = E[V ].



Model parameters

The parameters ρ (proportion of green investors), γ (volatility of emissions
penalty, a proxy for climate risk) and λ (environmental concern of green
investors) are changing throughout the tests and the other parameters are
given below:

Variable Value Description
T 5 Time horizon, years
γ∗ 0.5 Risk aversion parameter
σ0 10% Volatility of the common noise part of firm

value dynamics
µ 5% Drift of the firm value dynamics
V 1 Average initial firm value
C2 1 Average squared emission efficacy of pro-

duction
C 0.7 Average emission efficacy of production
n 20 Number of discretization steps
N 50 000 Number of sample trajectories
p 2 Weight in the fixed-point algorithm



Outputs of the algorithm

• The total average emissions, given by

ΨT =

∫ T

0
E[ψt |F0

T ]dt =

∫ T

0
C0e−γB0,2

t +γ2t/2E[ξE t,T |F0
t ]dt .

• The expected emissions of the representative company at date t , given
by

E[ψt ] = C0E
[
ξe−γB0,2

t + γ
2 t
2 E t,T

]
.

• The initial stock price of the representative company, given by

Sξ0 = VE[ξET |F0] + E
[∫ T

0

c2
s

αs
E2[ξEs,T |Fs]ds

∣∣∣F0

]
= VE[ξET ] + C2

0E
[∫ T

0
e−γB0,2

t +γ2t/2E2[ξE t,T |Ft ]dt
]



Convergence

Here γ = 0.3 and λ = 0 (no green investors).
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Figure 2: Left: convergence of the distribution of ξ. Right: convergence of the
distribution of total average emissions ΨT =

∫ T
0 E[ψt |F0

T ]; for the 10 first step of the
algorithm.



Impact of uncertainty of climate policies γ on the decarbonization

Still in the absence of green investors (λ = 0).
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Figure 3: Left: distribution of total average emissions ΨT =
∫ T

0 E[ψt |F0
T ]dt ; right:

expected emissions of the representative company per unit of time E[ψt ]; for different
values uncertainty of climate policies γ.



Impact of the environmental concern λ of the green investors

The proportion of green investors is ρ = 0.5 and the risk γ = 0.3.
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Figure 4: Left: distribution of total average emissions ΨT =
∫ T

0 E[ψt |F0
T ]dt ; right:

expected emissions of the representative company per unit of time E[ψt ]; for different
values of the environmental concern of green investors λ.



Impact of the proportion ρ of green investors

The environmental concern of the green investor is fixed at λ = 0.4.
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Figure 5: Left: distribution of total average emissions ΨT =
∫ T

0 E[ψt |F0
T ]dt ; right:

expected emissions of the representative company per unit of time E[ψt ]; for different
values of proportions of green investors ρ.



Impact of the green investors on share prices Sξ
0

Sξ0 = VP1 + C2
0 P2, P1 = E[ξET ], P2 = E

[∫ T

0
e−γB0,2

t +γ2t/2E2[ξE t,T |Ft ]dt

]
.

γ λ ρ P1 P2
Impact of γ

0.15 0 0.5 1.2102± 0.0004 6.260± 0.011
0.3 0 0.5 1.2112± 0.0003 6.928± 0.014

0.45 0 0.5 1.2128± 0.0003 8.143± 0.010
Impact of λ

0.3 0 0.5 1.2112± 0.0003 6.928± 0.014
0.3 0.2 0.5 1.2103± 0.0003 6.834± 0.017
0.3 0.4 0.5 1.2115± 0.0003 6.730± 0.019

Impact of ρ
0.3 0.4 0.0 1.2112± 0.0003 6.928± 0.014
0.3 0.4 0.25 1.2108± 0.0005 6.825± 0.020
0.3 0.4 0.5 1.2115± 0.0003 6.730± 0.019
0.3 0.4 0.75 1.2119± 0.0004 6.710± 0.020
0.3 0.4 1.0 1.2113± 0.0003 6.595± 0.021
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