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Firms:

e oco-number of heterogeneous firms;

e Control their economical value via their production level and maximize
their financial value.

e compete for capital allocation;

e GHG emissions associated with production.

Investors:

e 2-investors: A brown investor and a green investor (averse to climate
change);
e Optimize their wealth under budget constraint.

Equilibrium:

e Between firms and investors occurs through a market clearing
condition.

e Nash equilibrium between the firms competing for capital allocation on
the market.


https://arxiv.org/abs/2301.09163
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Figure 1: Structure of interactions.




Representative firm problem

Its criterion J[¢] is given by

s el - [Tt o= gl

where S*" is the share price for a given discount factor of interaction ¢ and a
strategy of emissions .

The value of the representative firm has the following dynamics:
AV = Vi(uuedt + o1dBs + odBY) + Bredt, Vo = V.

where y, 0, 0%, ¢, ¢ are F-adapted.

Lemma

Assume that E[¢€7] < +oo, and 4 € L5(F), where o; := ELE[¢E, 7| Fi].
Then the unique optimal solution of the representative firm problem is given
by .



Investors’ problem

The regular investor solves the optimization problem

rrl)vipEn»[eﬂ'W'] subjectto E[¢W'] < w'.

The green investor solves
min Epo[e 7"""] subjectto E[¢WI] < w?,

where the probability measure of the green investor P9, is defined by
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The solutions to the optimization problems are of the form
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for some constants ¢? and ¢’ to be determined.



Market equilibrium

In the mean-field market, assuming unlimited supply of the risk-free asset,
the market clearing condition takes the form:

Wo+ W =E[Ve| 79| +c

for an arbitrary constant c¢. Substituting the explicit formulas, this is equivalent

to
£ exp (pIn(Z) — v*E [Vr|F7])
E [oxp (In(Z) = 7°E Vi3]
with -t = - + J and where p := ng—;w, € (0,1) can be interpreted as the

proportion of green investors in the market.



Mean-field game equilibrium

Mean-field game equilibrium problem: find a tuple
(¥,€, M) € L&(F) x = x P(P(Q)):

b =argminJEl(v), &=1Im), m=c(ViIFP). (NE)

PeL? (F)
In our setting, it is enough to look for a fixed point in the space =.
Then, Nash equilibrium problem reduces to the fixed point problem: find

Ee= st

X In(Z) — v*E[VE|F2
. exp (pIn(Z) — 7" EIV§|F9]) -

E [exp (pln(Z) — 'y*IE[VﬂF?])} .




Existence, uniqueness and algorithm

Under appropriate assumptions we have the following results.
Theorem

Then there a unique solution & € = to the fixed-point problem (FP).
Algorithm

Let (cu)ken be a sequence in [0,1]. Let & € C. Consider the sequence
(éx, mk)ken defined as follows

exp <—’Y*E[V$k|}—$] +pln Z)
E [exp (—'y*IE[V?‘U’?] +pln Z)} 7

Tk =
Ekp1 = axmi + (1 — ak)ék.

Theorem

The sequence (&x)ken Weakly converges in C for ax = 2/(k + 2).



Extension

e In the problem studied, investors do not behave dynamically,
e The investors are impacted by the emission only through the discount
factor ¢ at equilibrium.

Refinements

Suppose one can apply the martingale representation theorem, and there
exists (0t)cpo, 7 such that the tuple of price and volatility (S, o) is solution to
the following BSDE

%S’ — oi(0dt + dWP), Sr=S.
t

Mean variance criterion

The investor now maximizes a penalized mean variance criterion,

T T
IE{X?— / (602t — / \6;<pt|2dt},
0 0

where the dynamics of the portfolio (Xt):cjo, 7 is given in quantities by
dX; = 6:dS:,  Xo = X.

and ¢ = E[yx|F7] is the total market emissions. 10



To a quadratic pricing BSDE

The first order condition and market clearing condition are given by
0101t = 6i(f + 0f), G =1, Sr=E [VTU:%J'] )

Plugging into the pricing equation, we are now looking for a solution (S, o) to
the quadratic BSDE parametrized by the flow of emission (¢1):cjo,7]

dSt = (¢f + o)dt + WP, Sr=E |Vr|F9)].
The mean field game problem of the firms is now to find (¢, m, ¢) such that
, T 712
1 € argmaxE {qu‘“o’w 7/ Mdt} ,
! 5 2
me = LXP|F), o = Bl F7).
Such formulation is non-standard in mean field games.

Can we develop a "general” theory with non-linear evaluation of the
terminal interaction terms ?



To: a mean field game theory with
quadratic BSDEs




Framework

For any couple of F® adapted random law (», m), consider the individual
problem

inf v, ml(v) = E {h( Yoy + /0 ' L(wt)dt} :
where (Y¥»™M z¥wm X¥) is solution to the FBSDE
—dYs = (Y4, Z, vr)dt — ZdWP, Yr = g(Xr, mr),
{ dX; = b(Xi, r)dt + o(Xe)dWs + (X)) dWP,  Xo = 1.
Where we assume that

e L is convex quadratic, h, b, o and ¢° are Lipschitz continuous.
e gis bounded, i.e g(Xr, mr) € L>=(F°).
e fis a quadratic driver, that is to say

If(y,z,v)| < C (1 +lyl+ |z|2) . almost surely.



Mean field game problem

The mean field game problem is to find a tuple (¢, Y, Z, X, v, m) such that
(1) ¥ € argminy, J[v, m|(y'),
(i) (Y,Z,X)=(Yv»m zvvm Xv), (MFG)
(i) (ve, me) = (L] FP), LXK FT)),

Difficulty

1. Common noise setting.

2. The quadratic BSDE framework is not investigated in the MFG
literature...

3. Even the Pontryagin maximum principle for this kind of optimization
problem seems unavailable.

Approach

e Start from classical works on quadratic BSDE for existence, uniqueness
of solutions, a priori estimates and stability results Kobylanski (2000),
Ankirchner et al. (2007), Zhang (2017).

e Establish a Pontryagin maximum principle (for a fixed couple (m, v)),

e Show existence and uniqueness of a MFG equilibrium.



Example: the entropic risk measure case

Example Consider the following simple case

71
nf Tl ml(e) = [ v+ [ Jiufat].
% ) 2
where (Y¥m z¢vm XYY is solution to the FBSDE
{ —dYy = | Z[2dt — ZdW?, Y7 = 9(Xr, mr),

dX = idt + odWs + o%dWP,  Xo =1n.

Explicit solution to the BSDE Consider a solution (P, Q) to the following
linear BSDE 1
—dP; = QdW,, Py =g 79T,

(So Pt =E [e*%Q(XT’mT)U-'P} ). Then by the Hopf-Cole transformation, we
have that (Y, Z) defined as

Yi= _’Yln(Pf)a Z = _’ny/va

is solution to the BSDE part.



Example: the entropic risk measure case

Then the control problem is now of the following form

. !
nf T ml(6) = s (oCxr.me) +E[ [ Jhwiat]
4 0
where p, is the entropic risk measure
po(g(Xr, mr)) = —yInE [~ 70T

(Remark: the entropic risk measure has dual representation, see Barrieu and
Karoui (2007)).



Pontryagin maximum principle

Fix (even forget about) the interaction terms (m, v). Road to Pontryagin
maximum principle:

e Consider an optimal control 1) and a perturbation .
e (T (W +e9) - T () > 0.
e Establish derivatives (y, z, x) for the states variables (Y, Z, X) with
respect to the control variable ¢ that is to say show that

IAY || s20(6) + I1AZ" [|pee(sy + 1AXT || 2(c) = O-

lim 3
e—0 .
where
AYS = \(Y¥tee _Y¥)_y, AZT =2V - Z¥) — 2,
AXE =g N(XVTEP — X¥) — x.
and
—dy; = (yiOyfy + 0. F) dt — Zd WP,
yr =E[xrogr|77],
dx; = (ptawadt =+ Xt (axbtdt + Oxord Wi + axO'?dVVtO) s
Xo =0.



Pontryagin maximum principle

o Define adjoint variables (p, k, k°, q) to the derivatives (y, z, x), which are
themselves solutions to the FBSDE

—dpt = pzaxbfdf = ktth = k,OdVV,O, pr = C]Taxg'r7
dg: = qtayfzdf + qrazf,d Wto, Qo = ayh( Yo).

e Define the Hamiltonian
H(Xt, pts i) = L) + pib(Xs, t).
and show that any optimal control ¢ satisfies

(OpH(Xt, pt, t), ot — be) > 0,

a.s, for any direction ¢.



Ongoing work

Existence and uniqueness of MFG equilibrium:

e Existence of MFG equilibrium : Picard fixed point ?
e Uniqueness holds under the following conditions:
1. Lasry-Lions monotonicity condition

Ame%wumm«m—mmnzo

2. his convex and strictly increasing, that is to say, there exists C > 0 such that

h) 2 hve) + 501 — se).



Conclusion

Futur research

Application: solve the initial green finance problem (and variants)

Application to MFG with risk management (g-expectation criterion).
e Malliavin calculus for PMP principle and MFG.

Numerical resolution via Euler schemes and regressions for the FBSDE
system.

Is there a potential formulation ?



Thank you for your attention.



Illustrations



Model specification

Let B® be a 2-dimensional Brownian motions with components (B%', B%2).

e The emission efficacy (/) is constant in time for each firm, 8; = C, and
the emission penalty (o) is the same for all firms (and F°-measurable).

e We model the differences in initial firm values and emission efficacies by
introducing Fo-measurable random variables V and C.

e The emission penalty («;) is a stochastic process defined by

0,2 ~2
_ B =5t
ar = e t 2 5 ’YER+

e The density of the change of measure of the green investor is defined by

02 2
Z=e¥r""XNT2  \eR,.



Model specification

The parameters of the firm value dynamics o, o and p are constant, and we
let
Eor = e B Hu—("/2)

The fixed point equation then writes
exp (_7* VE 4+ p(AB2? — )\zt/2))
E [exp (—7* VE + p(AB%2 — N2 T/2))] ’

E:

T* g— —
VE=VE; +/ Cee B HPU2E, L RIEE, 1| FO)at,
0

where we denote C2 = E[C3] and V = E[V].



Model parameters

The parameters p (proportion of green investors), v (volatility of emissions
penalty, a proxy for climate risk) and A (environmental concern of green
investors) are changing throughout the tests and the other parameters are
given below:

Variable Value Description

T 5 Time horizon, years

y* 0.5 Risk aversion parameter

oo 10% Volatility of the common noise part of firm
value dynamics

I 5% Drift of the firm value dynamics

v 1 Average initial firm value

c? 1 Average squared emission efficacy of pro-
duction

G 0.7 Average emission efficacy of production

n 20 Number of discretization steps

N 50000 Number of sample trajectories

p 2 Weight in the fixed-point algorithm



Outputs of the algorithm

e The total average emissions, given by
— T 0 T* BO’Z 21‘ 2 —
Uy = / E[y| Fdt = / Coo "B+ 2T, 1| FOdt.
0 0

e The expected emissions of the representative company at date ¢, given
by

502, 22t
E[¢t] = CoE {ge‘W 7 5”} .

e The initial stock price of the representative company, given by
T C2 2
S5 = VE[¢€r|Fo] + E V a—s]E [fEs,T\J-'s]ds)]-‘o}
0 s

;
= VE[¢E7] + CSE [ / e*vs?-,zﬂzt/z]gz[gt,rlﬂ]dt}
0



Convergence

Here v = 0.3 and A = 0 (no green investors).

Distribution of stochastic discount factor Distriburtion of total average emissions

2.00 — lIter0 — lter0

—— lter1 0.4 —— lter1

175 — lter2 — lter2

— lter3 — lter3

Lso — ltera — lter4

g — lter5 0.3 — lters

—— lter6 —— lter6

P — lter7 > — lter7

3 Iter 8 35 Iter 8

3 1.00 —— Iter 9 S02 —— lter9
2 g
& &

0.75
0.50 01
0.25
0.00 0.0
00 05 10 15 20 25 30 35 0 5 10 15 20 25 30
Stochastic discount factor value Total average emissions, MtCO2

Figure 2: Left: convergence of the distribution of £. Right: convergence of the
distribution of total average emissions V1 = fOT E[v|F2]; for the 10 first step of the
algorithm.



Impact of uncertainty of climate policies v on the decarbonization

Still in the absence of green investors (A = 0).

Distribution of average total emissions Expected emissions as function of time
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Figure 3: Left: distribution of total average emissions W = fOT ]E[wt\]-'?]dt; right:
expected emissions of the representative company per unit of time E[]; for different
values uncertainty of climate policies ~.



Impact of the environmental concern ) of the green investors

The proportion of green investors is p = 0.5 and the risk v = 0.3.

Distribution of average total emissions Expected emissions as function of time
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Figure 4: Left: distribution of total average emissions W = fOT]E[zpt\]-"}]dt; right:
expected emissions of the representative company per unit of time E[]; for different
values of the environmental concern of green investors .



Impact of the proportion p of green investors

The environmental concern of the green investor is fixed at A = 0.4.

Distribution of average total emissions Expected emissions as function of time
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Figure 5: Left: distribution of total average emissions W = fOT]E[zpt\]-"}]dt; right:
expected emissions of the representative company per unit of time E[]; for different
values of proportions of green investors p.



Impact of the green investors on share prices sg

.
S5 = VP + CEP, Py =E[(Er], P,=E {/ o8+ UZRREE, o Fldt .

0

Y A p P Pa

Impact of v

015 0 0.5 1.2102+0.0004 6.260 + 0.011

0.3 0 0.5 1.2112+0.0003 6.928 +0.014

045 0 0.5 1.2128 £0.0003 8.143+0.010
Impact of A

0.3 0 0.5 1.2112+0.0003 6.928 + 0.014

03 02 05 1.2103+0.0003 6.834+0.017

03 04 05 1.21154+0.0003 6.730+0.019
Impact of p

03 04 0.0 1.2112+0.0003 6.928 +0.014

0.3 04 025 1.2108+0.0005 6.825+0.020

03 04 05 1.21154+0.0003 6.730+0.019

0.3 04 075 1.211940.0004 6.710+0.020

03 04 1.0 1.21134+0.0003 6.595+0.021
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