
Optimal control of storage and short-term price
formation in electricity market

Roxana Dumitrescu1 , Redouane Silvente2 and Peter Tankov2

1King’s College London, 2CREST, ENSAE, Institut Polytechnique de Paris

Journées ateliers FIME

R. Silvente (ENSAE) Optimal control of storage FIME 1 / 25



Motivation

Context
Necessity to massively replace fossil-fired power plants by renewable
technologies −→ intermittent nature of the latter: this also requires a
large-scale use of electricity storage
Pumped Hydroelectric Energy Storage (PHES) = 96% of total
electricity storage in the world

Aim of this work
Define a realistic and tractable model to study the problem of the
optimal strategy for a price taker PHES
Study its impact on the short-term equilibrium in the electricity
market in different frameworks
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Literature

Small literature
Literature on optimal control of storage (Carmona and Ludkovski,
Cruise and Zachary, etc.)
a review on the development of PHES by Barbour et al
Price formation on electricity market, work inspired by a paper by Aïd
et al
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Storage

Consider a PHES whose state process, noted Q, represents the tank level
and follows the SDE:

dQt = −qtdt + ρdW 1
t . (1)

qt , the control process, is the injection rate (positive or negative). Here,
ρ describes the random amount of energy lost/gained because of external
factors (example: drought).
The price P is considered stochastic and exogenous. The stochastic
optimal control problem for a single agent reads:

V (0,Q0) = inf
q
E
[∫ T

0
−(Psqs − αq2

s ) +
β

2
(Qs − Q0)

2ds +
γ

2
(QT − Q0)

2
]
.

with γ,β,α strictly positive numbers.
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Storage

Proposition
The closed loop optimal control process can be expressed as follows :

qt =

√
β

α
f (t,T )(Qt − Q0)− E

[∫ T

t
f1(t,T , s)

Ps

2α
ds|Ft

]
+

Pt

2α

with u =
√
αβ−γ√
αβ+γ

and f , f1 auxiliary functions depending on α, β, γandT .
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Global framework
With this knowledge, the focus shifts to viewing the electricity market as a
platform for interaction between the energy demand D and three types of
players:

Players
Renewable producers: they always bid their full, stochastic, capacity
Rt

Conventional producers: they use a supply function C (Pt),
supposedly known and depending only on the electricity price
Storage facilities: they have their optimal strategy found earlier qt .
Here there is only one big storage representing the aggregation of
every small player.

The price process is defined in this way :

Pt = inf {P : Dt ≤ Rt + C (P) + qt} ∧ P̄

with P̄ an upper bound for the electricity price.
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Price formation
Toy model: the deterministic case

Assumptions
We ignore the random events that could affect the tank level of the
PHES.
There is no renewable production
The energy demand is deterministic
C is a linear function, C (P) = C0 + CP

−→ q is deterministic
−→ P is deterministic
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Toy model

The main positive aspect of this toy model is that we can derive an explicit
expression for the injection rate and the electricity price :

qt = −c1
β

α
cosh(

√
β

α
t) +

Pt

α
+

∫ t

0

√
β

α
sinh(

√
β

α
(t − s))

Ps

2α
ds

P(t) =
Dt − C0 −

√
β
α

2α G (t) + c1
β
α cosh(

√
β
α t)

F + 1
2α

∧ P̄

with c1 a constant depending on α, β and γ, G a given function.
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Numerical illustration
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Price formation
Stochastic case with one storage agent

As before, we look at the electricity market as a platform for interactions
between three types of players.

Players
Renewable producers: they always bid their full, stochastic, capacity
Rt

Conventional producers: they use a supply function C (Pt),
supposedly known and depending only on the electricity price
Storage facilities: they have their optimal strategy found earlier qt .
Here there is only one storage representing the aggregation of every
small player.

In this part, there is only one big storage representing the aggregation of
every small player.
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Price formation
Stochastic case with one storage agent

The electricity price process is still defined as the solution of

Pt = inf {P : Dt ≤ Rt + C (P) + qt} ∧ P̄

Theorem

Suppose that the residual demand D̃t := Dt − Rt can be written in this
way :

dD̃t = µ(t, D̃t)dt + σ(t, D̃t)dW
2
t

where µ and σ are uniformly bounded.
Then, there exists a unique price process satisfying the previous equation
on [0,T ].
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Numerical illustration
In this numerical illustration, the residual demand follows a Jacobi process:

dD̃t = θ(D̃t − µ)dt +

√
D̃t(1 − D̃t)dW

2
t
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Numerical illustration : impact of storage compared to no
storage
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Numerical illustration : impact of weather intensity
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Numerical illustration : impact of weather intensity
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Price formation
Stochastic case with N storage agents

Let us assume the presence of N different categories of storage, each with
unique parameters and characteristics.

Agent j

dQ j
t = −qjtdt + ρjdW 1,j

t

He solves the following problem:

V (0,Q j
0) = inf

qjt

E

∫ T

t
−(Ptq

j
t − αjqjt

2) +
βj

2
(Qt −Q0)

2dt +
γj

2
(Q j

T −Q j
0)

2

and his optimal strategy is

qjt =

√
βj

αj
f j(t,T , t)(Q j

t − Q j
0)− E

[∫ T

t
f j(t,T ; r)

Ps

2αj
ds|F j

t

]
+

Pt

2αj
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Price formation
Stochastic case with N storage agents

In this case, the price process is defined in this way:

Pt = inf

P : Dt ≤ Rt + C (P) +
∑
j

qjt

 ∧ P̄

Theorem

Under some conditions on the (αj , βj)0<j≤N there exists a unique price
process resulting from the above definition in [0,T ].

More restrictive assumptions than the one-agent case.
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Conclusion

Conclusion
We introduced a tractable model to derive with classic methods an
explicit expression for the optimal strategy of a storage system,
considering both deterministic and stochastic exogenous price
processes.
We proved the existence and uniqueness of the price process resulting
from short-term equilibrium between the energy demand, renewable
production, conventional producers, and storage players.
We observed in the deterministic case that increasing storage capacity
led to a compression of electricity prices
The more storage there is on the electricity market, the less volatility
there is from renewable energy producers.

Ongoing work
Introducing a mean-field framework to better describe the variety of
storage agents.
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