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Motivation

Context
Necessity to massively replace fossil-fired power plants by renewable
technologies −→ intermittent nature of the latter: this also requires a
large-scale use of electricity storage
Pumped Hydroelectric Energy Storage (PHES) = 96% of total
electricity storage in the world

Aim of this work
Define a realistic and tractable model to study the problem of the
optimal strategy for a price taker PHES
Study its impact on the short-term equilibrium in the electricity
market in different frameworks
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Literature

Small literature
Literature on optimal control of storage (Carmona and Ludkovski,
Cruise and Zachary, etc.)
a review on the development of PHES by Barbour et al
Price formation on electricity market, work inspired by a paper by Aïd
et al
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Storage

Consider a PHES whose state process, noted Q, represents the tank level
and follows the SDE:

dQt = −qtdt + ρdW 1
t . (1)

qt , the control process, is the injection rate (positive or negative). Here,
ρ describes the random amount of energy lost/gained because of external
factors (example: drought).
The price P is considered stochastic and exogenous. The stochastic
optimal control problem for a single agent reads:

V (0,Q0) = inf
q
E
[∫ T

0
−(Psqs − αq2

s ) +
β

2
(Qs − Q0)

2ds +
γ

2
(QT − Q0)

2
]
.

with γ,β,α strictly positive numbers.
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Storage

Proposition
The closed loop optimal control process can be expressed as follows :

qt =

√
β

α
f (t,T )(Qt − Q0)− E

[∫ T

t
f1(t,T , s)

Ps

2α
ds|Ft

]
+

Pt

2α

with u =
√
αβ−γ√
αβ+γ

and f , f1 auxiliary functions depending on α, β, γandT .
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Global framework
With this knowledge, the focus shifts to viewing the electricity market as a
platform for interaction between the energy demand D and three types of
players:

Players
Renewable producers: they always bid their full, stochastic, capacity
Rt

Conventional producers: they use a supply function C (Pt),
supposedly known and depending only on the electricity price
Storage facilities: they have their optimal strategy found earlier qt .
Here there is only one big storage representing the aggregation of
every small player.

The price process is defined in this way :

Pt = inf {P : Dt ≤ Rt + C (P) + qt} ∧ P̄

with P̄ an upper bound for the electricity price.
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Price formation
Toy model: the deterministic case

Assumptions
We ignore the random events that could affect the tank level of the
PHES.
There is no renewable production
The energy demand is deterministic
C is a linear function, C (P) = C0 + CP

−→ q is deterministic
−→ P is deterministic
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Toy model

The main positive aspect of this toy model is that we can derive an explicit
expression for the injection rate and the electricity price :

qt = −c1
β

α
cosh(

√
β

α
t) +

Pt

α
+

∫ t

0

√
β

α
sinh(

√
β

α
(t − s))

Ps

2α
ds

P(t) =
Dt − C0 −

√
β
α

2α G (t) + c1
β
α cosh(

√
β
α t)

F + 1
2α

∧ P̄

with c1 a constant depending on α, β and γ, G a given function.
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Numerical illustration
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Price formation
Stochastic case with one storage agent

As before, we look at the electricity market as a platform for interactions
between three types of players.

Players
Renewable producers: they always bid their full, stochastic, capacity
Rt

Conventional producers: they use a supply function C (Pt),
supposedly known and depending only on the electricity price
Storage facilities: they have their optimal strategy found earlier qt .
Here there is only one storage representing the aggregation of every
small player.

In this part, there is only one big storage representing the aggregation of
every small player.

R. Silvente (ENSAE) Optimal control of storage FIME 16 / 25



Price formation
Stochastic case with one storage agent

The electricity price process is still defined as the solution of

Pt = inf {P : Dt ≤ Rt + C (P) + qt} ∧ P̄

Theorem

Suppose that the residual demand D̃t := Dt − Rt can be written in this
way :

dD̃t = µ(t, D̃t)dt + σ(t, D̃t)dW
2
t

where µ and σ are uniformly bounded.
Then, there exists a unique price process satisfying the previous equation
on [0,T ].
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Numerical illustration
In this numerical illustration, the residual demand follows a Jacobi process:

dD̃t = θ(D̃t − µ)dt +

√
D̃t(1 − D̃t)dW

2
t
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Numerical illustration : impact of storage compared to no
storage
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Numerical illustration : impact of weather intensity
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Numerical illustration : impact of weather intensity
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Price formation
Stochastic case with N storage agents

Let us assume the presence of N different categories of storage, each with
unique parameters and characteristics.

Agent j

dQ j
t = −qjtdt + ρjdW 1,j

t

He solves the following problem:

V (0,Q j
0) = inf

qjt

E

∫ T

t
−(Ptq

j
t − αjqjt

2) +
βj

2
(Qt −Q0)

2dt +
γj

2
(Q j

T −Q j
0)

2

and his optimal strategy is

qjt =

√
βj

αj
f j(t,T , t)(Q j

t − Q j
0)− E

[∫ T

t
f j(t,T ; r)

Ps

2αj
ds|F j

t

]
+

Pt

2αj
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Price formation
Stochastic case with N storage agents

In this case, the price process is defined in this way:

Pt = inf

P : Dt ≤ Rt + C (P) +
∑
j

qjt

 ∧ P̄

Theorem

Under some conditions on the (αj , βj)0<j≤N there exists a unique price
process resulting from the above definition in [0,T ].

More restrictive assumptions than the one-agent case.
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Conclusion

Conclusion
We introduced a tractable model to derive with classic methods an
explicit expression for the optimal strategy of a storage system,
considering both deterministic and stochastic exogenous price
processes.
We proved the existence and uniqueness of the price process resulting
from short-term equilibrium between the energy demand, renewable
production, conventional producers, and storage players.
We observed in the deterministic case that increasing storage capacity
led to a compression of electricity prices
The more storage there is on the electricity market, the less volatility
there is from renewable energy producers.

Ongoing work
Introducing a mean-field framework to better describe the variety of
storage agents.
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