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Introduction

Context
Energy efficiency is called the first fuel in clean energy transitions, as it
provides some of the quickest and most cost-effective CO2 mitigation
options. In response to the energy crisis countries are prioritising
energy efficiency action due to its ability to simultaneously meet
affordability, supply security and climate goals.
To integrate variable renewable energy sources, a flexible consumption
(i.e. demand following supply) could - next to energy savings - play an
important role. The Energy Union refers to this as the “Energy Efficiency
First Paradigm”, explicitly including both energy savings and demand
response (European Climate Foundation, 2016).
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Introduction

Energy efficiency
The Energy Savings Certificate mechanism was created in 2005 as one
of the key tool of the French energy demand side management policy
within the context of European objectives. It enables the promotion
and stimulation of investments in terms of energy efficiency through a
market mechanism.
In Italy and other European countries (UK, Denmark...), similar types of
incentives: white certificates.
The government determines a pluri-annual global energy savings goal
(usually of 3, 4 years).
This goal is then beared by all energy suppliers, also called ”Obligés”,
according to their share of the total supply. To fulfil their obligation,
they have to promot energy saving projects to the consumers or face
financial penalties.
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Introduction

Energy efficiency

Evidence from behavioural economy:
Financial reward and/or information on social norms or comparisons
to other customers motivates energy savings.
For example, in Dolan and Metcalfe, 2015

� social norms can reduce consumption by around 6%
� large financial rewards can reduced consumption by 8%

Existing incentives “Provider→ customers”:
Comparison to similar customers (comparable households in the same
area)

� EDF, TotalEnergy, Engie, . . .
Reward/Bonus when reduction compared to past consumption

� “SimplyEnergy”1, “Plüm énergie”2, “OhmConnect”3

1www.simplyenergy.com.au/residential/energy-efficiency/reduce-and-reward
2www.plum.fr/cagnotte/
3www.ohmconnect.com/
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Introduction

Energy efficiency
Our model: A principal (the retailer) aims at designing a rank-based
reward function for a population of heterogeneous agents (consumers)
which maximizes its profit, taking into account the consumption
distribution at the equilibrium.
Mathematical tool: Stackelberg mean-field games.

Reference:

”A Rank-Based Reward between a Principal and a Field of Agents:
Application to Energy Savings” ( joint with C. Alasseur, E. Bayraktar, Q.
Jacquet), https://arxiv.org/abs/2209.03588
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Introduction

Demand response
Demand response refers to balancing the demand on power grids by
encouraging customers to shift electricity demand to times when
electricity is more plentiful or other demand is lower, typically through
prices or monetary incentives.
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Introduction

Demand response
Our model: We consider an energy system with a large number of
consumers who are linked by a Demand side management contract -
dynamic pricing and interruptible load feature. The consumers interact
through the electricity price and a penalty cost.
Mathematical tool: mean-field games.

References:

C. Alasseur, L. Campi, R.D, J. Zeng, ”MFG model with long-lived penalty
at random jump times: application to demand side management for
electricity contracts”, Annals of Operations Research (2023)
C. Alasseur, Z. Bensaid, R.D., X. Warin, ”Deep-learning algorithms for
coupled FBSDEs with jumps: application to option pricing and a MFG
model for smart grids”, work in progress
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Part I

MFG model with a long-lived penalty at random
jump times: application to demand side

management
for electricity contracts
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Model

1 Model

2 Mean-field game

3 Mean-field control problem

4 Numerical results
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Model
N-player game formulation

Step 1. Each consumer i ∈ {1, . . . ,n} wants to minimise its total expected costs:

inf
αi∈A

Ji
n(α) = inf

αi∈A
E

∫ T

0

 g(αi
t,Si

t,Qi
t)︸ ︷︷ ︸

inconvenience cost

+ l(Qi
t + αi

t)︸ ︷︷ ︸
demand charge

+ ci
t︸︷︷︸

real time tariff

+ di
t︸︷︷︸

divergence cost

 dt + h(Si
T)︸ ︷︷ ︸

terminal cost

 ,

with α = (α1, . . . , αn).

We represent the DSM contract with two parts:
(i) RTP: real time pricing 7→ interaction in the control
(ii) interruptible load = divergence cost 7→ interaction in the control
Step 2. Find a consensus 7→ Nash equilibria
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Model

N-player game formulation

Real time tariff:

ci
t = (Qi

t + αi
t)p

 1

n + n′

n′∑
j=n+1

Qj

︸ ︷︷ ︸
standard consumers

+
1

n + n′

n∑
j=1

(Qj
t + αj

t)︸ ︷︷ ︸
consumers with DSM contract

 .
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Model

N-player game formulation

Interruptible load contract. When activated, the aim of the interruptible
load contract is that the global consumption of the active consumers
during θ. The divergence cost has the form:

di
t = Jθ

t (Q̃i
t + αi

t − ᾱ)f
(
1

n

n∑
j=1

(Qj
t + αj

t)− ᾱt

)

with f a convex growing function such as f(0) = 0

Jθ
t equal to one during interruptible load contract activation and 0
otherwise.
dRt = dt − Rt−dN0

t , R0 = 2θ,

Jθ
t = 1Rt≤θ
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Mean-field game

1 Model

2 Mean-field game

3 Mean-field control problem

4 Numerical results

Energy savings and demand response: a mean-field game approch Roxana Dumitrescu 13 / 46



Mean-field game

Formulation.

W0 and W two independent Brownian motions
N0 is a doubly stochastic Poisson processes with intensity process (λt)
which is FW0-adapted.
Ñt := Nt −

∫ t
0
λsds the compensated Poisson processes

F = (Ft)t∈[0,T] be the (complete) natural filtration generated by (W,
W0, N0, s0, q0, qst

0 ).
F 0 = (F0

t )t∈[0,T] be the (complete) natural filtration generated by (W0,
N0).
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Mean-field game

Formulation


dQt = µ(Qt, t)dt + σ(Qt, t)dWt + σ0(Qt, t)dW0

t , Q0 = q0,
dQst

t = µst(Qst
t , t)dt + σst(Qst,j

t , t)dW0
t , Qst

0 = qst
0 ,

dSt = αtdt, S0 = s0.

with α ∈ A , A the set of F -adapted real-valued processes a = {at} such
that E

[∫ T
0
|au|2du

]
<∞.

For a F -adapted process ξ = (ξt), denote ξ̂t := E[ξt|F0
t ].
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Mean-field game

MFG problem. Let ξ = (ξt)t∈[0,T] be a given F 0-adapted process.

JMFG(α; ξ) =E

[∫ T

0

(
g(αt,St,Qt) + l(Qt + αt) + (Qt + αt)p

(
πQ̂st

t + (1− π)(Q̂t + ξt)
)

+ Jθ
t (Qt + αt − ᾱ)f

(
Q̂t + ξt − ᾱt

))
dt + h(ST)

]
,

where α = (αt)t∈[0,T] is an admissible control process which belongs to A, the set of
all real-valued F -adapted processes such that E[

∫ T
0 α2

t dt] < ∞.

VMFG(ξ) = inf
α∈A

JMFG(α; ξ).

The goal is to find a process α⋆ = (α⋆
t )t∈[0,T] such that

JMFG(α⋆; ξ) = VMFG(ξ)

and
α̂⋆

t = ξt, a.s. for all t ∈ [0,T].

Such a process α⋆ is called a mean-field Nash equilibrium.
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Mean-field game

Characterization of mean field Nash equilibria
Let ξ̂ be a given F 0-adapted R-valued process and x0 = (s0, q0) be a a
vector of RV independent of F . Assume that α 7→ J(α, ξ̂) is strictly
convex. If there exists a control α⋆ ∈ A which minimizes the map
α 7→ JMFG(α, ξ̂) and if (Sα⋆

,Q) is the state process associated to the
initial condition x0 and control α⋆, then there exists a unique solution
(Y⋆, q0,⋆, q⋆, ν0,⋆) of the following BSDE with jumps:

−dY⋆
t = ∂sg(α, Sα⋆

t ,Qt)dt − q0,⋆t dW0
t − q⋆t dWt − ν⋆t dÑt − ν0,⋆t dÑ0

t ,

Y⋆
T = ∂sh(Sα⋆

T ), (1)

satisfying the coupling condition

∂αg(α⋆
t ,Sα⋆

t ,Qt) + ∂αl(Qt + α⋆
t ) + pt

(
Q̂t + ξ̂t

)
+ Y⋆

t + Jθ
t f
(̂̃Qt + ξ̂t − ᾱ

)
= 0.

(2)
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Mean-field game

Characterization of mean field Nash equilibria
Conversely, assume that there exists

(
α⋆,Sα⋆

,Y⋆, q0,⋆, q⋆, ν0,⋆
)

satisfying the above coupling condition, as well as the FBSDE for (S,Y),
then α⋆ is the optimal control minimizing the map α 7→ JMFG(α, ξ̂) and
Sα⋆ is the optimal trajectory.

If additionally α̂⋆
t = ξ̂t a.s. for all t ∈ [0,T], then α⋆ is a Mean-field Nash

equilibrium.
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Mean-field game

Semi explicit characterisation of the MFG Nash equilibrium in the
linear-quadratic case

The MFG equilibrium has the representation:

α⋆
t =

1

A + K

(
−KQt − p0 − πp1Q̂st

t − p1(1− π)(Q̂t + α̂t)

−ϕtSα⋆

t − ψt −
(

f0 + f1
(

Q̂t + α̂t − αtg
))

Jθ
t

)
,

where ϕ solves a Ricatti BSDE with jumps and ψ a linear BSDE with
jumps.
In the linear-quadratic setting, we get the existence of an εn-Nash
equilibrium (αε,1, . . . , αε,n), where

αε,i
t =

1

A + K

(
−KQi

t − p0 − πp1Q̂st
t − p1(1− π)(Q̂t + α̂t)

−ϕi
tSα⋆

t − ψi
t −
(

f0 + f1
(

Q̂t + α̂t − αtg
))

Jθ
t

)
.
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Mean-field control problem
The central planner problem: MFC problem. The mean-field type control
problem corresponds to the problem of a central planner who wants to
optimise the objective of the global population (standard and DSM
consumers). The objective functional takes the following form

JMFC(α) =E

[
(1− π)

∫ T

0

(
g(αt,Sα

t ,Qt) + (Qt + αt)p
(
πQ̂st

t + (1− π)(Q̂t + α̂t)
)

+l(Qt + αt) + Jθ
t (Q̃t + αt − αtg)f

(̂̃Qt + α̂t − αtg
))

dt

+(1− π)h(Sα
T) + π

∫ T

0

(
Qst

t p
(
πQ̂st

t + (1− π)(Q̂t + α̂t)
)
+ l(Qst

t )
)

dt
]
.

(3)

The optimization problem of the central planner writes as follows:

VMFC = inf
α∈A

JMFC(α). (4)

Similarly to the MFG setting, the equilibria can be characterized in terms of
the solution of a coupled FBSDE system.
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Link between MFC and MFG

Lemma

Let α⋆ be a mean-field optimal control for the problem with pricing rules
pMFC and fMFC. Then it is a mean-field Nash equilibrium for the MFG
problem with pricing rules pMFG and fMFG:

pMFG(x) = pMFC(x) + xp′
MFC(x),

fMFG(x) = fMFC(x) + xf′MFC(x).

The reverse also holds true.
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Section 4

Numerical results

1 Model

2 Mean-field game

3 Mean-field control problem

4 Numerical results
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Numerical results
Scenario considered

One trajectory of Q̂ and Q (in kW) for two different consumers (left) and one
trajectory of λ0

t (right) along time (in half-hours).

One trajectory of the jump process (Jt).
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Numerical results

One trajectory of Q̂ + α̂ and Q + α (in kW) for two different consumers (left) in the
MFG setting.

Trajectories of the price p for four different proportions of active consumers in the
MFG setting.
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Numerical results

Trajectories of price p (right) and Q̂ + α̂ in kW (left) for MFG setting (plain lines)
compared to MFC setting (dotting lines)
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Part II

A Rank-Based Reward between a Principal and a
Field of Agents: Application to Energy Savings
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8 Numerical results
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Model

Subpopulation 1

. . .

Subpopulation k

. . .

Subpopulation K

Provider

Regulator

Imposes to reduce
global consumption

Reward = f (rank)

Competition (Nash) Competition (Nash) Competition (Nash)
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Model

Subpopulation 1

. . .

Subpopulation k

. . .

Subpopulation K

Provider

Regulator

Imposes to reduce
global consumption

Reward = f (rank)

Competition (Nash) Competition (Nash) Competition (Nash)

Lower level (agents)
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Fixed level
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The field of agents at the lower level

The population is divided into K clusters of indistinguishable consumers. Each
cluster k ∈ [K] represents a proportion ρk.
Xa

k(t) the energy consumption of a representative customer of cluster k,
forecasted at time t for consumption at t < T :

Xa
k(t) = Xk(0) +

∫ t

0
ak(s)ds + σk

∫ t

0
dWk(s), Xk(0) = xnomk , (5)

with
◦ (Wk

t )1≤k≤K a family of K independent Brownian motions
◦ ak is a F - progressively measurable process satisfying E

∫ T
0 |a(s)|2ds < ∞.

Interpretation:
� ak is the consumer’s effort to reduce his electricity consumption.
� Without effort (a ≡ 0), customers have a mean nominal consumption xnomk , and
the terminal p.d.f. of Xa

k(T) is:

f nomk (x) := φ
(

x ; xnomk , σk
√

T
)

,

where φ( · ;µ, σ) is the pdf for N (µ, σ).
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Rank-based reward
In the N-players game setting:

Each subpopulation k contains Nk players
The terminal ranking of a player i, consuming Xi

k(T), is measured by

1

Nk

Nk∑
j=1

1Xj
k(T)≤Xi

k(T)

⇒ The reward function should be decreasing (Low rank = good energy saver)

(empirical cumulative
distribution

)

In the mean-field setting:
If Xk(T) ∼ µk, the terminal ranking of a player consuming x is r = Fµk (x)

Assumption: Each sub-population k receives a reward Rk of the form
R × [0, 1] 3 (x, r) 7→ Rk (x, r) = Bk(r)− px , (6)

� We call R the total reward and Bk the additional reward.
� −px represents the natural incentive to reduce the consumption, coming from
the price p to consume one unit of energy

� When Rk(x, r) is independent of x, the reward is purely ranked-based
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Mean-field game between consumers

Representative agent’s problem (cluster k):
Given the reward Rk and the terminal consumption distribution µ̃k,

Vk(Rk, µ̃k) := sup
a

E

Rk,µ̃k (X
a
k(T))−

∫ T

0
cka2

k(t)dt︸ ︷︷ ︸
cost of effort

 , (P cons)

where Rk,µ(x) = Rk(x,Fµ(x)).
Interpretation:

The cost corresponds to the purchase of new equipment (new heating
installation, isolation, ...).
In exchange, the consumer receives B(r), depending on his rank r = Fµ̃k (x),
where µ̃k is the k-subpopulation’s distribution.
The quantity Vk(Rk, µ̃k) is called the optimal utility of an agent of k.

Energy savings and demand response: a mean-field game approch Roxana Dumitrescu 33 / 46



Agents’ best response

Characterization of the best response (Bayraktar and Zhang, 2021,Proposition 2.1)

Given R ∈ Rk and µ̃k ∈ P(R), let

γk(µ̃) =

∫
R

f nomk (x) exp
(

Rk,µ̃(x)
2ckσ2

k

)
dx (< ∞) . (7)

Then, the optimal terminal distribution µ∗
k of cluster k has p.d.f.

fµ∗
k
(x) = 1

β(µ̃k)
f nomk (x) exp

(
Rk,µ̃k (x)
2ckσ2

k

)
, (8)

and the optimal value is then Vk(Rk, µ̃k) = 2ckσ2
k ln γk(µ̃k) .

Definition (mean-field equilibrium): µk ∈ P(R) is an equilibrium if it is a fixed-point
of the best response map

Φk : µ̃k 7→ µ∗
k ,

with µ∗
k given by (8).
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Nash Equilibrium

For purely ranked-based reward (Bayraktar and Zhang, 2021, Theorem 3.2)

An equilibrium νk exists and is unique and the quantile is given by

qνk (r) = xnomk + σk
√

TN −1


∫ r
0 exp

(
− Bk(z)

2ckσ2
k

)
dz

∫ 1
0 exp

(
− Bk(z)

2ckσ2
k

)
dz

 . (9)

Theorem

Let Rk(x, r) = Bk(r)− px. Then, the equilibrium µk is unique, and satisfies

qµk (r) = qνk (r)−
pT
2ck

, (10)

where νk is the (unique) equilibrium distribution for p = 0 (purely ranked-based
reward), defined in (9).

⇒ add of a linear part in “x” acts as a shift on the probability density function.
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Retailer’s problem

Assumption: Bk(r) = xnomk β(r) (common reward across sub-populations).
Notation: For an equilibrium (µk)k∈[K], the mean consumption is
mµk =

∫ 1
0 qµk (r)dr , and the overall mean consumption is

mµ =
∑

k∈[K] ρkmµk .

Principal’s problem:

max
β∈B

(p − cp)mµ − s (mµ)−
∑

k∈[K]

ρkxnomk

∫ 1

0
β(r)dr

∣∣∣∣∣∣∣
Rk(x, r) = xnomk β(r)− px
µk = ϵk(Rk)

Vk(Rk, µk) ≥ Vpi
k


(P ret)

where
� B is the set of bounded and decreasing rewards,
� µk = ϵk(B) the agents’ equilibrium given additional reward B(·),
� s(·) denotes the penalty imposed by the regulator (to favor consumption
reduction),

� cp denotes the production cost of energy,
� Vpi is the reservation utility (utility when B ≡ 0)

In the sequel, we denote by κ(·) the function κ : m 7→ s(m) + cpm .
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Optimal reward – Homogeneous population (K = 1)
Principal’s problem:

max
β∈B

{
(p − cp)mµ − s (mµ)− xnom

∫ 1

0
β(r)dr

∣∣∣∣∣ µ = ϵ(R)

V(R, µ) ≥ Vpi

}
(P ret)

Using the characterization of the equilibrium,

Rµ(r) = Vpi + 2cσ2 ln (ζµ(qµ(r)))
(
= ϵ−1(µ)

)
,

with ζµ := fµ/f nom.

Reformulation in the distribution space:

(P ret)



min
µ

κ

(∫ +∞

−∞
yfµ(y)dy

)
+ 2cσ2

∫ +∞

−∞
ln
(

fµ(y)
f nom(y)

)
fµ(y)dy

s. t.
∫ +∞

−∞
fµ(y)dy = 1, fµ(y) ≥ 0

y 7→ ln
(

fµ(y)
f nom(y)

)
+

p
2cσ2

y bounded and decreasing

R = ϵ−1(µ)

+β bounded and decreasingµ distrib.
Idea:

(P̃ ret)

Relaxation
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Optimal reward – Homogeneous population (K = 1)

Assumption: The function s : R → R is supposed to be increasing, convex and
differentiable. Moreover, κ′(0) ≤ p ≤ κ′(xpi).

Lemma

The optimal distribution µ∗ for (P̃ ret) satisfies the following equation:

fµ(y) = f nom(y) exp
(
−yκ

′(mµ)

2cσ2

)
(11)

Theorem – Analytic formula of the optimal reward

Let δ(m) = p − κ′(m) . The distribution µ∗ = N (m∗, σ
√

T) , where m∗ satisfies

m∗ = xpi + T
2c

δ(m∗) , (12)

is optimal for (P̃ ret) . Moreover, the associated reward B∗ is

Bµ∗ (r) = c
T

[
(xpi)2 − (m∗)2

]
+ qµ∗ (r)δ(m∗) . (13)

Remark: The function δ(·) is viewed as the reduction desire of the provider.
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Optimal reward – Heterogeneous population (K > 1)

Theorem (Explicit characterization for a sub-class of heterogeneous population)

Let suppose that the following statement holds:

∀k ∈ [K],
xnomk
xnom1

=
σk
σ1

=
c1
ck

(:= θk) . (14)

Then, any µ1, . . . , µK equilibrium distributions associated to a common unitary
reward β solution of (P ret) satisfies fµk (y) =

1
θk

fµ1

(
y
θk

)
for all k ∈ [K]. Moreover,

the retailer’s profit problem simplifies to

π∗ := θ̄ max
β∈B

pmµ1 − κ̃(mµ1 )− xnom1

∫ 1

0
β(r)dr

∣∣∣∣∣∣∣
R1(x, r) = xnom1 β(r)− px
µ1 = ϵ1(R1)

V1(R1, µ1) ≥ Vpi
1

 ,

(15)
with κ̃(m) = θ̄−1κ(θ̄m) and θ̄ =

∑
k∈[K] ρkθk.
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Section 8

Numerical results

5 Ranking games model

6 Agents’ problem

7 Retailer’s problem

8 Numerical results
Instance
Results
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Instance

Based on real data from the French retail market:

Distribution Housing Heating Nb occupants Consumption (mean/year)

Sub-pop. 1 26% House 70 m2 Electric 3 9.9 MWh
Sub-pop. 2 49% House 70 m2 Non-electric 3 1.5 MWh
Sub-pop. 3 9% House 150 m2 Electric 4 20 MWh
Sub-pop. 4 16% House 150 m2 Non-electric 4 2.2 MWh

Table: Annual electricity consumption by type of usage.

Power plant Marginal cost (e/MWh) Production (TWh)

Hydro/Wind/Solar 0 to 15 115
Nuclear 30 380

Gas 70 30
Coal 86 7
Fuel 162 5

Table: Marginal price and annual production.
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Results – Uniform elasticity
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Results – Non-uniform elasticity
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Thank you!
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