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Introduction

We investigate large scale aggregative optimization problem.

m Approximation by a convex mean-field optimization problem.
m Estimation of the relaxation gap.

m Numerical resolution with the conditional gradient
algorithm (also called Frank-Wolfe algorithm).

@ Bonnans, Liu, Oudjane, Pfeiffer, Wan. Large-scale nonconvex
optimization: randomization, gap estimation, and numerical
resolution, SIAM J. Optim., to appear.



Problem formulation
°

Problem formulation



Problerr
[ Jelele)

n formulation

Setting

Consider the N-agent problem

XlgE(J(x —f< Zg, X; ) EN:/?,'(Xi)a (P)

i:l

where x = (x1,...,xy) € X = H,N:1 X
Data:

m the feasible sets X

m the individual costs h;: X; — R

m the aggregate space &, a Hilbert space

m the contribution functions g;: X; — &

m the social cost f: £ — R.
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Application

Applications in energy management problems:
m Set of agents: a (large) set of small flexible consumptions
units (e.g. batteries, heating devices).
Flexible: consumption can be shifted over time.
m Aggregate: the total consumption, at each time step of a
given time interval.

m Social cost: penalty function for the difference between total
consumption and a reference production level.

E Wang. Vanishing Price of Decentralization in Large Coordinative
Nonconvex Optimization, SIAM J. Optimization, 2017.

E Séguret et al. Decomposition of convex high dimensional
aggregative stochastic control problems, Appl. Math Optim., 2023.
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Applications

Our problem covers the case training neural networks with a
single hidden layer.

m Social cost — fidelity function.

m Individual cost — regulizer.

We use the same kind of relaxation as in:

@ Chizat, Bach. On the Global Convergence of Gradient Descent for
Over-parameterized Models using Optimal Transport, Advances in
Neural Information Processing Systems, 2018.

@ Mei, Misiakiewicz, Montanari. Mean-field theory of two-layers
neural networks: dimension-free bounds and kernel limit, 32nd Conf.
on Learning Theory, 2019.
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Assumptions

Assumptions:
m f is convex
m Vf is D-Lipschitz continuous
m foralli=1,..., N, diam(g;(X;)) < D.

All constants appearing later on depend on D but not on N.
Another “numerical” assumption will be made later.

General difficulties:
m No convexity property of J.

m No regularity property for &, g, h;. In general, J is not
differentiable.

m Large-scale (when N is large)... but N large actually helps!
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Relaxation

General idea:
m Variable x; replaced by a probability distribution u; € P(X]).
m The terms gi(x;) and h;(x;) are respectively replaced by

E,.lgi] = /X‘g,-(x,-)du,-(x,-), E,; [hi] ::/X hi(xi) dpi(xi).

i

The relaxed problem:

N
|nf J ( ZEH,[g: ) + % ;Eui[hi]’ (

where 11 = (g1, ... i) € [T12y P(X)).

<

)

Remark: The cost function J is convex.
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Mean field relaxation

Remark: In the homonegeous case where X = X, g = g;, h = h;,
for all i =1,..., N, the original problem is equivalent to

inf f(E E,[h
ue;?r)V(X) ( u[g])+ ,u[ 1,

where Py(X) = {%Z?’zléx,- |xi € X, Vi= 1,...,N}.

The relaxed problem is equivalent to:

Heig{x) f(Eulg]) + Eu[h],

in which © models the distribution of the decisions of a continuum
of agents.
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Gap estimation

There exists C > 0 (depending on D only) such that

Val(P) < Val(P) < Val(P) + %

Proof. Lower bound of Val(P).
Let x € X. Let i = (0x,, ..., 0xy)- Then,

Val(P) < J(u) = J(x).

Minimizing with respect to x yields the result.
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Gap estimation

Upper bound of Val(P). Let € > 0. Let u € [[., P(X;) be
e-optimal for the relaxed problem.
Let Xi,...,Xy be N independent random variables such that

Law(X,-) = Uy, i = 1, ceny N.

Then, setting Y = % Z,Nzl gi(Xi),
N
Ty =f( ZE[g, ) + ;ZE[W )

FENYD + ZE[h

Therefore, E[J(X)] — J(p) = E[f(Y)] — F(E[Y]).
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Gap estimation

Using the Lipschitz continuity of Vf, it is easy to show that:

D

E[f(Y)] - F(BIY]) < SE[IlY —E[V]|?]

2
Since Y = Z, 1 8i(Xi) and since the X; are independent,
;N

2
B[y - BIVIIP] = 15 S E[ls06) ~ Ela(lI7] < -

It finally follows that
Val(P) — Val(P) < E[J(X)] — J(u) + ¢

2

DL
<7
E[IlY —EIYVIIP| +e< 55 +e.

'\

=2
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Gap estimation

Assume that q := dim& +1 < N. There exists C > 0 (depending
on D only) such that

Val(P) < Val(P) < Val(P) + %.

Proof. Let i be as before. Using Shapley-Folkman’s theorem, we
can construct independent r.v. X;, valued in X; and such that

m J(u) = FE[Y]) + & 33, E[hi(X)], where Y = LSV gi(X)),
m All r.v. X; are deterministic, except at most g of them.

Then E[|| Y — IE[\N/]H2] < Cq/N?.
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Frank-Wolfe algorithm

Consider the following problem:

inﬂg F(x), subjectto: x € K. (P)
xeR"

Assumptions:

m F: R"” — R is convex, continuously differentiable, with
Lipschitz-continuous gradient.

m K C R" is convex and compact.

The linearized problem at X is defined by

inﬂg (VF(X),x), subjectto: x € K. (Piin(X))
x€R"

We assume that it is easy to solve numerically, for any X.
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Frank-Wolfe algorithm

Algorithm 1: Frank-Wolfe algorithm
Input: X € K;
for k=0,1,... do
Find a solution xx to Piin(Xk);
Set wx =2/(k +2);
Set Xk4+1 = (1 — wk))_(k + Wi Xk;
end

There exists a constant C such that

C
f(%) < () + 7, Vk>0,

where X denotes a solution of (P).
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The subproblem

We call any map S: A € € — (S1(A),...,Sy(A)) € X a
best-response function if for any A € £,

Si(A\) € argmin (X, gi(x;)) + hi(x;), fori=1,... N.
xX;EX;
The variable X\ can be here interpreted as a price for the
contribution to the aggregate.

Numerical assumption. We assume that such a function can be
easily constructed numerically. The evaluation of S relies on the
resolution of N independent optimization problems.
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The subproblem

Lemma

Let i e TIV, P(X:). Let \= V(&SN E;lg]). Define

p= (581@), o 5SN(A)).

Then [i is a solution to

inf DJ(ji). . (Piin(i2))
el P(X)

Proof. Straightforward calculations yield:

N
DI 1= 5 DB [ &) + hi()]
i=1
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Frank-Wolfe algorithm

Algorithm 2: Frank-Wolfe algorithm

Input: %
for k=0,1,...do
Find a solution u* to Py, (i5);

Set wy = k%ﬂ;

Set i* 1 = (1 — wye)i* + wiep;
end
Difficulties:

m How to deduce an approximate solution to (P) from ji* ?
m The support of ﬂf‘ possibly is of cardinality k.
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Selection

Selection: A simple stochastic method for constructing x € X
out of yu € [TV, P(X)).

Algorithm 3: Selection algorithm

Input: u, n € N;
Construct a random variable X = (Xj, ..., Xy) such that

Xi,...,Xy are independent, Law(X;) = p;.

for j=1,...ndo _ _
Draw samples %/ = (x], ..., x}) of (X1, ..., Xu).
end

Output: X € argmin  J(x).
xe{&1,... %"}
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Selection

Let yu € [T, P(X;) and let n € N. There exists a constant C > 0
such that for any € > 0,

PJ(X) > J(u)+%+e} < exp(— n,\(l:sz).

Proof. Let X be as in the selection algorithm. We know that

~ C
J) — B < 1

Concentration inequality: by McDiarmid’s inequality, there exists
C > 0 such that for any ¢ > 0,

2

PlJ(X) > E[J(X)] + a} < exp ( - N%)
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Stochastic Frank-Wolfe (SFW) algorithm

Algorithm 4: Stochastic Frank-Wolfe algorithm

Input: i% a sequence (nk)ken;

for k=0,1,...do

Find a solution u* to Py, (i%);
_ 2.

Set Wy = k12

Set fif*1 = (1 — wye)i* + wiep®;

Set xk*1 = Selection(fi**1, ny);

Set [Lk'H = (5)-({<+1, ey 5)_(}\<l+1).

end

The algorithm can be re-written as an easy-to-implement algo-
rithm that does not involve probability distributions.
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Stochastic Frank-Wolfe algorithm

Algorithm 5: SFW algorithm: practical version

Input: %0 3 sequence (Nk)ken;
for k=0,1,... do
Set A = V(L SN gi(=5);
Compute x¥ = S(A\K);
Set wy = 2/(k +2);
for j=1,.... n, do
fori=1,...,N do
Draw Z// ~ (1 — wi)do + widi;
Set x// = (1 — Z{*)xk + Z{xK;
end
Set xkJ = (X,-k’j)izl,...,N ;
end
Find Xkt € argmin  J(x)

x€{xk:1 ... xkmk}

end
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Convergence result

Theorem

There exists a constant C > 0 such that for all K < 2N, for all
e > 0, it holds:

IP’[J(;(K) > Val(P) + % + 5} < exp ( _ Cl(K)IEI'_iQ(K))’

where K—1 Kk + 1)2
GK)=C> KK L 17

k=1
B (k+1)(k+2)
C2(K) = Ck?i?§1 nK(K+1)

Remark. We can find a C/N-optimal solution with arbitrarily small
probability if n, > Ak?/N, with A large enough.
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Numerical example

Let A€ RM*N and let y € RM. Consider:

Zi;(A Xj —

2

(MIQP)

W)

1
min  —||Ax — y||? =
min A7

= \

Data: M = N = 100.

Remark: Problem (MIQP) is a discrete problem, over a set of
cardinality 2100
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Numerical example
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Figure: Convergence of the relaxed optimality gap.

Left:  Frank-Wolfe for the relaxed problem.
Right: Selection algorithm applied to the iterates.
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Numerical example

SFW with wy = 2/(k + 2) SFW with wy determined by line search
— m=10"0 — m=10"0
ng=10"1 ne=10"1
100 —— m=10"2 —— m=10"2
n=10~3 —=— n=10~3
107t
102

Number of iterations
Figure: Relaxed optimality gap for Stochastic Frank-Wolfe algorithm.

Left:  Stepsize ok = 2/(k + 2).
Right:  Stepsize determined by line-search.



Related works
©0000

Related works



Related works
0®000

Related works

1. Two ideas for improvement:

m The convergence result for SFW is preserved if 41 is
replaced by any other candidate x’ such that J(x') < J(xK*1).
— Motivates the design of empirical approaches.

m In practical situations, the aggregative problem is “partially
convex”, i.e., is convex when some of the variables are fixed.
— Motivates the partial optimization of the problem with
the original Frank-Wolfe algorithm.



Related works
[eeX Yolo)

Related works

Numerical results (by Xinyu Huang, M2 student):

Evolution of the optimality gap for the reduced problem, with 2000 vehicles
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Figure: Red: SFW, Violet: SFW+ heuristic, Brown: SFW + heuristic +
partial optimization.
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Related works

2. The case of a non-smooth f.

m Concerning the relaxation gap, see:

@ Kerdreux, d'Aspremont, Colin: Stable Bounds on the Duality
Gap of Separable Nonconvex Optimization Problems, Maths
Operations Research, to appear.

m Ongoing work on non-smooth variants of the Frank-Wolfe
algorithm (with Guilherme Mazanti and Thibault Moquet).

@ Silveti-Falls, Molinari, Fadili. Generalized conditional gradient
with augmented lagrangian for composite minimization, SIAM
Journal on Optimization, 2020.

@ Bach, Duality between subgradient and conditional gradient
methods, SIAM J. Optim., 2017.
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3. The case where x; is a controlled dynamical system.
m The relaxed problem is a mean-field optimal control
problem (an optimal control problem of the Fokker-Planck
equation in continuous time).

m Frank-Wolfe is applicable! Each sub-problem coincides with
a standard stochastic optimal control problem.

m In the case of second-order potential and convex MFG, linear
convergence can be achieved.

[ Lavigne, Pfeiffer, Generalized conditional gradient and learning
in potential mean field games, Appl. Maths Optim., to appear.



Thank you for your attention!
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