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Introduction

We investigate large scale aggregative optimization problem.

Approximation by a convex mean-field optimization problem.

Estimation of the relaxation gap.

Numerical resolution with the conditional gradient
algorithm (also called Frank-Wolfe algorithm).

Bonnans, Liu, Oudjane, Pfeiffer, Wan. Large-scale nonconvex
optimization: randomization, gap estimation, and numerical
resolution, SIAM J. Optim., to appear.
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Setting

Consider the N-agent problem

inf
x∈X

J(x) = f
( 1

N

N∑
i=1

gi (xi )︸ ︷︷ ︸
aggregate

)
+

1

N

N∑
i=1

hi (xi ), (P)

where x = (x1, ..., xN) ∈ X =
∏N

i=1Xi .

Data:

the feasible sets Xi

the individual costs hi : Xi → R
the aggregate space E , a Hilbert space

the contribution functions gi : Xi → E
the social cost f : E → R.
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Application

Applications in energy management problems:

Set of agents: a (large) set of small flexible consumptions
units (e.g. batteries, heating devices).
Flexible: consumption can be shifted over time.

Aggregate: the total consumption, at each time step of a
given time interval.

Social cost: penalty function for the difference between total
consumption and a reference production level.

Wang. Vanishing Price of Decentralization in Large Coordinative
Nonconvex Optimization, SIAM J. Optimization, 2017.

Séguret et al. Decomposition of convex high dimensional
aggregative stochastic control problems, Appl. Math Optim., 2023.
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Applications

Our problem covers the case training neural networks with a
single hidden layer.

Social cost → fidelity function.

Individual cost → regulizer.

We use the same kind of relaxation as in:

Chizat, Bach. On the Global Convergence of Gradient Descent for
Over-parameterized Models using Optimal Transport, Advances in
Neural Information Processing Systems, 2018.

Mei, Misiakiewicz, Montanari. Mean-field theory of two-layers
neural networks: dimension-free bounds and kernel limit, 32nd Conf.
on Learning Theory, 2019.
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Assumptions

Assumptions:

f is convex

∇f is D-Lipschitz continuous

for all i = 1, . . . ,N, diam(gi (Xi )) ≤ D.

All constants appearing later on depend on D but not on N.
Another “numerical” assumption will be made later.

General difficulties:

No convexity property of J.

No regularity property for Xi , gi , hi . In general, J is not
differentiable.

Large-scale (when N is large)... but N large actually helps!
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Relaxation

General idea:

Variable xi replaced by a probability distribution µi ∈ P(Xi ).

The terms gi (xi ) and hi (xi ) are respectively replaced by

Eµi [gi ] :=

∫
Xi

gi (xi ) dµi (xi ), Eµi [hi ] :=

∫
Xi

hi (xi ) dµi (xi ).

The relaxed problem:

inf
µ

J̃(µ) := f
( 1

N

N∑
i=1

Eµi [gi ]
)

+
1

N

N∑
i=1

Eµi [hi ], (P̃)

where µ = (µ1, ..., µN) ∈
∏N

i=1 P(Xi ).

Remark: The cost function J̃ is convex.
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Mean field relaxation

Remark: In the homonegeous case where X = Xi , g = gi , h = hi ,
for all i = 1, ...,N, the original problem is equivalent to

inf
µ∈PN(X )

f
(
Eµ[g ]

)
+ Eµ[h],

where PN(X ) =
{

1
N

∑N
i=1 δxi

∣∣ xi ∈ X , ∀i = 1, . . . ,N
}
.

The relaxed problem is equivalent to:

inf
µ∈P(X )

f
(
Eµ[g ]

)
+ Eµ[h],

in which µ models the distribution of the decisions of a continuum
of agents.
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Gap estimation

Theorem

There exists C > 0 (depending on D only) such that

Val(P̃) ≤ Val(P) ≤ Val(P̃) +
C

N
.

Proof. Lower bound of Val(P).
Let x ∈ X . Let µ = (δx1 , ..., δxN ). Then,

Val(P̃) ≤ J̃(µ) = J(x).

Minimizing with respect to x yields the result.
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Gap estimation

Upper bound of Val(P). Let ε > 0. Let µ ∈
∏N

i=1 P(Xi ) be
ε-optimal for the relaxed problem.
Let X1,...,XN be N independent random variables such that

Law(Xi ) = µi , i = 1, ...,N.

Then, setting Y = 1
N

∑N
i=1 gi (Xi ),

J̃(µ) = f
( 1

N

N∑
i=1

E[gi (Xi )]
)

+
1

N

N∑
i=1

E[hi (Xi )],

= f (E[Y ]) +
1

N

N∑
i=1

E[hi (Xi )].

Therefore, E[J(X )]− J̃(µ) = E[f (Y )]− f (E[Y ]).
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Gap estimation

Using the Lipschitz continuity of ∇f , it is easy to show that:

E[f (Y )]− f (E[Y ]) ≤ D

2
E
[
‖Y − E[Y ]‖2

]
Since Y = 1

N

∑N
i=1 gi (Xi ) and since the Xi are independent,

E
[
‖Y − E[Y ]‖2

]
=

1

N2

N∑
i=1

E
[
‖gi (Xi )− E[gi (Xi )]‖2

]
≤ D2

N
.

It finally follows that

Val(P)− Val(P̃) ≤ E[J(X )]− J̃(µ) + ε

≤ L

2
E
[
‖Y − E[Y ]‖2

]
+ ε ≤ D2L

2N
+ ε.
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Gap estimation

Theorem

Assume that q := dim E + 1 ≤ N. There exists C > 0 (depending
on D only) such that

Val(P̃) ≤ Val(P) ≤ Val(P̃) +
Cq

N2
.

Proof. Let µ be as before. Using Shapley-Folkman’s theorem, we
can construct independent r.v. X̃i , valued in Xi and such that

J̃(µ) = f (E[Ỹ ]) + 1
N

∑
i E[hi (X̃i )], where Ỹ = 1

N

∑N
i=1 gi (X̃i ),

All r.v. X̃i are deterministic, except at most q of them.

Then E
[
‖Ỹ − E[Ỹ ]‖2

]
≤ Cq/N2.
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Frank-Wolfe algorithm

Consider the following problem:

inf
x∈Rn

F (x), subject to: x ∈ K . (P)

Assumptions:

F : Rn → R is convex, continuously differentiable, with
Lipschitz-continuous gradient.

K ⊆ Rn is convex and compact.

The linearized problem at x̃ is defined by

inf
x∈Rn

〈∇F (x̃), x〉, subject to: x ∈ K . (Plin(x̃))

We assume that it is easy to solve numerically, for any x̃ .
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Frank-Wolfe algorithm

Algorithm 1: Frank-Wolfe algorithm

Input: x̄0 ∈ K ;
for k = 0, 1, ... do

Find a solution xk to Plin(x̄k);
Set ωk = 2/(k + 2);
Set x̄k+1 = (1− ωk)x̄k + ωkxk ;

end

Lemma

There exists a constant C such that

f (x̄k) ≤ f (x̄) +
C

k
, ∀k > 0,

where x̄ denotes a solution of (P).
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The subproblem

We call any map S : λ ∈ E 7→
(
S1(λ), . . . ,SN(λ)

)
∈ X a

best-response function if for any λ ∈ E ,

Si (λ) ∈ argmin
xi∈Xi

〈λ, gi (xi )〉+ hi (xi ), for i = 1, . . . ,N.

The variable λ can be here interpreted as a price for the
contribution to the aggregate.

Numerical assumption. We assume that such a function can be
easily constructed numerically. The evaluation of S relies on the
resolution of N independent optimization problems.
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The subproblem

Lemma

Let µ̃ ∈
∏N

i=1 P(Xi ). Let λ = ∇f
(

1
N

∑N
i=1 Eµ̃i [gi ]

)
. Define

µ̂ =
(
δS1(λ), . . . , δSN(λ)

)
.

Then µ̂ is a solution to

inf
µ∈

∏N
i=1 P(Xi )

DJ̃(µ̃).µ. (P̃lin(µ̃))

Proof. Straightforward calculations yield:

DJ̃(µ̃).µ =
1

N

N∑
i=1

Eµi
[
〈λ, gi (·)〉+ hi (·)

]
.
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Frank-Wolfe algorithm

Algorithm 2: Frank-Wolfe algorithm

Input: µ̄0;
for k = 0, 1, ... do

Find a solution µk to P̃lin(µ̄k);

Set ωk = 2
k+2 ;

Set µ̄k+1 = (1− ωk)µ̄k + ωkµ
k ;

end

Difficulties:

How to deduce an approximate solution to (P) from µ̄k ?

The support of µ̄ki possibly is of cardinality k.
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Selection

Selection: A simple stochastic method for constructing x ∈ X
out of µ ∈

∏N
i=1 P(Xi ).

Algorithm 3: Selection algorithm

Input: µ, n ∈ N;
Construct a random variable X = (X1, ...,XN) such that

X1,...,XN are independent, Law(Xi ) = µi .

for j = 1, ..., n do

Draw samples x̂ j = (x j1, ..., x
j
N) of (X1, ...,XN).

end
Output: x̂ ∈ argmin

x∈{x̂1,...,x̂n}
J(x).
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Selection

Lemma

Let µ ∈
∏N

i=1 P(Xi ) and let n ∈ N. There exists a constant C > 0
such that for any ε > 0,

P
[
J(x̂) ≥ J̃(µ) +

C

N
+ ε
]
≤ exp

(
− nNε2

C

)
.

Proof. Let X be as in the selection algorithm. We know that

J̃(µ)− E[J(X )] ≤ C

N
.

Concentration inequality: by McDiarmid’s inequality, there exists
C > 0 such that for any ε > 0,

P
[
J(X ) ≥ E[J(X )] + ε

]
≤ exp

(
− Nε2

C

)
.
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Stochastic Frank-Wolfe (SFW) algorithm

Algorithm 4: Stochastic Frank-Wolfe algorithm

Input: µ̄0, a sequence (nk)k∈N;
for k = 0, 1, ... do

Find a solution µk to P̃lin(µ̄k);

Set ωk = 2
k+2 ;

Set µ̃k+1 = (1− ωk)µ̄k + ωkµ
k ;

Set x̄k+1 = Selection(µ̃k+1, nk);

Set µ̄k+1 =
(
δx̄k+1

1
, ..., δx̄k+1

N

)
.

end

The algorithm can be re-written as an easy-to-implement algo-
rithm that does not involve probability distributions.
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Stochastic Frank-Wolfe algorithm

Algorithm 5: SFW algorithm: practical version

Input: x̄ (0), a sequence (nk)k∈N;
for k = 0, 1, ... do

Set λk = ∇f ( 1
N

∑N
i=1 gi (x̄

k
i ));

Compute xk = S(λk);
Set ωk = 2/(k + 2);
for j = 1, ..., nk do

for i = 1, ...,N do

Draw Z k,j
i ∼ (1− ωk)δ0 + ωkδ1;

Set xk,ji = (1− Z k,j
i )x̄ki + Z k,j

i xki ;

end

Set xk,j = (xk,ji )i=1,...,N ;

end

Find x̄ (k+1) ∈ argmin
x∈{xk,1,...,xk,nk }

J(x)

end
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Convergence result

Theorem

There exists a constant C > 0 such that for all K ≤ 2N, for all
ε > 0, it holds:

P
[
J(x̄K ) ≥ Val(P̃) +

C

K
+ ε
]
≤ exp

(
− Nε2

C1(K ) + εC2(K )

)
,

where

C1(K ) = C
K−1∑
k=1

k(k + 1)2

nkK 2(K + 1)2
,

C2(K ) = C max
k≤K−1

(k + 1)(k + 2)

nkK (K + 1)
.

Remark. We can find a C/N-optimal solution with arbitrarily small
probability if nk ≥ Ak2/N, with A large enough.
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Numerical example

Let A ∈ RM×N and let ȳ ∈ RM . Consider:

min
x∈{0,1}N

1

N2
‖Ax − ȳ‖2 =

∥∥∥∥∥ 1

N

N∑
i=1

(
Aixi −

ȳi
N

)∥∥∥∥∥
2

. (MIQP)

Data: M = N = 100.

Remark: Problem (MIQP) is a discrete problem, over a set of
cardinality 2100.
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Numerical example

Figure: Convergence of the relaxed optimality gap.

Left: Frank-Wolfe for the relaxed problem.
Right: Selection algorithm applied to the iterates.
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Numerical example

Figure: Relaxed optimality gap for Stochastic Frank-Wolfe algorithm.

Left: Stepsize δk = 2/(k + 2).
Right: Stepsize determined by line-search.
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Related works

1. Two ideas for improvement:

The convergence result for SFW is preserved if x̄k+1 is
replaced by any other candidate x ′ such that J(x ′) ≤ J(x̄k+1).
→ Motivates the design of empirical approaches.

In practical situations, the aggregative problem is “partially
convex”, i.e., is convex when some of the variables are fixed.
→ Motivates the partial optimization of the problem with
the original Frank-Wolfe algorithm.
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Related works

Numerical results (by Xinyu Huang, M2 student):

Figure: Red: SFW, Violet: SFW+ heuristic, Brown: SFW + heuristic +
partial optimization.
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Related works

2. The case of a non-smooth f .

Concerning the relaxation gap, see:

Kerdreux, d’Aspremont, Colin: Stable Bounds on the Duality
Gap of Separable Nonconvex Optimization Problems, Maths
Operations Research, to appear.

Ongoing work on non-smooth variants of the Frank-Wolfe
algorithm (with Guilherme Mazanti and Thibault Moquet).

Silveti-Falls, Molinari, Fadili. Generalized conditional gradient
with augmented lagrangian for composite minimization, SIAM
Journal on Optimization, 2020.

Bach, Duality between subgradient and conditional gradient
methods, SIAM J. Optim., 2017.
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Related works

3. The case where xi is a controlled dynamical system.

The relaxed problem is a mean-field optimal control
problem (an optimal control problem of the Fokker-Planck
equation in continuous time).

Frank-Wolfe is applicable! Each sub-problem coincides with
a standard stochastic optimal control problem.

In the case of second-order potential and convex MFG, linear
convergence can be achieved.

Lavigne, Pfeiffer, Generalized conditional gradient and learning
in potential mean field games, Appl. Maths Optim., to appear.
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Thank you for your attention!
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