Relaxation and gap estimation 0000000

Resolution

Example 0000 Related works

Aggregative optimization problems: relaxation and numerical resolution

Laurent Pfeiffer

Inria and CentraleSupélec, Université Paris-Saclay

Joint work with Frédéric Bonnans (Inria, L2S), Kang Liu (Polytechnique, L2S), Nadia Oudjane and Cheng Wan (EDF).

Journées-Ateliers FIME EDF September 13, 2023

Innia

Problem formulation	Relaxation and gap estimation	Resolution 0000000000	Example 0000	Related works 000000
Introduction				

We investigate large scale aggregative optimization problem.

- Approximation by a convex mean-field optimization problem.
- Estimation of the relaxation gap.
- Numerical resolution with the conditional gradient algorithm (also called Frank-Wolfe algorithm).

Bonnans, Liu, Oudjane, Pfeiffer, Wan. Large-scale nonconvex optimization: randomization, gap estimation, and numerical resolution, *SIAM J. Optim.*, to appear.

Problem formulation	Relaxation and gap estimation	Resolution	Example	Related works
00000				

1 Problem formulation

- 2 Relaxation and gap estimation
- 3 Resolution

Problem formulation	Relaxation and gap estimation	Resolution 00000000000	Example 0000	Related works 000000
Setting				

Consider the *N*-agent problem

$$\inf_{x \in \mathcal{X}} J(x) = f\left(\underbrace{\frac{1}{N} \sum_{i=1}^{N} g_i(x_i)}_{\text{aggregate}}\right) + \frac{1}{N} \sum_{i=1}^{N} h_i(x_i), \qquad (\mathcal{P})$$

where
$$x = (x_1, ..., x_N) \in \mathcal{X} = \prod_{i=1}^N \mathcal{X}_i$$
.

Data:

ъ

- the feasible sets X_i
- the individual costs $h_i \colon \mathcal{X}_i \to \mathbb{R}$
- \blacksquare the aggregate space $\mathcal E$, a Hilbert space
- the contribution functions $g_i \colon \mathcal{X}_i \to \mathcal{E}$
- the social cost $f: \mathcal{E} \to \mathbb{R}$.

Problem formulation	Relaxation and gap estimation	Resolution	Example	Related works
○0●00		0000000000	0000	000000
Application				

Applications in energy management problems:

- Set of agents: a (large) set of small flexible consumptions units (e.g. batteries, heating devices).
 Flexible: consumption can be shifted over time.
- Aggregate: the total consumption, at each time step of a given time interval.
- Social cost: penalty function for the difference between total consumption and a reference production level.
- Wang. Vanishing Price of Decentralization in Large Coordinative Nonconvex Optimization, *SIAM J. Optimization*, 2017.
 - Séguret et al. Decomposition of convex high dimensional aggregative stochastic control problems, *Appl. Math Optim.*, 2023.

Problem formulation	Relaxation and gap estimation	Resolution	Example	Related works
○○○●○		0000000000	0000	000000
Applications				

Our problem covers the case training neural networks with a single hidden layer.

- Social cost \rightarrow fidelity function.
- Individual cost \rightarrow regulizer.

We use the same kind of relaxation as in:

- Chizat, Bach. On the Global Convergence of Gradient Descent for Over-parameterized Models using Optimal Transport, Advances in Neural Information Processing Systems, 2018.
 - Mei, Misiakiewicz, Montanari. Mean-field theory of two-layers neural networks: dimension-free bounds and kernel limit, 32nd Conf. on Learning Theory, 2019.

Problem formulation	Relaxation and gap estimation	Resolution 0000000000	Example 0000	Related works 000000
Assumptions				

Assumptions:

- f is convex
- ∇f is *D*-Lipschitz continuous
- for all $i = 1, \ldots, N$, diam $(g_i(\mathcal{X}_i)) \leq D$.

All constants appearing later on depend on D but not on N. Another "numerical" assumption will be made later.

General difficulties:

- No convexity property of *J*.
- No regularity property for X_i , g_i , h_i . In general, J is not differentiable.
- Large-scale (when N is large)... but N large actually helps!

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Problem formulation	Relaxation and gap estimation	Resolution	Example	Related works
	000000			

1 Problem formulation

2 Relaxation and gap estimation

3 Resolution

4 Example

5 Related works

(4日) (個) (主) (主) (三) の(の)

Problem formulation	Relaxation and gap estimation	Resolution	Example	Related works
	●●00000	0000000000	0000	000000
Relaxation				

General idea:

- Variable x_i replaced by a **probability distribution** $\mu_i \in \mathcal{P}(\mathcal{X}_i)$.
- The terms $g_i(x_i)$ and $h_i(x_i)$ are respectively replaced by

$$\mathbb{E}_{\mu_i}[g_i] := \int_{\mathcal{X}_i} g_i(x_i) \, \mathrm{d}\mu_i(x_i), \quad \mathbb{E}_{\mu_i}[h_i] := \int_{\mathcal{X}_i} h_i(x_i) \, \mathrm{d}\mu_i(x_i).$$

The relaxed problem:

$$\begin{split} \inf_{\mu} \tilde{J}(\mu) &:= f\left(\frac{1}{N}\sum_{i=1}^{N} \mathbb{E}_{\mu_i}[g_i]\right) + \frac{1}{N}\sum_{i=1}^{N} \mathbb{E}_{\mu_i}[h_i], \qquad (\tilde{\mathcal{P}}) \end{split}$$
where $\mu = (\mu_1, ..., \mu_N) \in \prod_{i=1}^{N} \mathcal{P}(\mathcal{X}_i).$

・ロン ・雪 と ・ ヨ と ・ ヨ と …

2

Remark: The cost function \tilde{J} is **convex**.

Problem formulation	Relaxation and gap estimation	Resolution 0000000000	Example 0000	Related works 000000
Mean field re	laxation			

Remark: In the **homonegeous** case where $\mathcal{X} = \mathcal{X}_i$, $g = g_i$, $h = h_i$, for all i = 1, ..., N, the original problem is equivalent to

 $\inf_{\mu\in\mathcal{P}_{\mathcal{N}}(\mathcal{X})} f(\mathbb{E}_{\mu}[g]) + \mathbb{E}_{\mu}[h],$

where
$$\mathcal{P}_{N}(\mathcal{X}) = \left\{ \frac{1}{N} \sum_{i=1}^{N} \delta_{x_{i}} \mid x_{i} \in \mathcal{X}, \forall i = 1, \dots, N \right\}.$$

The relaxed problem is equivalent to:

 $\inf_{\mu\in\mathcal{P}(\mathcal{X})} f(\mathbb{E}_{\mu}[g]) + \mathbb{E}_{\mu}[h],$

in which μ models the **distribution of the decisions** of a continuum of agents.

Problem formulation	Relaxation and gap estimation	Resolution	Example	Related works
	○00●000	0000000000	0000	000000
Gap estimati	on			

Theorem

There exists C > 0 (depending on D only) such that

 $\operatorname{Val}(\tilde{\mathcal{P}}) \leq \operatorname{Val}(\mathcal{P}) \leq \operatorname{Val}(\tilde{\mathcal{P}}) + \frac{C}{N}.$

Proof. Lower bound of Val(\mathcal{P}). Let $x \in \mathcal{X}$. Let $\mu = (\delta_{x_1}, ..., \delta_{x_N})$. Then,

 $\operatorname{Val}(\tilde{\mathcal{P}}) \leq \tilde{J}(\mu) = J(x).$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Minimizing with respect to x yields the result.

Problem formulation	Relaxation and gap estimation	Resolution 0000000000	Example 0000	Related works 000000
Gap estimation	on			

Upper bound of Val(\mathcal{P}). Let $\varepsilon > 0$. Let $\mu \in \prod_{i=1}^{N} \mathcal{P}(\mathcal{X}_i)$ be ε -optimal for the relaxed problem.

Let $X_1, ..., X_N$ be N independent random variables such that

 $Law(X_i) = \mu_i, \quad i = 1, ..., N.$

Then, setting $Y = \frac{1}{N} \sum_{i=1}^{N} g_i(X_i)$,

$$egin{aligned} ilde{J}(\mu) &= f\Big(rac{1}{N}\sum_{i=1}^{N}\mathbb{E}[g_i(X_i)]\Big) + rac{1}{N}\sum_{i=1}^{N}\mathbb{E}[h_i(X_i)], \ &= f(\mathbb{E}[Y]) + rac{1}{N}\sum_{i=1}^{N}\mathbb{E}[h_i(X_i)]. \end{aligned}$$

Therefore, $\mathbb{E}[J(X)] - \tilde{J}(\mu) = \mathbb{E}[f(Y)] - f(\mathbb{E}[Y]).$

Problem formulation	Relaxation and gap estimation ○○○○○●○	Resolution 0000000000	Example 0000	Related works
Gap estimation	on			

Using the Lipschitz continuity of ∇f , it is easy to show that:

$$\mathbb{E}[f(Y)] - f(\mathbb{E}[Y]) \leq rac{D}{2}\mathbb{E}\Big[\|Y - \mathbb{E}[Y]\|^2 \Big]$$

Since $Y = \frac{1}{N} \sum_{i=1}^{N} g_i(X_i)$ and since the X_i are independent,

$$\mathbb{E}\Big[\|Y-\mathbb{E}[Y]\|^2\Big] = \frac{1}{N^2}\sum_{i=1}^N \mathbb{E}\Big[\|g_i(X_i)-\mathbb{E}[g_i(X_i)]\|^2\Big] \leq \frac{D^2}{N}.$$

It finally follows that

$$egin{aligned} \mathsf{Val}(\mathcal{P}) - \mathsf{Val}(\mathcal{ ilde{P}}) &\leq \mathbb{E}[J(X)] - \widetilde{J}(\mu) + arepsilon \ &\leq rac{L}{2} \mathbb{E}\Big[\|Y - \mathbb{E}[Y]\|^2 \Big] + arepsilon &\leq rac{D^2 L}{2N} + arepsilon \end{aligned}$$

◆□ ▶ ◆□ ▶ ◆ 臣 ▶ ◆ 臣 ▶ ○ 臣 ○ のへで

Problem formulation	Relaxation and gap estimation	Resolution	Example	Related works
	○○○○○○●	0000000000	0000	000000
Gap estimation	on			

Theorem

Assume that $q := \dim \mathcal{E} + 1 \le N$. There exists C > 0 (depending on D only) such that

$$\operatorname{Val}(ilde{\mathcal{P}}) \leq \operatorname{Val}(\mathcal{P}) \leq \operatorname{Val}(ilde{\mathcal{P}}) + rac{Cq}{N^2}.$$

Proof. Let μ be as before. Using **Shapley-Folkman's** theorem, we can construct independent r.v. \tilde{X}_i , valued in \mathcal{X}_i and such that

•
$$\tilde{J}(\mu) = f(\mathbb{E}[\tilde{Y}]) + \frac{1}{N} \sum_{i} \mathbb{E}[h_i(\tilde{X}_i)]$$
, where $\tilde{Y} = \frac{1}{N} \sum_{i=1}^{N} g_i(\tilde{X}_i)$,

• All r.v. \tilde{X}_i are deterministic, except at most q of them.

Then $\mathbb{E}[\|\tilde{Y} - \mathbb{E}[\tilde{Y}]\|^2] \leq Cq/N^2$.

Problem formulation	Relaxation and gap estimation	Resolution	Example	Related works
		0000000000		

1 Problem formulation

2 Relaxation and gap estimation

3 Resolution

4 Example

5 Related works

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○◇

Problem formulation	Relaxation and gap estimation	Resolution 0000000000	Example 0000	Related works 000000
Frank-Wolfe a				

Consider the following problem:

$$\inf_{x \in \mathbb{R}^n} F(x), \quad \text{subject to: } x \in K. \tag{P}$$

Assumptions:

- $F : \mathbb{R}^n \to \mathbb{R}$ is convex, continuously differentiable, with Lipschitz-continuous gradient.
- $K \subseteq \mathbb{R}^n$ is convex and compact.

The **linearized problem** at \tilde{x} is defined by

 $\inf_{x\in\mathbb{R}^n} \ \langle \nabla F(\tilde{x}),x\rangle, \quad \text{subject to: } x\in {\cal K}. \qquad \qquad ({\cal P}_{\sf lin}(\tilde{x}))$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

We assume that it is easy to solve numerically, for any \tilde{x} .

		0000000000		
Problem formulation	Relaxation and gap estimation	Resolution	Example	Related works

Frank-Wolfe algorithm

Algorithm 1: Frank-Wolfe algorithm

Input:
$$\bar{x}_0 \in K$$
;
for $k = 0, 1, ...$ do
Find a solution x_k to $\mathcal{P}_{\text{lin}}(\bar{x}_k)$;
Set $\omega_k = 2/(k+2)$;
Set $\bar{x}_{k+1} = (1 - \omega_k)\bar{x}_k + \omega_k x_k$;
end

Lemma

There exists a constant C such that

$$f(ar{x}_k) \leq f(ar{x}) + rac{C}{k}, \quad orall k > 0,$$

where \bar{x} denotes a solution of (\mathcal{P}) .

Problem formulation	Relaxation and gap estimation	Resolution ○00●0000000	Example 0000	Related works 000000
The subprobl	em			

We call any map $\mathbb{S}: \lambda \in \mathcal{E} \mapsto (\mathbb{S}_1(\lambda), \dots, \mathbb{S}_N(\lambda)) \in \mathcal{X}$ a **best-response** function if for any $\lambda \in \mathcal{E}$,

 $\mathbb{S}_i(\lambda) \in \operatorname*{argmin}_{x_i \in \mathcal{X}_i} \langle \lambda, g_i(x_i) \rangle + h_i(x_i), \quad ext{for } i = 1, \dots, N.$

The variable λ can be here interpreted as a **price** for the contribution to the aggregate.

Numerical assumption. We assume that such a function can be easily constructed numerically. The evaluation of S relies on the resolution of N independent optimization problems.

Proble 0000	m formulation 0	Relaxation and gap estimation	Resolution ○000●000000	Example 0000	Related works 000000
Th	e subprobl	em			
	Lemma				
	Let $\tilde{\mu} \in \prod_{i=1}^{N}$	$_{1}\mathcal{P}(\mathcal{X}_{i}).$ Let $\lambda = \nabla f($	$\left(\frac{1}{N}\sum_{i=1}^{N}\mathbb{E}_{\tilde{\mu}_{i}}[g_{i}]\right)$). Define	
		$\hat{\mu} = \left(\delta_{\mathbb{S}_1(\lambda)}, .\right.$	$\ldots, \delta_{\mathbb{S}_{N}(\lambda)}\Big).$		
	Then $\hat{\mu}$ is a :	solution to			
		$\inf_{\mu\in\prod_{i=1}^{N}\mathcal{P}(\mathcal{X}_{i})}$	$D\widetilde{J}(\widetilde{\mu}).\mu.$	$(ilde{\mathcal{P}}_{I})$	$_{in}(ilde{\mu}))$

Proof. Straightforward calculations yield:

$$D\widetilde{J}(\widetilde{\mu}).\mu = rac{1}{N}\sum_{i=1}^{N}\mathbb{E}_{\mu_i}\Big[\langle\lambda,g_i(\cdot)
angle + h_i(\cdot)\Big].$$

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

Problem formulation	Relaxation and gap estimation	Resolution ○0000●00000	Example 0000	Related works 000000
Frank-Wolfe a	algorithm			

Algorithm 2: Frank-Wolfe algorithm

Input: $\bar{\mu}^{0}$; for k = 0, 1, ... do Find a solution μ^{k} to $\tilde{\mathcal{P}}_{\text{lin}}(\bar{\mu}^{k})$; Set $\omega_{k} = \frac{2}{k+2}$; Set $\bar{\mu}^{k+1} = (1 - \omega_{k})\bar{\mu}^{k} + \omega_{k}\mu^{k}$; end

Difficulties:

- How to deduce an **approximate solution** to (\mathcal{P}) from $\bar{\mu}^k$?
- The support of $\bar{\mu}_i^k$ possibly is of cardinality k.

Problem formulation	Relaxation and gap estimation	Resolution 0000000000	Example 0000	Related works 000000
Selection				

Selection: A simple **stochastic method** for constructing $x \in \mathcal{X}$ out of $\mu \in \prod_{i=1}^{N} \mathcal{P}(\mathcal{X}_i)$.

Algorithm 3: Selection algorithm

Input: μ , $n \in \mathbb{N}$; Construct a random variable $X = (X_1, ..., X_N)$ such that

 $X_1,...,X_N$ are independent, $\operatorname{Law}(X_i) = \mu_i.$

for j = 1, ..., n do | Draw samples $\hat{x}^j = (x_1^j, ..., x_N^j)$ of $(X_1, ..., X_N)$. end Output: $\hat{x} \in \underset{x \in \{\hat{x}^1, ..., \hat{x}^n\}}{\operatorname{argmin}} J(x)$.

Problem formulation	Relaxation and gap estimation	Resolution ○○○○○○○○○○○	Example 0000	Related works 000000
Selection				

Lemma

Let $\mu \in \prod_{i=1}^{N} \mathcal{P}(\mathcal{X}_i)$ and let $n \in \mathbb{N}$. There exists a constant C > 0 such that for any $\varepsilon > 0$,

$$\mathbb{P}\Big[J(\hat{x}) \geq \tilde{J}(\mu) + rac{C}{N} + arepsilon\Big] \leq \exp\Big(-rac{nNarepsilon^2}{C}\Big).$$

Proof. Let X be as in the selection algorithm. We know that

$$\widetilde{J}(\mu) - \mathbb{E}[J(X)] \leq \frac{C}{N}$$

Concentration inequality: by McDiarmid's inequality, there exists C > 0 such that for any $\varepsilon > 0$,

$$\mathbb{P}\Big[J(X) \ge \mathbb{E}[J(X)] + \varepsilon\Big] \le \exp\Big(-\frac{N\varepsilon^2}{C}\Big).$$

Cto chootic	$\sum_{n=1}^{\infty} A = f_n (C \sum A)$			
Problem formulation	Relaxation and gap estimation	Resolution ○000000000000	Example 0000	Related works 000000

Algorithm 4: Stochastic Frank-Wolfe algorithm

Input: $\bar{\mu}^0$, a sequence $(n_k)_{k \in \mathbb{N}}$; for k = 0, 1, ... do Find a solution μ^k to $\tilde{\mathcal{P}}_{\text{lin}}(\bar{\mu}^k)$; Set $\omega_k = \frac{2}{k+2}$; Set $\tilde{\mu}^{k+1} = (1 - \omega_k)\bar{\mu}^k + \omega_k \mu^k$; Set $\bar{x}^{k+1} = \text{Selection}(\tilde{\mu}^{k+1}, n_k)$; Set $\bar{\mu}^{k+1} = \left(\delta_{\bar{x}_1^{k+1}}, ..., \delta_{\bar{x}_N^{k+1}}\right)$. end

The algorithm can be re-written as an **easy-to-implement** algorithm that does not involve probability distributions.

Current and		1		
Problem formulation	Relaxation and gap estimation	Resolution	Example 0000	Related works 000000

Stochastic Frank-Wolfe algorithm

Algorithm 5: SFW algorithm: practical version

```
Input: \bar{x}^{(0)}, a sequence (n_k)_{k \in \mathbb{N}};
for k = 0, 1, ... do
      Set \lambda^k = \nabla f(\frac{1}{N} \sum_{i=1}^N g_i(\bar{x}_i^k));
      Compute x^k = \mathbb{S}(\lambda^k):
      Set \omega_k = 2/(k+2):
      for j = 1, ..., n_k do
            for i = 1, ..., N do
                  Draw Z_{i}^{k,j} \sim (1-\omega_k)\delta_0 + \omega_k\delta_1;
                  Set x_i^{k,j} = (1 - Z_i^{k,j}) \bar{x}_i^k + Z_i^{k,j} x_i^k:
            end
            Set x^{k,j} = (x_i^{k,j})_{i=1,...,N};
      end
      Find \bar{x}^{(k+1)} \in argmin
                                                J(x)
                            x \in \{x^{k,1}, \dots, x^{k,n_k}\}
end
```

00000	000000	0000000000	0000	000000	
Convergence result					

Theorem

 \mathbf{O}

There exists a constant C > 0 such that for all $K \le 2N$, for all $\varepsilon > 0$, it holds:

$$\mathbb{P}\Big[J(ar{x}^{\mathcal{K}}) \geq ext{Val}(ilde{P}) + rac{\mathcal{C}}{\mathcal{K}} + arepsilon\Big] \leq \exp\Big(-rac{Narepsilon^2}{\mathcal{C}_1(\mathcal{K}) + arepsilon \mathcal{C}_2(\mathcal{K})}\Big),$$

where

$$C_1(K) = C \sum_{k=1}^{K-1} \frac{k(k+1)^2}{n_k K^2 (K+1)^2},$$

$$C_2(K) = C \max_{k \le K-1} \frac{(k+1)(k+2)}{n_k K (K+1)}.$$

Remark. We can find a C/N-optimal solution with arbitrarily small probability if $n_k \ge Ak^2/N$, with A large enough.

・ロト・西ト・田・王・ 日・

Problem formulation	Relaxation and gap estimation	Resolution	Example	Related works
			0000	

1 Problem formulation

2 Relaxation and gap estimation

3 Resolution

5 Related works

▲□▶▲圖▶▲≧▶▲≧▶ ≧ のQ@

00000	0000000	00000000000	0000	000000
00000		00000000000	0000	000000
Problem formulation	Relaxation and gap estimation	Resolution	Example	Related works

Numerical example

Let $A \in \mathbb{R}^{M \times N}$ and let $\bar{y} \in \mathbb{R}^{M}$. Consider:

$$\min_{x \in \{0,1\}^N} \frac{1}{N^2} \|Ax - \bar{y}\|^2 = \left\| \frac{1}{N} \sum_{i=1}^N \left(A_i x_i - \frac{\bar{y}_i}{N} \right) \right\|^2.$$
(MIQP)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Data: M = N = 100.

Remark: Problem (MIQP) is a discrete problem, over a set of cardinality 2^{100} .

Problem formulation	Relaxation and gap estimation	Resolution 00000000000	Example 0000	Related works 000000

Numerical example

・ロト ・ 国 ト ・ ヨ ト ・ ヨ ト

ж

Figure: Convergence of the relaxed optimality gap.

- Left: Frank-Wolfe for the relaxed problem.
- Right: Selection algorithm applied to the iterates.

Numerical	evample			
Problem formulation	Relaxation and gap estimation	Resolution 00000000000	Example ○○○●	Related works 000000

Figure: Relaxed optimality gap for Stochastic Frank-Wolfe algorithm.

イロト 不得 トイヨト イヨト

3

Left: Stepsize
$$\delta_k = 2/(k+2)$$
.

Right: Stepsize determined by line-search.

Problem formulation	Relaxation and gap estimation	Resolution	Example	Related works
				00000

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

1 Problem formulation

- 2 Relaxation and gap estimation
- 3 Resolution
- 4 Example
- 5 Related works

Problem formulation	Relaxation and gap estimation	Resolution 0000000000	Example 0000	Related works 0●0000
Related work	S			

1. Two ideas for improvement:

- The convergence result for SFW is preserved if x^{k+1} is replaced by any other candidate x' such that J(x') ≤ J(x^{k+1}).
 → Motivates the design of empirical approaches.
- In practical situations, the aggregative problem is "partially convex", i.e., is convex when some of the variables are fixed.
 → Motivates the **partial optimization** of the problem with the original Frank-Wolfe algorithm.

Problem formulation	Relaxation and gap estimation	Resolution 0000000000	Example 0000	Related works
Related works	5			

Numerical results (by Xinyu Huang, M2 student):

Figure: Red: SFW, Violet: SFW+ heuristic, Brown: SFW + heuristic + partial optimization.

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへで

Problem formulation	Relaxation and gap estimation	Resolution 0000000000	Example 0000	Related works 000€00
Related works	5			

- 2. The case of a non-smooth *f*.
 - Concerning the relaxation gap, see:
 - Kerdreux, d'Aspremont, Colin: Stable Bounds on the Duality Gap of Separable Nonconvex Optimization Problems, *Maths Operations Research*, to appear.
 - Ongoing work on non-smooth variants of the Frank-Wolfe algorithm (with Guilherme Mazanti and Thibault Moquet).
 - Silveti-Falls, Molinari, Fadili. Generalized conditional gradient with augmented lagrangian for composite minimization, *SIAM Journal on Optimization*, 2020.
 - Bach, Duality between subgradient and conditional gradient methods, *SIAM J. Optim.*, 2017.

Problem formulation	Relaxation and gap estimation	Resolution 0000000000	Example 0000	Related works 0000€0
Related works	5			

- 3. The case where x_i is a controlled dynamical system.
 - The relaxed problem is a mean-field optimal control problem (an optimal control problem of the Fokker-Planck equation in continuous time).
 - **Frank-Wolfe** is applicable! Each sub-problem coincides with a standard stochastic optimal control problem.
 - In the case of second-order potential and convex MFG, linear convergence can be achieved.
 - Lavigne, Pfeiffer, Generalized conditional gradient and learning in potential mean field games, *Appl. Maths Optim.*, to appear.

Problem formulation	Relaxation and gap estimation	Resolution	Example	Related works
				000000

Thank you for your attention!

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)