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» In progress!

» Based on a joint project with E. Bacry, T. Deschatre, J.F.
Muzy and R. Ruan.
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Setting

> We observe two times series :
&6, and (7, ..., ¢, nlarge
» Continuous time model embedding :
h=xX4 ... ¢"=X3, i=1,...,n, T =nD,

1

X = (X}, X2) 10,7 continuous Itd semimartingale :

t t
thxo+/ bsds+/ o+dBs,
0 0

> b € R? oy = (af’)lgk,/gz € R®? cadlag adapted, B; € R?
Brownian motion.

BPauphine I psL* CEREMADE

uuuuuuuuuuuuuuu UMR CNRS 7534



Setting

» This is a macroscopic time setting [0, T] ~ [0, 1],
n=T/D — occ.
» Correlation estimator based on quadratic variation
(X, X%,
<X1,X1)},/2(X2,X2>},/2’

Pn =
where (X*, X'}, = Z?:I(Xilz) - X(I;—I)D)(XilD - X(/i—l)D)'
» Classical semimartingale theory

P Jo(od! +02)oi?ds

n = 1 1 1
O (o2 + (022)2)ds) P (2 (022 + (o22)2) ds)

-1/2

with rate n and an associated CLT.
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(Ignoring the drift.)
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Figure — EuroUSD FX, A =1 day (traded price), from 01 Jan. 1999 to
06 Dec. 2005.
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(Ignoring the drift.)
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Figure — Sample path of a Bernoulli random walk “EuroUSD", A =1

day, from 01 Jan. 1999 to 06 Dec. 2005.



(Ignoring the drift.)
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Figure — FX USD-Yen, A = 1 day (traded price), from 02 Jan. 1995 to
06 Dec. 2005.
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(Ignoring the drift.)
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Figure — Sample path of a Bernoulli random walk "USD-Yen", A =1

day, 02 Jan. 1995 to 06 Dec. 2005.



(Ignoring the drift.)
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Figure — 10Y German Bund (FGBL) with A =1 day (traded price), from
04 Apr. 1999 to 06 Dec. 2005.
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(Ignoring the drift.)
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Figure — Sample path of a Bernoulli random walk "FGBL", A =1 day, 04
Avr. 1999 to 06 Dec. 2005.



Objective

» The simplest model : constant diffusion matrix.
» Reparametrisation (diffusion matrix in R?*! versus R®2))

X! =018}
XZ = oa2(pBt + /1 —p?B})

oi > 0,p € [-1,1] so that

P
Pn = p, N — 00.

» The quantity p accounts for both endogenous and exogenous
effects.

> How to disentangle them 7 Does it even make any sense ?
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Objective

» Without extraneous information, hopeless purpose!

> We look for information in higher frequencies of the signal ~»
modification of the modelling.

» Limitation : microstructure noise (variance effect) and Epps
effect (covariance effect).
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Observation on a macroscopic scale

Figure —= A+ — oo and A7r/T — 0 as T — oo : the diffusion
aproximation becomes valid.
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Coarse-to-fine modelling

value
| | | |

11540 11545 11550 11555 11560 115.65

T T T T T T T
0 5000 10000 15000 20000 25000 30000

time

Figure — FGBL, 06 Feb 2007, 08 :30-17 :00 (UTC) sampled with D =1
second. The candidate for the underlying process X is rather a marked
point process that we observe at times iD.
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Coarse-to-fine modelling (cont.)

value
11546 11548 11550 11552 11554 11556

T T T T T T T T
o 500 1000 1500 2000 2500 3000 3500

time

Figure — FGBL, 06 Feb 2007, 09 :00-10 :00 (UTC) 1 data every second.
The underlying process looks more complex than a simple CTRW.
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Observation on a intermediate scale




Observation on a microscopic scale




Basic setting : price model in dimension 1

» Ideal HF model : marked point processes with jumps of size 1
on a lattice (tick-by-tick prices).

X; =N — N, te[o,T]

v

(Nti) : dependent counting processes that reproduce the
variance effect of microstructure noise.

» Simplest construction : 2-dimensional Hawkes process.

» Incorporates microstructure noise effects.
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Signature plot
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Figure — D +— (X, X), p for FGBL (43 days, 9-11 AM) on Last Traded
Ask.



Short recap on Hawkes processes

> (7%(ds, dz))1<k<qg ID Poisson random measures with

intensity dsdz on [0, 00)2.

» N = (NK)1<k<qg Hawkes process with baseline x> 0 and
kernel ¢ = (Splk)lgl,kgd if

t [e'e}
Nk:// 1 .~ K(ds,dz), 1<k<d.
t 0 Jo {z§u+fo S <p’k(S*U)O’NL}7r ( ) -

» % locally integrable yields existence + uniqueness of N such
that E[N)] < oo for every t > 0. (Picard + Gronwall.)
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Simplest price model in dimension 1

> N — fot A\sds is a martingale, with

)\k—,u+/ nglk(t s)dN.

> X; = N;" — N is characterised by (A, \; ). We pick
Moo=t et —s)dNg
A =nt o et —s)dNg .

» The model is parametrised by (u, ).

» This is a microscopic model, in continuous time over [0, T]
with large T. Macroscopic renormalisation :

XD = T-12(NE - N3 teo, 1
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Microscopic and macroscopic fluctuations

> If |lp]| < 1, we have

TNG +Np) = (14 0n(T 1))
1= [l
and
(X oeer 1D (o We)r<eer,
with
o2 = 2p

(1= lloll)(@ + llella)? |

» Empirical trace of microstructure :

(XD, x(y, — 24 (1+ Op(n~1/2))

(1= llepll)(X + fleoll2)?

in the macroscopic limit T — oc.
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In dimension 2 : Epps effect
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Epps effect

150 200

Figure — D~ (X1, X2), p (normalised) with X! = FGBL, X2 = FGBM,
40 days, 9-11AM.



Multivariate model

» How to build a multivariate model that reproduces the Epps
effect ?
> Pick
(XEXE) = (N = N N = NE),

where N = (N{’i)lg,gz is a 4-dimensional Hawkes process,
with baseline (!, ut, 42, 4?) and kernel

0 ¢ v 0
o 0 0 o
v 0 0 ¢
0 v ¢ O
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Multivariate model

» How to build a multivariate model that reproduces the Epps

effect ?
» Pick

(XL, X2) = (NET = NET NPT — N,

where N = (Nl’i)lglgz is a 4-dimensional Hawkes process,
with baseline (!, ut, 142, 4?) and kernel

AN1,+ 0

)\Nl,f (Vo
~>

Anz+ Yoy

)\N2,— 0

> Beware overfitting !

Ot Yy

0 0
0 0
Vs P

0 dNL T
(/- dNb—
P——+ dN>+
0 dN?~
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Abstract asymptotic theory
> K = (l¢"]|11)1<k,1<a With the assumption : p(K) <1
> LLN :

sup [T INer — t(Id — K) | =0, T — oo.
te[0,1

> ¥ = diag((Id — K)™1). Fluctuations :

(TI/Z(T_thT — t(1d — K)_lu))

0<t<1

() (@a-Kk)IEPW) T,
0<t<1
if moreover [5° t1/20¥ (t)dt < cc.

» p(K) =~ 1: criticality, gateway to stochastic volatility, rough
volatility and so on.
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From endogenous to exogenous effects

» First ignore microstructure noise and endogenous effects.

» How to build the simplest microscopic model with exogenous
effects ?

» Even simpler! Let us model the microscopic volatility process.
If K =20 then

VE= NPt + NpT ~PP(2u), V2= NpH 4+ NPT ~ PP(2v),

yet both are independent!
» How to couple Poisson-like processes in a smart way ?
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Microscopic exogeneous effects : first attempt
» M. : baseline independent Poisson processes.
» Try the common shock model :
N} = ME+ M2, N2 = M2 + M3

» Degenerate situation : common jumps.

» llluminating idea by Thomas : delayed Poisson (Cox and Lewis
05). Replace in one of the components

M=3 1liriey

k>1

M=) Lirsie<e )

k>1

where € are IID continuous nonnegative delaying random
variabless. ~~ bauphingiPsLx CEREMADE



Delayed Poisson processes

» M3 Poisson process with intensity j3.

> M3k, k= 1,2 two exponentially delayed versions of M3 with
parameter a > 0.

» |n their own filtrations, M37k, k = 1,2 have intensity

31 — exp(—at))

and are asymptotically Poisson.

» By playing on the (asymptotically negligible) parameter a, we
have no common jump but a strong dependence between

73,1 73,2
Nf = M} + MY, NE = M2+ M2
P> Yet, we have a surprisingly simple structure!
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Delayed Poisson processes

> (Mf,ﬁf’l,M?Q) is a point process with no common jumps
and intensity

A =3 N
Nt o= a(ME - M
N2 o= a(Mp - M)

> It is a “Hawkes" process with baseline (u3,0,0) and kernel

0 O 0
al 1 -1 0
1 0 -1

> Asymptotic theory (almost) for free (L} kernel, negative
entries).

» Glue this building block in our general framework !



An Epps effect friendly common shock model

» We slightly modify the common shock model by setting
Nl Ml ’M?,l N2 M2 ’M?,Z

» Supported by 5 independent random Poisson measures.

» Covariance across scales : T = nD, time mesh D > 0 (the
scale) and Ny = E[Ny],

(Nypr=T7" 2’7: (NID - N(i—l)D) (NiD - N(i—l)D>T :
i=1

» For D=D7,if Dt/T — 0as T — oo, we have

L B 1 I i
</\/I3’1, I\/I3’2>DT,T — U3 1—e—aDT aDr
1-— b 1

as T — oo. BPauphine I psL* CEREMADE
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An Epps effect friendly common shock model

» Correlation across scales for (M3, M32) :

1—e3br

1—
aDT

» Correlation across scales for (N, N?) :

M3 1 1—e 07
V(1 + p2)(pa + ps) aDr

> We obtain an Epps effect for Poisson-like processes obtained
by delaying a common shock model.

> The may serve as a proxy volatility process.
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A general volatility framework

» For simplicity, we first model the microscopic volatility
processes as

(VEV2) = (N NPT NG+ NPT |

» Step 1 : delayed shocks (produces exogenous correlation) +
microstructure noise on margins.

» Step 2 : combine delayed shocks, margin microstructure noise
and endogenous correlation.

» Step 3 : from volatility to prices. Construct

(XE, X2) = (N&T = NP NPT — NPT

in the simplest extended framework.
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A general volatility framework

» Step 1 : delayed shocks (produces exogenous correlation) +
microstructure noise (on margins).
> We need : a point process supported by 5 random Poisson
measures
(Nf, NE, (N2, N2 NE2))
defined via its intensity process

M =+ f it — s)d(NE+ NS
N =t [y pa(t — s)d(N2 + N2?)
A

AT =a(NE - N

AB2 = a(N3 — N2?).
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A general volatility framework

» It is a 5-dimensional “Hawkes process" with baseline
(1, p2, p13,0,0) and kernel

) (01><27 (D)
03><2 aP ’

with

0 0 0 0
<1>:<501 )and P=|1 -1 o0
0 (%)

» Final volatility model :

(VE, V2) = (N} + NP NZ + NP2) |
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A general volatility framework

» Microscopic variance-covariance of (V}, V) :
pitps 0
1-lleall 2
0 H1tp3
1-leall 2
» Macroscopic variance-covariance :

( (1 + p3)(1 = [l 12) (1—“<P1HL1%1—H<P2||L1) )
Tl Twmln Kt es)(L = llelle)
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A general volatility framework

» Macroscopic correlation :

V= lealli)(@ — leallis) £

V01 + p3)(p2 + p3)

» It is the correlation of the Epps-friendly common shock

model :
/(1= llpall)(1 = llpal).
» Proportion of endogenous migrants in each component :
(1= ll@ill2), i=1,2.
» Explicit formula across scales for p;(t) = «;exp(—pfit),
a; < B
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Mixing endogenous and exogenous effects

» So far, we only incorporate exogenous effects in the
dependence between V! and V2.

» Step 2 : endogenous dependence ~» classical cross kernels.

» 5-dimensional point process
31 73,2
(Ntlvav(Nngt 7Nt ))

defined via
M=+ fy et — )d(NE+ NS+ 57 i (t — s)d(N2 + NS2)
Ne= iz + Jo~ et = s)d(N2 + N22)+ [5 o(t — s)d(NE + N2)
AT e man

t = a(Nt— - Nt—)
A2 = a(N3. — N2,
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Mixing endogenous and exogenous effects

» It is a 5-dimensional “Hawkes process" with baseline
(11, 42, 13,0,0) and kernel

¢ (01><27 d))
O3)<2 aP ’

with

s 0 0 0
¢:<9"1 1) and P=| 1 -1 0
V2 P2
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Asymptotic theory

- +
> V., = (th, Vt2) and A = (Id — ||®|[,2) 1 ( Z; _|_Z2 )

> LLN:

sup [T 1Vir —tA] =0, T — oo.
te[0,1]

» Fluctuations :

(T1/2(T*1vﬁ - t/\)

0<t<1
O (1 - o) Diag(n - 12 N (W)
Fuad = o)) ()W) L T,

with (W)1<i<3 standard BM.
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Recovering the parameters

» The macroscopic covariance is

(1d — [|®]| )~ (diag(A) +( 23 ~ )) (1d — | &7]|) 7|

» Too many parameters (latent components) to disentangle
endogenous from exogenous effects by first and second order
statistics only.

» Alternative : third order statistics, via nonlinear correlations.
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First, second and third order statistics

> N = (NF)o<c<T well-defined d-dimensional Hawkes process.

» First order statistics :
Nt

T
» Second order statistics, n= T /D :

(N)pr=T" Z( ip— N D) (NiD_N(i—l)D>Ta

» We have a relatively complete picture (LLN and fluctuations).
Moving beyond ?
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Third order statistics

For1<j k1 <2

My =T~ 1Z(N — M_1yp)(Nfp = NE_1yp)(Nip = Nii_1yp) |

» Empirical skewness as a 3-tensor.

» Some history for Hawkes processes cumulants : Jovanovic
(2015), Achab et al. (2018) for numerical implementation (via
GMM-like estimation).

» We have a limit theory (at least for the LNN).
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Third order statistics, limit theory

> N with intensity 1+ [ ¢(t — s)dNs in dimension d.
> Limiting objects :

R=(1d—|lgllx)"", A= Ru, C=Rdiag(\)R".

» If D= D7 — oo is such that D%/T — 0 as T — oo, then
d
Jk/ L2 (P Z leijCkm+R/ijmka+ C/ijmka)
m=1

d
) Z /\leijmka.

m=1

» Together with first and second order statistics, gateway to
GMM methods for recovering p and ¢ even if some
components are latent.
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Final price model

> We set

(XL, X2) = (NFT = NPT NET — NPT |

> The construction of (N&, NF~, N>F N27) requires 10
(= 4 4 3 x 2) Poisson random measures via some latent
processes for the exogenous part.

> With + for upward+downward jumps, the final price process
Lt g2+ 3+ 3,1+ {32+
(N5, NS, (N5, NP5, N2 5)),

is defined via 10 Poisson random measures.
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Final price model

> Re-write ((Ntl’i, N?’i),(Nf’iymf’l’iaﬂl?’zi)) as

(N7 =1, 4), (NF* k=1,2), (M, j = 1,...,4))

» The final price process is defined via its intensities

i = pi+ St i et —s)d(M + Ny i=1,....4,
Aok — k=12
Moo = a (Nt - L) j=1.2
Noo = 2Nt - ML) j=34

» 442416 x (1 or 2) + 2 parameters ~ (for exponential
kernels) 8 + 32 usually reduced to 8 + 8 = 16 parameters

(1is vk, Pijs al)lgi,j,§4,1§k,l§2
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Disentangling exogenous and endogenous effects

» For simplicity, we work with the — general — volatility model
but not the price model.

> (tha Vt2) = (/Vt1 + K/?’l, Nf + /V?z) with intensity

M=+ fg ea(t = s)d(NE+ NS + f77 dhu(t — s)d(N2 + NS%)
N =+ fy ea(t — s)d(NZ + N&2) + f5 o(t — s)d(NE + NT)
A= i3 _

AP =a(NE — N

222 = a(N3_ — N3?).

uuuuuuuuuuuuuuuuuuuuuuuuuu



Disentangling exogenous and endogenous effects

> Basic objects :

o= £ ) and A= (1a— o)t M),
V2 2 p2 + (13

» The macroscopic covariance of (V1 V?) is

(1d — @] 1) (diag(A) (08 )) (1d — 7)™

B B 1 _ —1 M1+ p3
= (1 = [l ((1 = ol Mol (2 T )+

w0, 6= e

» Intricate nonlinear combination of endogenous and exogenous
effects on the correlation ! Bauphine PsL* CEREMADE



Disentangling exogenous and endogenous effects

» We simplify everything further! Ignore the delay.

» The model becomes
V=N 4+ N3 VE= N2 4 NS
> With the basic objects
_ _ 1
(Id = f[®fl)~t @d =@l )Ml ( L)
0 1

and

- + (13
A=(Id — ||& 1 M .
(Id — || ®]2) <H2+M3>

we can obtain a simple population interpretation of the mixed
endogenous and exogenous effects.
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Population interpretation

> We have, with V! = N} + N3, V}E= N2+ N3,

Cov(Va, V)= >~ > > AR*RK

ie{a,3} je{b,3} k=1,2,3

> MY R X RY)

k=1,2,3 ic{a,33} je{b,3}

» RU : mean number of events of type i triggered by one event
of type j.

> 2,6{373} R'* . mean number of events of V2 triggered by one
event of type k.

» Exogenous effect : u3zx (the mean number of events of V?
triggered by one exogenous event + likewise for V7).
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THANK YOU FOR YOUR ATTENTION!!
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