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Introduction

● The theory of risk measure is widely used in the finance and insurance industry.

● P. Artzner, F. Delbaen, J.-M. Eber, and D. Heath. Coherent measures of
risks.Mathematical Finance, Vol. 9, No. 3 (July 1999), 203-228.

● S. Peng : Nonlinear Expectations, Nonlinear Evaluations and Risk Measures, LNM 1856,
M. Frittelli and W. Runggaldier (Eds.), pp. 165-253, 2004, Springer-Verlag Berlin
Heidelberg 2004.

● P. Barrieu and N. El Karoui. Pricing, hedging and designing derivatives with risk measures.
In R. Carmona, editor, Indifference Pricing, Theory and Applications, pages 77-146.
Princeton Univ. Press, 2009.

● Many researchers took interest in risk measures as questions about capital requirement are
arising.
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Introduction

● Systemic risk measures were introduced to capture the global risk and the corresponding

contagion effects that is generated by an interconnected system of financial institutions.

Two approaches were suggested.:

1 In the first one, systemic risk measures can be interpreted as the minimal
amount of cash needed to secure a system after aggregating individual risks.

2 In the second approach, systemic risk measures can be interpreted as the
minimal amount of cash that secures a system by allocating capital to each
single institution before aggregating individual risks. The latter is also known
as Multivariate Sytemic Risk Measures (MSRM).

● We use stochastic algorithms schemes in estimating MSRM and we test numerically the
performance of these algorithms on several examples [KMT22].

● Extension of numerical tests with real insurance data using ADAM (Adaptative Moment
estimation) and SGDA (Stochastic Gradient Descent Ascent) [BDMS24].

● S. Kaakai, A.M., A. Tamtalini. Estimation of Systemic Shortfall Risk Measure using
Stochastic Algorithms. hal-038711246 (2022), in revision ([KMT22]).

● Z. Bensaid, A.M., R. Dumitrescu, W. Sabbagh. Dynamic Multivariate Systemic Risk
Measure and Deep learning algorithms. Work in progress ([BDMS24]).
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About Risk Measures

Univariate Risk Measure

Definition

A monetary risk measure η ∶ L0(R)→ R is a map that represents the minimal extra capital to
secure a loss position X, i.e. the minimal amount m that needed to be taken from X in order to
make the resulting payoff acceptable at T :

η(X) ∶= inf{m ∈ R ∣ X −m ∈ A}

Example of acceptance set :

A ∶= {Z ∈ L0(R) ∣ E(Z) ≤ B}, B ∈ R
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About Risk Measures

Example of Value at Risk and Some properties

● The Value at Risk at a level λ ∈]0,1[ corresponds to the acceptance set:

Aλ ∶= {Z ∈ L0(R) ∣ P(Z < 0) ≥ λ}

● So VaRλ(X) = inf{m ∈ R ∣ P(X −m < 0) ≥ λ}

Some characterizing features

● Cash Additivity :
η(X+m) = η(X)+m, for all m ∈ R

● Convexity : Reflects the effect of diversification:

η(λX + (1 − λ)Y ) ≤ λη(X) + (1 − λ)η(Y )
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Theory of Systemic Risk Measures

From one-dimensional to d-dimensional risk profiles

Consider a system of d interacting and heterogeneous portfolios and a vector of losses
X = (X1, ...,Xd) at T .

How to measure the risk carried by this system of portfolios ?
Or how to choose ρ(X)?

Simplest way: Sum up the risk measures of each contract : ∑ηi(Xi)

⇒ We ignore the dependence structure of our portfolios so we might overvalue the risk. ⇒ No

ranking of portfolios in terms of global riskiness.
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Theory of Systemic Risk Measures

First Aggregate, then inject cash

● We are interested in systemic risk of the form :

ρ(X) = η(Λ(X)) = inf{m ∈ R ∣ Λ(X) −m ∈ A}

Λ ∶ Rd → R is an aggregation rule that aggregate the risk factors into one risk factor Λ(X).

● Example of Λ: Λ(x) =
d

∑
i=1

xi, Λ(x) =
d

∑
i=1
(x+i )2,...

● No individual risk contributions in terms of their systemic riskiness. Λ ∶ Rd → R is an
aggregation rule that aggregate the risk factors into one risk factor Λ(X).

● Example: The VaR of a portfolio of assets could be computed as following:

VaR(X) = inf{m ∈ R ∣ P(
d

∑
i=1

Xi −m < 0) ≥ λ}
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Theory of Systemic Risk Measures

First inject cash, then aggregate

● Inspiration from univariate shortfall risk (SR) measure.

● Y. Armenti, S. Crépey, S. Drapeau, and A. Papapantoleon, Multivariate Shortfall Risk
Allocation and Systemic Risk. SIAM J. Financial Math., Vol. 9, No. 1, pp. 90-126.

Definition

R(X) ∶= inf{
d

∑
n=1

mn ∈ R ∣ m = (m1, ...,md) ∈ Rd; X −m ∈ A}

= inf{
d

∑
n=1

mn ∈ R ∣ E[l(X −m)] ≤ 0}, l a loss function.

● R(X) delivers at the same time a measure of total systemic risk and potential

ranking(m1, . . . ,md) of portfolios in terms of global riskiness.
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Theory of Systemic Risk Measures

Loss functions

Definition

A function l ∶ Rd ↦ (−∞,∞] is called a loss function if:

1 l is increasing, that is l(x) ≥ l(y) if x ≥ y;
2 l is convex and lower-semicontinuous with inf l < 0;
3 l(x) ≥∑xk − c for some constant c.

Furthermore, a loss function l is said to be permutation invariant if l(x) = l(π(x)) for every
permutation π of its components.

● The property (1) expresses the normative fact about the risk, that is, the more losses we
have, the riskier is our system. As for (2), it expresses the desired property of
diversification. Finally, (3) says that the loss function put more weight on high losses than
a risk neutral evaluation.

● Permutation invariance : the considered risk components are often of the same type-banks,
members of a clearing house, or trading desks within a trading floor. In that case, the loss
function should not discriminate a particular component against another.
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Theory of Systemic Risk Measures

Example of loss functions: Let h ∶ R↦ R be one dimensional loss function satisfying condition
(A1), (A2) and (A3). We could build a multivariate loss function using this one dimensional loss
function in the following way:

1 l(x) = h(∑xk);
2 l(x) =∑h(xk);
3 l(x) = αh(∑xk) + (1 − α)∑h(xk) for 0 ≤ α ≤ 1.

● More specifically, in (1), we are agregating losses before evaluating the risk, whereas in (2),
we evaluate individual risks before aggregating. The loss function in (3) is a convex
combination of those in (1) and (2).

● One of the main examples we will be studying in this paper are the two following ones:

● l(x) = 1

1 + α
(∑ eβxi + αeβ∑xi), α > 0.

● l(x) =∑
i

xi +
1

2
∑
i

(x+i )2 + α∑
i<j

x+i x
+
j where α is the systemic weight and β is

a risk aversion coefficient.

● Our notion of a loss function coincides with the one of aggregation function in
the sense that it aggregates several loss profiles into a univariate random
variable for which it can be decided whether or not it is acceptable.
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Theory of Systemic Risk Measures

● We introduce the Multivariate Orlicz Heart:

Mθ ∶= {X ∈ L0 ∶ E[θ(λX)] <∞, ∀λ > 0}, θ(x) ∶= l(∣x∣)

.

● We define A(X) ∶= {m ∈ Rd ∣ E[l(X −m)] ≤ 0} the corresponding set of
acceptable monetary allocations.

● X ↦ A(X) defines a monetary set valued risk measure, that is, a set valued
map A from Mθ into the set of monotone, closed, and convex subsets of Rd

(A(X) is different from the empty set and Rd) .
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Theory of Systemic Risk Measures

● The following theorem from Armenti et al shows that the multivariate shortfall risk
measure has the desired properties and admits a dual representation as in the case of

univariate shortfall risk measure. We introduce Qθ∗ the set of measure densities in Lθ∗ ,
the dual space of Mθ:

Qθ∗ ∶= {dQ
dP
∶= (Z1, ..., Zd), Z ∈ Lθ∗ , Zk ≥ 0 and E[Zk] = 1 for every k}

Theorem

The function
R(X) ∶= inf {∑mk ∶ m ∈ A(X)}

is real-valued, convex, monotone and translation invariant. Moreover, it admits the dual
representation:

R(X) = max
Q∈Qθ∗

{EQ[X] − α(Q)}, X ∈Mθ

where the penalty function is given by

α(Q) = inf
λ>0

E [λl∗ ( dQ

λdP
)] , Q ∈ Qθ∗ .
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Theory of Systemic Risk Measures

● Now, we address the question of existence and uniqueness of a risk allocation
which are not straightforward in the multivariate case. Armenti et al showed
that if the loss function is permutation invariant, then a risk allocations exist
and they are characterized by Kuhn-Tucker conditions.

Definition

A risk allocation is a vector m = (m1, ...,md) such that E[l(X −m)] ≤ 0 and

R(X) =
d

∑
k=1

mk.

Existence and Uniqueness ?

● When d = 1, the above definition corresponds exactly to the univariate
shortfall risk measure in Föllmer et Schied (2002).
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Theory of Systemic Risk Measures

Main Theorem

Assume l is a loss function verifying the following conditions:

1 ∀m0, m↦ l(X −m) is differentiable at m0;

2 l is permutation invariant.

Theorem

Under the conditions above, for every X ∈Mθ, a risk allocation exists and it is characterized by
the following first order conditions:

1 = λ∗E[∇l(X −m∗)], E[l(X −m∗)] = 0,

where λ∗ ≥ 0 is a Lagrange coefficient. If moreover l is strictly convex along zero sum allocations
for every x such that l(x) ≥ 0, the risk allocation is unique.
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Theory of Systemic Risk Measures

Some comments

● Let f0(m) =
d

∑
i=1

mi and f1(m) ∶= E[l(X −m)], for m ∈ Rd and X ∈Mθ.

● The above assumption together with the convexity of the function m↦ l(X −m), we have

that, f1 is differentiable at every m ∈ Rd and that,

∇f1(m) = −E[∇l(X −m)], m ∈ Rd

● Therefore, the first order conditions given in the above theorem are equivalent to :

{
∇f0(m∗) + λ∗∇f1(m∗) = 0
λ∗f1(m∗) = 0

● We also know, thanks to Theorem 28.3 in Rockafellar book, that the above conditions are
equivalent to saying that (m∗, λ∗) is a saddle point of the Lagrangian associated to the
problem i.e.,

L(m,λ) ∶= f0(m) + λf1(m) =
d

∑
i=1

mi + λE[l(X −m)].
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Theory of Systemic Risk Measures

Some comments

R(X) = inf
⎧⎪⎪⎨⎪⎪⎩

d

∑
k=1

mk ∶ E[l(X −m)] ≤ 0
⎫⎪⎪⎬⎪⎪⎭

● z∗ ∶= (m∗, λ∗) is zero of the function h(z) ∶= E[H(X,z)] where:

H(X,z) ∶= (λ∇ml(X −m) − 1
l(X −m) ), X ∈Mθ.

● In general, no closed formula for h.

● In order to find the unique risk allocation m∗, we can look for the zeros of the function h.

● We suggest here to use stochastic algorithms as they present the advantage of being
incremental, less sensitive to dimension, and offer a flexible framework that can be
conveniently combined with features such as importance sampling and model uncertainty.
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Theory of Systemic Risk Measures

Motivation

R(X) = inf {
d

∑
k=1

mk ∶ E[l(X −m)] ≤ 0}

● The Armenti et al approach consists : estimating E[l(X −m)] with Monte
Carlo for each m and make use of Python algorithm to find the minimum.

● Drawbacks: No result of convergence.

● The minimizing algorithm can be sensistive to the starting point of the
algorithm, and there are no theoritical results on the convergence of this
procedure.

● Therefore we cannot have any control over the error of the approximation

● Depends heavily on the starting point of the search algorithm.

● No control of the error of the estimation.
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A bit of Stochastic Algorithms
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A bit of Stochastic Algorithms

Some background

● Suppose we want to find the zeros of a certain function z ↦ h(z).
● If h is known, under some conditions: Zn+1 = Zn ± γnh(Zn), Z0 given.

● If we do not have access to h(Zn) but only to some noisy estimated Yn that
are close to h on average: Zn+1 = Zn ± γnYn.

● This is typically the case when h(z) = E[H(X,z)], X some RV.

● An estimate of h at each step n would be Yn =H(Xn+1, Zn):

Zn+1 = Zn ± γnH(Xn+1, Zn).

● (Xn) is an i.i.d sequence ∼X.

● (γn) the time step sequence is taken → 0 as n→∞.
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A bit of Stochastic Algorithms

Some developments

● Let Fn = σ(Z0,X1...,Xn).
● Zn+1 = Zn + γnYn = Zn + γnH(Xn+1, Zn) = Zn + γnh(Zn) + γnδMn

´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
”Noise”

.

● δMn ∶=H(Xn+1, Zn) − h(Zn). Observe that, E[δMn∣Fn] = 0.
● (δMn) is therefore a martingale difference sequence.

● This is the classical version of Stochastic Algorithms introduced by
Robbins-Monro (RM).

● Convergence of (Zn) ?
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A bit of Stochastic Algorithms

Link with ODE

● First note that, since γn → 0, Zn for large n will change slowly.

● For small ∆, define m∆
n s.t. :

n+m∆
n −1
∑
i=n

γi ≈∆.

● Zn+m∆
n
−Zn ≈ ∆h(Zn)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶
mean term

+
n+m∆

n −1
∑
i=n

γiδMi

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
error

.

● Since δMn is a martingale difference sequence E[δMiδMj] = 0 and the
variance of the error is given:

E
⎡⎢⎢⎢⎢⎣

n+m∆
n −1
∑
i=n

γiδMi

⎤⎥⎥⎥⎥⎦

2

=
n+m∆

n −1
∑
i=n

E[γ2
i δM

2
i ] =

n+m∆
n −1
∑
i=n

O(γ2
i ) = O(∆)γn.

● Thus, the main change in Zn is due to the ”mean term”.
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A bit of Stochastic Algorithms

Link with ODE

● Zn+m∆
n
−Zn ≈∆h(Zn) + ”error”, with very small error.

● Formally, for large n, the behaviour of the algorithm can be approximated by
the asymptotic behaviour of the ODE:

ż = h(z).

● Zn will converge to limit points of the ODE.

● This requires some control over the growth of h to avoid explosion
(sublinearity of h).

● One way to bypass this, is to use projection over some compact K.

● The new algorithm is Zn+1 = ΠK(Zn + γnYn), with Yn =H(Xn+1, Zn).
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A bit of Stochastic Algorithms

Link with projected ODE

Zn+1 = ΠK(Zn + γnYn) = Zn + γnYn + γnCn.

Figure: Projection when constraints are violated

● The new ODE is: ż = h(z) +C(z), where C(z) ∈ C(z(t)), C(z) is the
minimum force needed to bring back z to K.
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A bit of Stochastic Algorithms

Link with ODE

● We assume that K is hyperrectangle such that z∗ is in the interior of K:
K = {m ∈ Rd, ai ≤mi ≤ bi} × [0,A].

● (Xn)n≥1 is an i.i.d sequence of random variables with the same distribution as X,
independent of Z0 and (γn)n≥1 is a deterministic step sequence decreasing to zero and
satisfying:

∑
n≥1

γn = +∞ and ∑
n≥1

γ2
n < +∞.

● Now, since z∗ is interior to K and h(z∗) = 0, z∗ is an equilibrium point for the projected
ODE. In other words, this means that once z(t) is equal to z∗ it remains equal to z∗ for all
future times.

● In order to study the asymptotic stability of the equilibrium z∗, one needs to find some
convenient Lyapunov function V .

● A natural and classical choice for this type of problems is V (z) = ∣∣z − z∗∣∣2.
● It is obvious that V is positive definite. The following proposition shows that its derivative

along any state trajectory is negative semi-definite on K.

Proposition

The function V (z) = ∣∣z − z∗∣∣2 is such that z → V̇ (z) = ⟨∇V (z), h(z) +C⟩ is negative
semi-definite on K with the respect to the ODE.
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A bit of Stochastic Algorithms

Link with ODE

Remark

We cannot conclude that V̇ is negative definite on K, because z ≠ z∗ does not imply that
m ≠m∗. Besides, if z = (m∗, λ) such that λ ≠ λ∗, we have V̇ (z) = 0 and z ≠ z∗.

Proposition

The equilibrium point z∗ of the ODE is asymptotically stable.
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Application to Systemic Risk Measure

Framework

R(X) = inf {
d

∑
k=1

mk ∶ E[l(X −m)] ≤ 0}

● The unique risk allocation m∗ is characterized through the following:

1 = λ∗E[∇l(X −m∗)], E[l(X −m∗)] = 0,

● z∗ = (m∗, λ∗) is the zero of:

h(z) ∶= E(
λ∇l(X −m) − 1

l(X −m)
) = E(H(X,z))

● The RM Stochastic algorithms: Zn+1 = ΠK(Zn + γnH(Xn+1, Zn)).
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Application to Systemic Risk Measure

More precisely

● Let γn be such that ∑
n≥1

γn = +∞ and ∑
n≥1

γ2
n <∞.

● Typically, γn =
c

nγ
, γ ∈ (1/2,1].

● K is chosen such that z∗ ∈K.

● We introduce the following:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

σ2(z) = E[∣∣H(X,z) − h(z)∣∣2];
m2+p(z) = E[∣∣H(X,z) − h(z)∣∣2+p];

Σ(z) = E[(H(X,z) − h(z))(H(X,z) − h(z))⊺].
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Application to Systemic Risk Measure

Convergence Results

(Aa.s.) ∶
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1) h is continuous on K;

2) sup
z∈K

σ2(z) <∞.

The following result can be found in Theorem 5.2.2.1 in H.J. Kushner and G.G
Yin, Stochastic Approximation and Recursive Algorithms and Applications.

Theorem

Under (Aa.s.), Zn converge to a limit point of the projected ODE: ż = h(z) +C

We proved that the only limiting point of the projected ODE is z∗. We conclude
then using the theorem that Zn → z∗.
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Application to Systemic Risk Measure

(Aa.n.) ∶

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

1)m↦ E[∇l(X −m)] is a.s. C1 Let A ∶=Dh(z∗);
2) For some p > 0, ρ > 0, sup

∣z−z∗∣≤ρ
m2+p(z) <∞, (Yn1∣Zn−z∗∣≤ρ) is u.i.;

3) Σ(⋅) is continuous at z∗ and Σ∗ ∶= Σ(z∗).

Theorem - Asymptotic Normality

Assume that γ ∈ (1
2
,1) and that (Aa.s.) and (Aa.n.) hold. Then,

√
nγ(Zn − z∗)→ N (0, c2 ∫

∞

0
ecAt Σ∗ ecA

⊺tdt) .

If furthermore, cA + I

2
is a stable matrix and cI − P is a positive matrix where P

is solution to the Lyapunov’s equation A⊺P + PA = −I, then,

√
n(Zn − z∗)→ N (0, c2 ∫

∞

0
e(cA+

I
2 )t Σ∗ e(cA

⊺+ I
2 )tdt)
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Application to Systemic Risk Measure

Some comments

● A rate of convergence with
√
n requires that cA + I

2
is a stable matrix ⇒ c

large enough.

● However, choosing c very large may lead to slower convergence:

Zn+1 = ΠK (Zn +
c

nγ
× (h(Zn) + ”Noise”))

● We could have chosen a step sequence γn = Γ/nγ , where Γ is a
preconditioning matrix. This will lead to the following CLT:

√
n(Zn − z∗)→ N (0,∫

∞

0
e(ΓA+

I
2 )t ΓΣ∗Γ⊺ e(A

⊺Γ⊺+ I
2 )tdt) .

● Choose Γ such that the trace of the asymptotic covariance matrix is
minimised ⇒ Γ = −A−1. But A =Dh(z∗).
● The corresponding optimal asymptotic covariance matrix is
Vopt ∶= A−1Σ∗(A−1)⊺.
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Application to Systemic Risk Measure

But there is way...

● Choosing the constant c is a burning issue.

● One way to bypass this is to use averaging introduced by Polyak and Ruppert
(PR).

● For any arbitrary t > 0, we define, Z̄n =
1

tnγ

n+tnγ−1
∑
i=n

Zi (PR).

Theorem

Assume γ ∈ (1
2
,1) and that (Aa.s.) and (Aa.n.) hold. If the matrix Σ∗ is positive

definite, then, √
tnγ (Z̄n − z∗)→ N (0, Vopt +O (

1

t
))

where Vopt ∶= A−1Σ∗(A−1)⊺.
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Application to Systemic Risk Measure

TCL and estimation of asymptotic covariance matrix

In practice, to derive confidence interval for the averaging procedure, one need to
estimate the matrix Vopt = A−1Σ∗(A−1)⊺.

Proposition

Assume (Aa.s.) and (Aa.n.) hold and that z → E[∣∣H(X,z)∣∣4] is bounded around
z∗. Then,

Σn ∶=
1

n

n

∑
i=1

H(Xi, Zi−1)⊺H(Xi, Zi−1)→ Σ∗ a.s. (1)

Let Aϵ
n(i, j) for i, j ∈ {1, ..., d + 1} are defined as follows:

Aϵ
n(i, j) ∶=

1

ϵn

n

∑
k=1
(Hi(Xk, Zk−1 + ϵej) −Hi(Xk, Zk−1)) ,

lim
ϵ→0

lim
n→∞

Aϵ
n = A a.s. (2)
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Application to Systemic Risk Measure

Confidence intervals

● Instead of averaging on all observations, one could modify the estimators
above and average only on recent ones.

● If we denote Vn ∶= A−1n,ϵΣn(A−1n,ϵ)⊺, the confidence intervals of PR estimator
with a confidence of 1 − α in the following form:

⎡⎢⎢⎢⎢⎣
Z̄j,n −

√
Vjj,n

tnγ
qα, Z̄j,n +

√
Vjj,n

tnγ
qα

⎤⎥⎥⎥⎥⎦
, j ∈ {1...d}, γ ∈ (0,1), (3)

● qα is the 1 − α

2
quantile of a standard normal random variable.
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Numerical experiments
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Numerical experiments

A toy example with d = 2

● l(x1, x2) =
1

1 + α
[eβx1 + eβx2 + αeβ(x1+x2)] − α + 2

α + 1
, α > 0, β > 0.

● X = (X1,X2) ∼ N (0,M) with M = ( σ2
1 ρσ1σ2

ρσ1σ2 σ2
2 .
)

● Closed formulas for m∗i =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

βσ2
i

2
, if α = 0,

βσ2
i

2
+ 1

β
SRC(ρ, σ1, σ2, α, β), if α > 0.

● SRC(ρ, σ1, σ2, α, β) = ln
⎛
⎝

αeρβ
2σ1σ2

−1 +
√
1 + α(α + 2)eρβ2σ1σ2

⎞
⎠
.
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Numerical experiments

A toy example

● we fix α = 1, β = 1, σ1 = σ2 = 1 and ρ ∈ {−0.5,0,0.5}.

ρ m∗1 =m∗2
−0.5 0.3868
0 0.5
0.5 0.6364

Table: Exact optimal risk allocations.

● For RM/PR estimators, we take n = 100000, K = [0,2]3 and t = 10.
● Z0 was taken uniformly on K.
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Numerical experiments
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Figure: Consistency of RM/PR estimators.
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Numerical experiments
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Figure: Effect of smaller value of c when γ = 0.7.
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Numerical experiments

Estimator of Vopt and CI for PR estimator

0 20000 40000 60000 80000 100000
n

1.0

1.5

2.0

2.5

3.0

3.5 c = 2
= 0
= 0.7

V11, n

V11

0 20000 40000 60000 80000 100000
n

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0
c = 2

= 0
= 0.7

V22, n

V22

Figure: Convergence of the estimator Vn

ρ CI for m∗1 CI for m∗2
−0.5 [0.37724,0.40478] [0.36790,0.39496]
0 [0.49622,0.52594] [0.49129,0.52134]
0.5 [0.61944,0.66297] [0.62034,0.66658]

Table: Confidence intervals for PR estimators.
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Numerical experiments

Second Example: d = 10
● l(x1, ..., xd) =

d

∑
i=1

xi +
1

2

d

∑
i=1
(x+i )2 + α∑

j<k
x+i x

+
j .

● Xi =
NT

i

∑
k=1

Zi
k, a Compound Poisson process. (Zi

k) i.i.d ∼ N (µi, σ
2
i ).
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1
2

3
4

5
6

7
8

9
10 2.5

0.0

2.5

5.0

7.5

10.0

12.5

15.0
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Figure: Correlation matrix of X
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Numerical experiments

1 2 3 4 5 6 7 8 9 10

4

6

8

10

12

PR( = 0.7, t = 10, = 1)
PR( = 0.7, t = 10, = 0)

Figure: Optimal Allocations.
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Numerical experiments

Work in Progress
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Numerical experiments

An alternative stochastic algorithm: ADAM

● Diederik P. Kingma and Jimmy Ba, ”Adam: A Method for Stochastic
Optimization”, 2017.

● Alexandre Défossez, Leon Bottou, Francis Bach and Nicolas Usunier, ”A
Simple Convergence Proof of Adam and Adagrad”, 2022.

● We will use the dual formulation of the problem to directly numerically
compute the solution.

The dual problem is represented by the Lagrangian L associated with the problem.
For every λ ≥ 0,

L(m,λ;X) ∶=∑
k

mk + λE[l(X −m)]

Slater’s condition holds in this case, i.e., there exists m ∈ Rd such that
E[l(X −m)] < 0. Hence,

ρ(X) = sup
λ≥0

inf
m∈Rd

L(m,λ;X)
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Numerical experiments

SGDA Method Adapted to the Dual Problem

Stochastic Gradient Descent being an incremental method, we can combine the gradient descent
to find the optimal allocation m and the gradient ascent to find the optimal Lagrange multiplier
λ. Furthermore, we use an adaptative algorithm to regularize and accelerate the convergence.
We also use mini-batches to reduce the variance. (we omit to write the mean of the batches in
the sequences for simplicity)
Descent:

mj
n+1 =m

j
n −

γn√
v̂jn + ε

µ̂j
n, mj

0 ∈ R, j = 1,⋯, d,

where

µj
n+1 = β1µ

j
n + (1 − β1)∂mjL(mn, λn;Xn+1), j = 1,⋯, d, (biased first moment)

vjn+1 = β2v
j
n + (1 − β2)(∂mjL(mn, λn;Xn+1))2, j = 1,⋯, d, (biased second moment)

µ̂j
n =

µj
n

1 − βn
1

, (bias correction)

v̂jn =
vjn

1 − βn
2

, (bias correction)
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Numerical experiments

Ascent:
λn+1 = λn +

γn√
ν̂n + ε

ûn λ0 ∈ R+,

where
un+1 = β1un + (1 − β1)∂λL(mn, λn;Xn+1),

νn+1 = β2νn + (1 − β2)(∂λL(mn, λn;Xn+1))2,

ûn =
un

1 − βn
1

,

ν̂n =
νn

1 − βn
2

,

The values of the hyperparameters can be found in the vast empirical literature around this
topic: β1 = 0.9, β2 = 0.999 , and ε = 10−7.
Advatanges:

● The additional moments use the historic changes to penalize (resp. increase) the learning
rate when the saddle point is close (resp. far). Hence, more speed and precision.

● In practice, we don’t need to project the sequences (mn) and (λn) over a calibrated
compact set since the moments will quickly guide the sequence towards a large compact
containing the optimum, especially since the moments of the gradients will penalize them
from exiting it.

● The use of the available deep learning machinery in Tensorflow or Pytorch, notably
automatic differenciation. This is very important when calibrating the loss function.
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Numerical experiments

Comparison results with ADAM in the toy example

RM algorithm
We take n = 200000, c = 2 and γ = 1. Adam algorithm

We take n = 100000, a batch size b = 64
and a learning rate α = 3 × 10−4.
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From static multivariate SRM to dynamic multivariate SRM
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From static multivariate SRM to dynamic multivariate SRM

Multivariate SRM with random allocations

● Biagini, F., Fouque, J. P., Frittelli, M., and Meyer-Brandis, T. (2020). On
fairness of systemic risk measures. Finance and Stochastics, 24(2), 513-564.

● Alessandro Doldi and Marco Frittelli, 2021. ”Conditional Systemic Risk
Measures,”

Definition

The extended multivariate shortfall risk of a loss vector X ∈Mθ is defined as:

ρ(X) ∶= inf
Y ∈C⊂CR

{
d

∑
k=1

Yk ∶ E[l(X − Y )] ≤ 0} (4)

where Y is a random vector in a subset of the class of feasible random allocations

C ⊂ CR ∶= {Y ∈Mθ; there exists m ∈ R s.t.
d

∑
k=1

Yk =m, P − a.s}.

Anis Matoussi Stochastic algorithms for systemic risk measures 51 / 76



From static multivariate SRM to dynamic multivariate SRM

Characterization of the solution

Theorem (Biagini et al. 2020)

[Well-posedness of the problem] The extended shortfall risk measure ρ(X) is
real-valued, convex, monotone and translation invariant. In particular, it is
continuous and subdifferentiable. Moreover, it admits the dual representation:

ρ(X) = max
Q∈Qθ∗∩dom(α)

{EQ[X] − α(Q)} , X ∈Mθ (5)

where the penalty function is given by the following explicit form

α(Q) = inf
λ>0

E [λl∗( dQ
λdP
)], Q ∈ Qθ∗ ∩ dom(α).
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From static multivariate SRM to dynamic multivariate SRM

Important remarks

● Interdependence structure through the law of the allocations.

● If Y is an optimal allocation, then X + Y is σ(X1 +⋯ +Xd)-measurable.

● The loss function impact on the interdependence structure of the model is
less important in contrast with the deterministic multivariate Systemic Risk
Measures.
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From static multivariate SRM to dynamic multivariate SRM

Numerical method

Inspired by the SGDA method in the static case, we follow the same steps using a
feed forward neural network rather than a trainable variable to approximate the
optimal random allocations. The dual problem is represented by the Lagrangian L
associated with the problem. For every λ ≥ 0 and µ ∈ R,

L(Y,λ,µ;X) ∶=
d

∑
k=1

Yk + λE [l(X − Y )] + µV ar (
d

∑
k=1

Yk) .

Hence,
ρ(X) = sup

λ,µ∈R+×R
inf
Y ∈C
L(Y,λ,µ;X).
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From static multivariate SRM to dynamic multivariate SRM

A Deep Learning Algorithm for random allocations

● Another deep learning method : A. Doldi, Y. Feng, J.-P. Fouque, and M.
Frittelli: Multivariate Systemic Risk Measures and Deep Learning Algorithms,
to appear in Quantitative Finance, 2023

We introduce here a deep learning algorithm that uses advantage of the duality of
the problem.

ρ(X) = inf
Y ∈CR
{

d

∑
k=1

Yk ∶ E[l(X − Y )] ≤ 0 and V ar (
d

∑
k=1

Yk) = 0} , (6)

According to the optimization problem (4), the random allocation Y can be

written as a function of X in the following way Y = Yξ⋆ = Φξ⋆(X).
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From static multivariate SRM to dynamic multivariate SRM

We seek to solve the following optimization problem.

φX(ξ, λ, µ) ∶= E [
d

∑
k=1
Yξ
k] + λE[l(X −Y

ξ)] + µV ar (
d

∑
k=1
Yξ
k) , (7)

and the equivalent optimization problem

sup
(λ,µ)

inf
ξ
φX(ξ, λ, µ). (8)
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From static multivariate SRM to dynamic multivariate SRM

Numerical results: An explicit example

● In A. Doldi et al., this example is provided in terms of utility functions with

U(x) = −l(−x) and B = 0.

In this example, we consider a multi-dimensional vector X, representing risk
factors of d positively correlated financial institutions. The loss function is defined
as follows:

l(x) = 1

2
((

d

∑
k=1

eαkxk)2 − d2),

where {αk, k = 1, . . . , d} are the loss parameters for all financial institutions. We
use again the ADAM optimizer in this setting.
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From static multivariate SRM to dynamic multivariate SRM

(a) Convergence of the DL algorithm
with d = 10

(b) Convergence of the DL algorithm
with d = 100

Figure: Convergence of the deep learning algorithm

Hyper-parameters:

● (d = 10) nbNeurons = 64, nbLayers = 2, batchSize = 104, lRate = 10−5
and n = 105

● (d = 100) nbNeurons = 128, nbLayers = 3, batchSize = 104,
lRate = 3.10−5 and n = 2.105
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From static multivariate SRM to dynamic multivariate SRM

Figure: Scenario dependent allocations where X follows a multivariate compound
Poisson distribution.

Xi =
Ni

∑
k=1

Gi
k, i = 1,⋯, d,

where Ni ∼ P(λi) and (Gi
k) a sequence of i.i.d normal random variables with the

following parameters:

● λ = (0.1,0.2,1.,0.5,0.12,0.5,0.3,0.22,0.1,1.), µJ = 0 and σJ = 1.
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From static multivariate SRM to dynamic multivariate SRM

Conditional Systemic Risk Measures

Assume that G ⊆ F is a sub-σ-algebra of F . Conditional Systemic Risk Measure
(CSRM) were introduced in A. Doldi, M. Frittelli (2021) Conditional Systemic
Risk Measures as a map

ρG ∶ L0(Ω,F,P)d Ð→ L
0(Ω,G,P)

that verifies the following axioms:
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From static multivariate SRM to dynamic multivariate SRM

1 Monotonicity, that is

X ≤ Y componentwise P − a.s. ⇒ ρG(X) ≤ ρG(Y ) P − a.s.

2 Conditional Convexity, that is

ρG(λX + (1 − λ)Y ) ≤ λρG(X) + (1 − λ)ρG(Y ) P − a.s. λ ∈ L∞(G; [0,1])

3 Conditional G-Additivity

ρG(X + Y ) = ρG(X) +
N

∑
j=1

Y j P − a.s. if Y ∈ (L∞(G))d ∩LF
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From static multivariate SRM to dynamic multivariate SRM

Definition of Maps and Sets

DG ∶= {Y ∈ (L0(F))d∣
d

∑
k=1

Yk ∈ L0(Ω,G,P)} .

The set of admissible allocations BG is defined as follows:

BG ⊆ DG ,

and
CG ∶= BG ∩ B(I),∞G ∩ (L1(F))d,

where

B(I),∞G ∶=
⎧⎪⎪⎨⎪⎪⎩
Y ∈ (L0(F))d∣∃d = [d1,⋯, dh] ∈ (L∞(G))h∣ ∑

i∈Im
Yi = dm for m ≤ h

⎫⎪⎪⎬⎪⎪⎭
.
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From static multivariate SRM to dynamic multivariate SRM

Let us now define the following maps and sets that will be used in the main
theorem in the static framework:

ρ
∞
G (X) ∶= ess inf

Y ∈CG∩(L∞(F))d

⎧⎪⎪⎨⎪⎪⎩

d

∑
k=1

Yk ∶ E[l(X − Y )∣G] ≤ 0

⎫⎪⎪⎬⎪⎪⎭
;

ρG(X) ∶= ess inf
Y ∈CG

⎧⎪⎪⎨⎪⎪⎩

d

∑
k=1

Yk ∶ E[l(X − Y )∣G] ≤ 0

⎫⎪⎪⎬⎪⎪⎭
;

α
1(Q) ∶= ess sup

X∈(L∞F )
d,E[l(X)∣G]≤0

d

∑
j=1

EQj
[Xj ∣G] , Q ∈QG ;

QG ∶= {Q = (Q1,⋯,Qd)≪ P ∣dQ
dP
∶= (Z1,⋯,Zd) ∈ L1(F),∀k, E [Zk ∣G] = 1} ;

Q1
G ∶=

⎧⎪⎪⎨⎪⎪⎩
Q ∈QG ∣α1(Q) ∈ L1(G) and

d

∑
k=1

EQk [Yk ∣G] ≤
d

∑
k=1

Yk, ∀Y ∈ CG ∩ (L∞(F))d
⎫⎪⎪⎬⎪⎪⎭
.
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From static multivariate SRM to dynamic multivariate SRM

Main theorem

Theorem (Fritelli et al. 2021)

Consider the maps ρ∞G and ρG defined above and under some assumptions that we
will not discuss here.
● ρ∞G (X) ∈ L∞(G) for all X ∈ (L∞(F))d and ρ∞G is a Conditional Systemic
Risk Measure as ρ∞G is monotone, conditionally convex, and conditionally
monetary. It is also continuous from above and from below.
● For every X ∈ (L∞(F))d, ρ∞G (X) = ρG(X) and the essential infimum is
attained.
● The CSRM ρ∞G admits the following dual representation:

ρ∞G (X) = ess sup
Q∈Q1

G

⎛
⎝

d

∑
j=1

EQj [Xj ∣G] − α1(Q)
⎞
⎠
∀X ∈ (L∞(F))d (9)
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From static multivariate SRM to dynamic multivariate SRM

Exponential case
Let’s take lk(x) = eαkx − 1, for k = 1, ..., d, with α1, ..., αd > 0. Finally our loss function, takes
the following form:

l(x) ∶=
d

∑
k=1

lk(xk) =
d

∑
k=1

eαkxk − d.

We consider only the case BG = DG , which corresponds to the case of full sharing among all
agents in the system (i.e., the extreme case of one single group).

Theorem (Fritelli et al. 2021)

Consider the map ρG defined above and a general sub-σ-algebra G ⊆ F , X ∈ (L∞(F))d. Then,

ρG(X) = γ log
⎛
⎝
EP

⎡⎢⎢⎢⎢⎣
exp
⎛
⎝
∑d

k=1 Xk

γ

⎞
⎠
∣G
⎤⎥⎥⎥⎥⎦

⎞
⎠
−

d

∑
k=1

1

αk

log( 1

αk

) ,

where γ =
d

∑
k=1

1

αk

and Ŷ = [Ŷ1,⋯, Ŷd] ∈ (L∞(F))d is an optimal allocation for ρG(X) and

Q̂ = [Q̂1,⋯, Q̂d] is an optimum for the dual representation of ρG(X), where for k = 1,⋯, d

Ŷk ∶= Xk +
1

γαk

⎛
⎝
−

d

∑
k=1

Xk + ρG(X) +
d

∑
k=1

1

αk

log( 1

αk

)
⎞
⎠
− 1

αk

log( 1

αk

) , (10)

Anis Matoussi Stochastic algorithms for systemic risk measures 65 / 76



From static multivariate SRM to dynamic multivariate SRM

Dynamic MSRM

Fix a time horizon T <∞ and let (Ω,F,P) be a complete probability space.

● Let W be a d-dimensional Brownian motion and J (dt, de) an independent
Poisson random measure with compensator ν(de)dt such that ν(de) is a
σ-finite measure on Rd ∖ {0}, equipped with its Borel field B(Rd ∖ {0}).
● Let F = (Ft)t∈[0,T ] be the (completed) filtration associated with W and J .
● In the dynamic setting, we condition with respect to the sub-σ-algebra Ft for
all t ∈ [0, T ].
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From static multivariate SRM to dynamic multivariate SRM

a QBSDEJ

● Nicole El Karoui, A.M., Armand Ngoupeyou, ”Quadratic Exponential
Semimartingales and Application to BSDEs with jumps”, 2016.

● Sarah Kaakai, A.M. , Achraf Tamtalini, ”Utility Maximization Problem with
Uncertainty and a Jump Setting”, 2022.

Theorem

If XT ∈ L∞(FT ), and for all t ∈ [0, T ] the map ρFt is a CSRM with the following

loss function l ∶ x→
d

∑
k=1

eαkxk − d, then there exists (Z,U) in H2 ×H2
ν such that :

⎧⎪⎪⎨⎪⎪⎩

−dρFt
(XT ) =

⎛
⎝

1

2γ
∣Zt ∣

2 + ∫Rd∖{0}

⎧⎪⎪⎨⎪⎪⎩
γ exp

⎛
⎝
Ut(e)

γ

⎞
⎠
−Ut(e) − γ

⎫⎪⎪⎬⎪⎪⎭
ν(de)

⎞
⎠
dt −ZtdWt − ∫Rd∖{0}

Ut(e)J̃ (dt,de),

ρFT
(XT ) =

d
∑
k=1

X
k
T −

1

αk

log
⎛
⎝

1

αk

⎞
⎠
.

where γ =
d

∑
k=1

1

αk
.
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From static multivariate SRM to dynamic multivariate SRM

Elements of proof

● Show (using the dual approach)

ρFt(XT ) = γ log(EP [exp(
∑d

k=1X
k
T

γ
) ∣Ft]) −

d

∑
k=1

1

αk
log ( 1

αk
)

● Use the multiplicative martingale representation theorem and the relationship
between stochastic and ordinary exponentials.
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From static multivariate SRM to dynamic multivariate SRM

Numerical method

● Alasseur, Bensaid, Dumitrescu, Warin, ”Deep learning algorithms for FBSDEs
with jumps”, 2024.

Discrete time approximation :

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Xπ
i+1 = Xπ

i + b(ti,Xπ
i )∆ti + σ(ti,Xπ

i )∆Wi +
∆Ni

∑
l=1

β(ti,Xi,∆Ji
l ),

Y π
i ≅ Y π

i+1 + (
1

γ
∣Zπ

i ∣2 + Γπ
i − γ)∆ti −Zπ

i ∆Wi −
⎛
⎝
u(ti,Xπ

i +
∆Ni

∑
l=1

β(ti,Xπ
i ,∆Ji

l )) − u(ti,Xπ
i )
⎞
⎠

+E
⎡⎢⎢⎢⎢⎣
u(ti,Xπ

i +
∆Ni

∑
l=1

β(ti,Xπ
i ,∆Ji

l )) − u(ti,Xπ
i )∣Fti

⎤⎥⎥⎥⎥⎦
,

Zπ
i = E [Y π

i+1
∆Wi

∆ti
∣Fti] ,

Uπ
i (e) = u(ti,Xπ

i + β(ti,Xπ
i , e)) − u(ti,Xπ

i ),

Γπ
i = ∫Rd∖{0}

{γ exp(
Uπ
i (e)
γ
) −Uπ

i (e)} ν(de),

Xπ
0 = ξ, Y π

M = g(Xπ
M ),

i = 0,⋯,M − 1.
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Neural Networks

Global solver. We use two feed forward neural networks: Zθ to approximate the
control Z and Wθ to approximate the jump part. The Deep merged BSDE
method consists in training the neural networks by solving in a forward way the
backward representation of the solution, i.e. instead of solving the BSDE starting
from the terminal condition, one estimates Y0 with a trainable parameter θ0 and
solves the forward optimization problem with the aim of minimizing
E [∣YT − g(XT )∣2].

Y π,θ
i+1 = Y

π,θ
i − ( 1

γ
∣Zθ(ti,Xπ

i )∣2 + λΦθ(ti,Xπ
i ) − γ)∆ti +Zθ(ti,Xπ

i )∆Wi

+Wθ(ti,Xπ
i ,

∆Ni

∑
l=1

β̃i(∆J i
l )) −Θθ(ti,Xπ

i )

where β̃i(∆J i
l ) = β(ti,Xπ

i ,∆J i
l ).

Anis Matoussi Stochastic algorithms for systemic risk measures 70 / 76



From static multivariate SRM to dynamic multivariate SRM

Note that we have the following result to compute the conditional expectation by
means of Monte Carlo on each trajectory of the batch:

Θθ(ti,Xπ
i ) = E [Wθ(ti,Xπ

i ,
∆Ni

∑
l=1

β̃i(∆J i
l ))∣Fti] ,

and, Θθ(t, x) = E [Wθ(t, x,
∆Ni

∑
l=1

β(t, x,∆J i
l ))] ,

Φθ(ti,Xi) =
1

λ
∫
Rd∖{0}

{γ exp(U
π
i (e)
γ
) −Uπ

i (e)}ν(de),

and, Φθ(t, x) = E [γ exp(W
θ(t, x, β(t, x,∆J))

γ
) −Wθ(t, x, β(t, x,∆J))]
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Numerical example

We consider the following dynamics for the portfolio:

⎧⎪⎪⎨⎪⎪⎩

dXt =Xt−(rdt + σdWt + ∫
R⋆
(ee − 1)J̃ (dt, de)),

X0 = x0;
t ∈ [0, T ], (11)

where J̃ (dt, de) is the compensated jump measure associated with the compound

Poisson process
Nt

∑
i=1

Yi with intensity measure ν(de), where ν is given by :

ν(de) = λ

ξ
√
2π

exp(−(e − α)
2

2ξ2
)de.

We set d = 5, T = 1 , M = 50 steps, the interest rate r = 0.1, the diffusion
volatility σ = 0.3, the jumps intensity λ = 3, the parameters of the jumps
distribution α = 0 and ξ = 0.2, the initial condition X0 = 1, we take the same
values for all the components of the vectors r, σ,α, ξ, x0 in Rd, for simplicity.
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(a) Convergence of Y0 (b) Convergence of the MSE error

Figure: Convergence of the deep BSDE solver

Hyper-parameters:

nbNeurons = 25, nbLayers = 2, batchSize = 10, lRate = 10−3 and n = 20000.
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A larger class
In this part, we consider a new class of multivariate SRM inspired from the remarks discussed
above. As explained we noticed that if we find a class of loss functions written in a specific way,
we can write the risk measure in the dual problem in the following way

ρτ (XT ) = P − ess sup
η∈Dc(τ)

{EQη [g(XT ) − ∫
T

τ
hs(ηs)ds∣Fτ ]} (12)

where h ∶ [0.T ] ×Rd ×P(Rd)→ R is an F-progressively measurable map with

EQ [∫
T

0
∣hs(ηs)∣ds] <∞, ∀Q ∈ Q1

Ft
, ∀t ∈ [0, T ],

and g ∶ Rd → R a lipschitz continuous function. Thus, to go back to the notations of the static
setting, we chose the following penalty function :

α1
Fτ
(Qη) = EQη [∫

T

τ
hs(ηs)ds∣Fτ ] .

Furthermore, we introduce the Hamiltonian H defined on [0, T ] ×Rd ×P(Rd) by
Ht(x) ∶= sup

y∈Rd

{x ⋅ y − ht(y)}

This collection of dynamic risk measures with a continuous filtration is expected to be a solution
of the following BSDE:

{
− dYt = Ht(Zt)dt −ZtdWt,

YT = g(XT ).
(13)
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Perspectives

● Theoretical convergence of the ADAM/Deep learning algorithms in the
deterministic and random allocations setting.

● Dynamic representation for a general class of Multivariate Systemic Risk
Measures.

● Modelling the dependence structure through mean-field interactions.
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