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Volatility modelling

The prices of financial derivatives at time t € [0, T] are given by

E[¢(S7)| 7],

where the underlying (S¢):c[o,7] is a martingale:

t 1 t
St:50exp</ JSdBS——/ agds).
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Volatility modelling

The prices of financial derivatives at time t € [0, T] are given by

E[¢(S7)| 7],

where the underlying (S¢):c[o,7] is a martingale:

t 1 t
St—Soexp</ asst—/ agds).
0 2 Jo

i How does one choose the volatility (o+):co, 7] such that:

(a) We can compute numerically and/or analytically the derivatives’ prices
(b) Those prices are consistent with the market's

> Set 05 = 1s(Ws) where W is a Brownian motion
< Markov, semimartingale, 1t6 calculus, Monte Carlo, PDE...
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Going rough
Main idea: Replace BM W with fractional BM V

t
Ve ::/ (t—r)H2dW,, He(0,})
0
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Going rough
Main idea: Replace BM W with fractional BM V

t
v, ;:/ (t—nH=3dw,, He(0,)
0

Rationale:
M Past dependence

P Statistical estimation indicates H <« 0.5

L . 1
Q Term-structure of implied volatility skew ~ TH=2
® Microstructural fundations

|l Mean-reversion at different time scales

All with one additional parameter H
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Simulating rough volatility

& Let us consider a rough volatility model with log-price
t 1 t t
X, :=x+/ w(v,)ds,—E/ W(V,)2dr, Vi ;=/ K(t, r)dW,,
0 0 0

with t € [0, T] and the singular kernel K(t,r) = (t —r)"~2, H € (0,3).

A. Pannier (UP, LPSM) PPDEs and weak rates 4/19



Simulating rough volatility

& Let us consider a rough volatility model with log-price

Xt :—x—|—/0t¢(vr)d8r— ;/Otw(vr)2dr7 Vi = /Ot K(t7 r)dWr7

with t € [0, T] and the singular kernel K(t,r) = (t —r)"~2, H € (0,3).

~ Let N € N, set A; := % and t; := iA; for i =0,..., N and define the
Euler approximation:

_ _ 1 L

Xti+1 = Xti + w( Vfi)ABti B Ew(vfi)zAh Xto = X,

o t 1 t N

Xt:x—i—/ z/)(vm)dB,—/ W(V, )2dr, w5y = Lr J,
0 2 Jo N

where the Gaussian process V is sampled exactly (e.g. Cholesky).
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Strong rates VS weak rates

e Strong rate: V is only H-Holder continuous hence by It6's formula
t
B[1X - X:f] 5 [ B [ju(vo) - (v, )] dr < 22"
0

» To divide the error by 2 one needs to multiply the number of time
points by 21/H . If H ~ 0 it essentially doesn’t converge.
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Strong rates VS weak rates

e Strong rate: V is only H-Holder continuous hence by It6's formula
t
B[1X - X:f] 5 [ B [ju(vo) - (v, )] dr < 22"
0

» To divide the error by 2 one needs to multiply the number of time
points by 21/H . If H ~ 0 it essentially doesn’t converge.

e Weak rate: More relevant to option pricing, take a test function ¢:
eV = E[p(X7)] - E [¢ (X7)]

Example
For Markovian processes (H = 3), EN = O (N71) J

» For rough volatility, is it 2H, 1/2 + H, 1 or something else ?
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A difficult and open problem

Challenges (when H # 1/2):
M No Markov property = no PDE

df No semimartingale property = no It6 calculus
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A difficult and open problem

Challenges (when H # 1/2):

M No Markov property = no PDE

df No semimartingale property = no Itd calculus

o Exhaustive literature review for weak rates of rough volatility models:

Authors | Weak rate | Assumptions
Bayer, Hall, Tempone (2020) | 1/2+ H | Linear vol. (¢(x) = x)
Bayer, Fukasawa, Nakahara (2022) | 1/2+ H | Linear vol. ((x) = x)
Gassiat (2022) | 1/2+3H | Linear vol. or cubic payoff (¢(x) = x*)
Friz, Salkeld, Wagenhofer (2022) | 1/2+ 3H | Polynomial payoff (¢(x) = x")

» All of them rely on the structure for explicit computations or induction

A. Pannier (UP, LPSM)
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Today's talk

(1) Establishes path-dependent PDEs for rough volatility models

Theorem (based on [Viens & Zhang, 2019], [Wang, Yong & Zhang, 2022])

If X solves a Stochastic Volterra Equation, then u(t,w) := E[¢(X5)] is
the unique classical solution to a path-dependent PDE.
— This applies in particular to rough volatility models.
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Today's talk

(1) Establishes path-dependent PDEs for rough volatility models

Theorem (based on [Viens & Zhang, 2019], [Wang, Yong & Zhang, 2022])

If X solves a Stochastic Volterra Equation, then u(t,w) := E[¢(X5)] is
the unique classical solution to a path-dependent PDE.
— This applies in particular to rough volatility models.

(2) Applies them to weak rates of convergence
Theorem

If ¢,¢ € C* with suitable growth then we get a weak rate 1/2 + H, i.e.

gV = o(N~2H),
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A motivating example [Viens, Zhang 2019]

For 0 <t <s < T, a natural decomposition is Vs = V; + [Vs — V4].
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A motivating example [Viens, Zhang 2019]

For 0 <t <s< T, a natural decomposition is Vs = V; + [Vs — V4].

= Instead, Viens and Zhang introduce

s t S
Vs :/ K(s, r)dW, :/ K(s, r)dW,—l—/ K(s,r)dW,
0 0 t

=:0! =:/!

s *'s

Orthogonal decomposition: ©L & F; and ! 1 F;
t — ©! is a martingale on [0, s];

(X, ©) recovers a flow or Markov property;

Ol = E[V4|F] is related to the forward variance.
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Markov representation

() Option prices take the form E[¢(X7)|F¢] but how do we express this
path-dependent process as a function?
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Markov representation

() Option prices take the form E[¢(X7)|F¢] but how do we express this
path-dependent process as a function?
ft]

b (Xt " / 02(Va)dB, - >/ Tos(vs)2ds>

t

E[¢(X7)|Fe] = E

T T
1
—E ¢<xt+ JRECEROIET Y as(eg+/;)2ds> Xt,efm]
:u(t7Xt’ ft,T])v

where u: [0, T] x R x C([t, T]) — R is defined as

[ u(t, x,w) = E[qﬁ(XT) ’ X; =x, O = w} ]
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Stochastic Volterra Equations

© SVEs encompass rough volatility models; here without drift:
S S
Xs=x +/ K(s,r)o(X,)dW, =: ©L + / K(s,r)o(X,)dW,
0 t
S
X = ws + / K(s, r)o(X:¥)dWwW,, (flow property)
t

then if pathwise uniqueness holds: X = Xg’et, for all s e [t, T].
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Stochastic Volterra Equations

© SVEs encompass rough volatility models; here without drift:
S S
Xs=x +/ K(s,r)o(X,)dW, =: ©F + / K(s,r)o(X,)dW,
0 t
S
X = ws + / K(s, r)o(X:¥)dWwW,, (flow property)
t

then if pathwise uniqueness holds: X = Xﬁ’et, for all s e [t, T].

Markovian representation
Let Y := E[®(XF”)|Fe] and u(t,w) := Y, then

E[®(X 7)|F:] = E [cb (xtT’@t> }}}} = v = u(t, 0
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The functional 1t6 formula for Volterra processes

The Fréchet derivative 0,,u is a linear map in the direction #:

U(t,X,UJ + 77]]-[t,7—]) - U(t,X,W) = <8wu(t,x,w),77> + O(anﬂ-[t,T]H)a

% The direction of interest is K'(s) := K(s, t), s > t.
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The functional It6 formula for Volterra processes
The Fréchet derivative 0,,u is a linear map in the direction #:

u(t, x,w +nlpe, 1) — u(t, x,w) = (Duu(t, x,w),n) + of||nly, 7]),
% The direction of interest is K'(s) := K(s, t), s > t.

Theorem (Viens and Zhang (2019))
Suppose u € Ci’fx([o, T] x C([t, T])) and denote u; = u(t,O"):

duy = {Gtut-l- A (02 uy, ( >} dt + o(X ) (Our, Kt) AW,

Relation with Dupire’s:
e Corresponds to H = % hence K =1
e The path is only perturbed after t but not frozen
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PPDE for rough volatility

Recall our model

t 1 t
th/ aS(VS)dBS—E/ o2(Vs)ds,
0 0

S
vs:/ K(s,r)dW,,
0

and u(t,x,w) := E[gf)(XT) | Xt = x, ©Ff = w}.

Theorem (Bonesini, Jacquier, P. 2023+, based on many people’s works)

Under regularity conditions on ¢ and o, u is the unique Ci:zo;z solution to

{at + %Jt(wt)2(3§ —0x)+ %<8£-,(Kt,Kt)> + poe(we ) (0. (Ox-), Kt>}u(t,x,w) =0,

with terminal condition u(T,x,w) = ¢(x).
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Back to weak rates
O We denote u; := u(t, X, @[tt T]) (recall V' is sampled exactly)
N—1

eEN=E [d)(XT) - ¢ (YT)] =K [Uto] -k [HtN] == Z (E[HtH—l] - E[Hti])7

i=0 5
=2

where, by application of the functional [t6 formula and the PPDE,
1 tiv1
A =3 / E{aixut(w(vf —( vt,»)z)} dt
ti

+ p/tti+l E [<8w((9xut), KO ((Ve) — w(vt,.))] dt.

i

» How to obtain the rate from those differences?
» How to recover E[¢)(Ve) — (V)] ?
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Approaches that do not work
For any g € C! and F € D2,
e Cauchy-Schwarz yields the strong rate

E[(g(Vs) - (Vi) F] < \/Ellg(Ve) - g(Ve) 1\ /EIF?] ~ A¥
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Approaches that do not work
For any g € C! and F € D2,
e Cauchy-Schwarz yields the strong rate

E [(g(Ve) - g(Ve))F] < /Ellg(Ve) — (Vi) P1\/EIF?] ~ AY
e Taylor & integration by parts: let AK(r) := K(t,r) — K(t;, r) then

1
E [(g(Ve) — g(Ve))F] = E {(vt —vF [gOvs (- A)vt,.)dA]

< /t |AK(r)] (K(t, r) + K(ti, r)) dr
0

A. Pannier (UP, LPSM) PPDEs and weak rates 14 /19



Approaches that do not work
For any g € C! and F € D2,
e Cauchy-Schwarz yields the strong rate

E [(g(Ve) - £(V4)) F] < \/Ellg(Ve) — g(V4)PIy/EIF2] ~ AY
e Taylor & integration by parts: let AK(r) := K(t,r) — K(t;, r) then

1
E [(g(Ve) — g(Ve))F] = E {(vt -vF [ govera- A)vt,)dA]

< [ AR (K6 + K60 dr
e [td's formula on ©; becauss V is not a local martingale
(%) = £(0) = ¢(0f)+ | Ke.g'(@Daw+ [ K(e.rPe"(©0)dr
e Clark-Ocone | l
8(V) = Elg(V)l + [ K(e.Blg(vo)l 510,
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Joint chaos expansion

Lemma
Let s, = (s1, -+ ,sn). Forg € C® and F € D*?, it holds

E{Fg(Vo)] = BIFEg(V0l + 3 7 | (D, FIEDs,8(V))isn

v
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Joint chaos expansion

Lemma
Let s, = (s1, -+ ,sn). Forg € C® and F € D*?, it holds

E{Fg(Vo) = BIFIE(Vl+ 3 [ (D FIEDs,g(Vldsn

In the quadratic case ¢(x) = x2, Ds0%u; = 0 thus it boils down to
tiv1 tit1
= [ B uEE(V) - g(V)lde s [ (- 1) de
t; ti
& Turns out that instead of giving rate =,

N-1 iy
Z / (t"—t')dt <Ay = rate onel
i=1 7t
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A touch of combinatorics (extension of Faa di Bruno's formula)
For a function f € C* and a random variable X € D2,

D12f(X) = f/(X)D12X + f"(X)D1X D2X
D123f(X) = f/(X)D123X + f”(X)D1X DoX D3X

+ £'(X){D12X D3X +D13X DoX +DysX DiX }

A. Pannier (UP, LPSM) PPDEs and weak rates 16 /19



A touch of combinatorics (extension of Faa di Bruno's formula)
For a function f € C* and a random variable X € D2,

D12f(X) = f/(X)D12X + f"(X)D1X D2X
Di123f(X) = f'(X)D123X + f”(X)D1 X DoX D3X
+ (X ){Dl,zX D3X +Di13XDoX + Dp3X D1X}

D1, of(X) :Zn:f(k)(X) > DX.
k=1

DeD]

> D} is the set of partitions of a set of n objects into k non-empty
subsets:
> D is a product of k Malliavin derivatives.

.. This permits to write
E[Ds,070:] = E[Ds,¢"(XT)] =E | ¢ (X1) Y DXy
k=1 DeD)
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A kernel story
Let Z C N and define K(t,sz) := [, K(t, sx)-

e Recall X+ =x+ ftT ¥(V,)dB, then if 51 < 5p < --- < s, we have

)
Dy X7 = / POV (r, 50)dB, + p D (Vo )K (si 561
Sk
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A kernel story
Let Z C N and define K(t,sz) := [, K(t, sx)-

e Recall X+ =x+ ftT ¥(V,)dB, then if 51 < 5p < --- < s, we have
T
D, X7 = / PO (VK (r, sk)dB, + pip (Ve K (s, sk-1)
Sk

e By triangles,
E[Ds, (8(V2) — (V)] = E [ (VOK(E, 50) — £7(V2)K 53 5,)

= K(t.5)E [g(Ve) (VL)

+E {g(")( th)] Z AK(t, t;, s)K(t, S|[/+1,,,]|)K(t,'7 S|[17/_1])
I=1
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A kernel story
Let Z C N and define K(t s7) = [ ez K(t, sk).

e Recall X7 =x+ f ) dB, then if s < s, < --- < s, we have

De X1 = / PO(V)K(r, sk)dB, + pp D (Vg )K(sk, Sk—1)
Sk

e By triangles,
E [Ds, (g(Ve) = g(Vi))] = E [ (VoK (2, 50) — £ (V3K (85 5,)]

e 0 - 90

n
+E {g(")(Vt,-)} Z AK(t, t;, 5)K(t, spr1,01)K(ti, Sp1,i-17)
=1

> We end up with integrals of the form (at least in spirit)

t

H+1

/[ K(t s K t,-,s,)|K(t,s|[,+1,n])2dsn5/ IAK(t, t,5)|ds; < AT
0,t]" 0
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Bring everything together
< Overall, this entails

oo n

Hil N=1 ety n
gAY [T S oeuDy) ar,
i=0 7t n=1 " k=1

where Co = CGo(H, T, ¢,v).
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Bring everything together
< Overall, this entails

v et (&gl ;
eV < A ZZ/ D r 2 BDGDE ) dt
i=0 7t n=1 " k=1
where Co = CGo(H, T, ¢,v).

1
e The Stirling number of the second kind: |Dj}| < 5(2) kn=k.

e The BDG constant: BDG) < (4k)</2.
- G - C1" k/2 n! k
—BDG,|D} ke ———— k"~
— Zlkzl  BDCKIDL < z::k_l a0 — k)]
> k/2
— Z(Clecl)kkT < 00
k=1 '
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Conclusion

Summary:

(1) We established a PPDE theory for SVEs and rough volatility models,
based on previous works by Viens, Wang, Yong, Zhang.

(2) We obtained a weak rate of convergence 1/2 + H for a (relatively)
wide range of models
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Conclusion

Summary:

(1) We established a PPDE theory for SVEs and rough volatility models,
based on previous works by Viens, Wang, Yong, Zhang.

(2) We obtained a weak rate of convergence 1/2 + H for a (relatively)
wide range of models

Outlook:
L How to obtain 1/2 + 3H which seems to be optimal?
" Extensions to other discretisations, drift
1 Extension to fully implicit SVEs, what could be the rate?

1 Further applications: control, numerics, regularisation,
path-dependent payoffs...
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