Rough volatility, path-dependent PDEs and weak rates of convergence

Alexandre Pannier

UNIVERSITÉ PARIS-CITÉ, LPSM

joint work with Ofelia Bonesini and Antoine Jacquier (Imperial College)

Séminaire FDD-FiME 09/02/2024

Table of contents

2 Path-dependent PDEs

Volatility modelling

The prices of financial derivatives at time $t \in [0, T]$ are given by

 $\mathbb{E}\big[\phi(\mathbf{S}_{\mathsf{T}})|\mathcal{F}_t\big],$

where the underlying $(S_t)_{t \in [0,T]}$ is a martingale:

$$S_t = S_0 \exp\left(\int_0^t \sigma_s \mathrm{d}B_s - \frac{1}{2}\int_0^t \sigma_s^2 \mathrm{d}s\right).$$

Volatility modelling

The prices of financial derivatives at time $t \in [0, T]$ are given by

 $\mathbb{E}\big[\phi(\boldsymbol{S_T})|\mathcal{F}_t\big],$

where the underlying $(S_t)_{t \in [0,T]}$ is a martingale:

$$S_t = S_0 \exp\left(\int_0^t \sigma_s \mathrm{d}B_s - \frac{1}{2}\int_0^t \sigma_s^2 \mathrm{d}s\right).$$

i How does one choose the volatility (σ_t)_{t∈[0,T]} such that:
(a) We can compute numerically and/or analytically the derivatives' prices
(b) Those prices are consistent with the market's

▷ Set $\sigma_s = \psi_s(W_s)$ where W is a Brownian motion \hookrightarrow Markov, semimartingale, Itô calculus, Monte Carlo, PDE...

Going rough

Main idea: Replace BM W with fractional BM V

$$V_t := \int_0^t (t-r)^{H-\frac{1}{2}} \mathrm{d}W_r, \quad H \in (0, \frac{1}{2})$$

Going rough

Main idea: Replace BM W with fractional BM V

$$V_t := \int_0^t (t-r)^{H-\frac{1}{2}} \mathrm{d}W_r, \quad H \in (0, \frac{1}{2})$$

Rationale:

- - $\mathbb P$ Statistical estimation indicates $H\ll 0.5$
- ${\mathbb Q}\,$ Term-structure of implied volatility skew $\sim {\cal T}^{H-\frac{1}{2}}$
- Microstructural fundations
- $\downarrow \downarrow$ Mean-reversion at different time scales

All with one additional parameter H

Simulating rough volatility

♠ Let us consider a rough volatility model with log-price

$$X_t := x + \int_0^t \psi(V_r) \mathrm{d}B_r - \frac{1}{2} \int_0^t \psi(V_r)^2 \,\mathrm{d}r, \quad V_t := \int_0^t \frac{K(t, r)}{W_r} \mathrm{d}W_r,$$

with $t \in [0, T]$ and the singular kernel $K(t, r) := (t - r)^{H - \frac{1}{2}}$, $H \in (0, \frac{1}{2})$.

Simulating rough volatility

♠ Let us consider a rough volatility model with log-price

$$X_t := x + \int_0^t \psi(V_r) \mathrm{d}B_r - \frac{1}{2} \int_0^t \psi(V_r)^2 \,\mathrm{d}r, \quad V_t := \int_0^t \frac{K(t, r)}{W_r} \mathrm{d}W_r,$$

with $t \in [0, T]$ and the singular kernel $K(t, r) := (t - r)^{H - \frac{1}{2}}$, $H \in (0, \frac{1}{2})$.

 \simeq Let $N \in \mathbb{N}$, set $\Delta_t := \frac{T}{N}$. and $t_i := i\Delta_t$ for i = 0, ..., N and define the Euler approximation:

$$\begin{split} \overline{X}_{t_{i+1}} &= \overline{X}_{t_i} + \psi(V_{t_i}) \Delta B_{t_i} - \frac{1}{2} \psi(V_{t_i})^2 \Delta_t, \qquad \overline{X}_{t_0} = x, \\ \overline{X}_t &= x + \int_0^t \psi(V_{\kappa_r}) \mathrm{d}B_r - \frac{1}{2} \int_0^t \psi(V_{\kappa_r})^2 \,\mathrm{d}r, \quad \kappa_r := \frac{\lfloor rN \rfloor}{N}, \end{split}$$

where the Gaussian process V is sampled exactly (e.g. Cholesky).

Strong rates VS weak rates

• Strong rate: V is only H-Hölder continuous hence by Itô's formula

$$\mathbb{E}\left[\left|X_t - \overline{X}_t\right|^2\right] \lesssim \int_0^t \mathbb{E}\left[\left|\psi(V_r) - \psi(V_{\kappa_r})\right|^2\right] \,\mathrm{d}r \lesssim \Delta_t^{2H}$$

▶ To divide the error by 2 one needs to multiply the number of time points by $2^{1/H}$. If $H \approx 0$ it essentially doesn't converge.

Strong rates VS weak rates

• Strong rate: V is only H-Hölder continuous hence by Itô's formula

$$\mathbb{E}\left[\left|X_{t}-\overline{X}_{t}\right|^{2}\right] \lesssim \int_{0}^{t} \mathbb{E}\left[\left|\psi(V_{r})-\psi(V_{\kappa_{r}})\right|^{2}\right] \mathrm{d}r \lesssim \Delta_{t}^{2H}$$

► To divide the error by 2 one needs to multiply the number of time points by $2^{1/H}$. If $H \approx 0$ it essentially doesn't converge.

• Weak rate: More relevant to option pricing, take a test function ϕ :

$$\mathcal{E}^{N} := \mathbb{E}[\phi(X_{T})] - \mathbb{E}\left[\phi\left(\overline{X}_{T}\right)\right]$$

Example

For Markovian processes
$$(H = \frac{1}{2}), \mathcal{E}^N = \mathcal{O}(N^{-1})$$

For rough volatility, is it 2H, 1/2 + H, 1 or something else ?

A difficult and open problem

Challenges (when $H \neq 1/2$):

- $\not\!df$ No semimartingale property \Rightarrow no Itô calculus

A difficult and open problem

Challenges (when $H \neq 1/2$):

- $\not\!df$ No semimartingale property \Rightarrow no Itô calculus
- Exhaustive literature review for weak rates of rough volatility models:

Authors	Weak rate	Assumptions
Bayer, Hall, Tempone (2020)	1/2 + H	Linear vol. $(\psi(x) = x)$
Bayer, Fukasawa, Nakahara (2022)	1/2 + H	Linear vol. $(\psi(x) = x)$
Gassiat (2022)	1/2 + 3H	Linear vol. or cubic payoff $(\phi(x) = x^3)$
Friz, Salkeld, Wagenhofer (2022)	1/2 + 3H	Polynomial payoff $(\phi(x) = x^n)$

▶ All of them rely on the structure for explicit computations or induction

Today's talk

(1) Establishes path-dependent PDEs for rough volatility models

Theorem (based on [Viens & Zhang, 2019], [Wang, Yong & Zhang, 2022]) If **X** solves a Stochastic Volterra Equation, then $u(t, \omega) := \mathbb{E}[\phi(\mathbf{X}_T^{t,\omega})]$ is the unique classical solution to a path-dependent PDE. \hookrightarrow This applies in particular to rough volatility models.

Today's talk

(1) Establishes path-dependent PDEs for rough volatility models

Theorem (based on [Viens & Zhang, 2019], [Wang, Yong & Zhang, 2022]) If **X** solves a Stochastic Volterra Equation, then $u(t, \omega) := \mathbb{E}[\phi(\mathbf{X}_{T}^{t,\omega})]$ is the unique classical solution to a path-dependent PDE. \hookrightarrow This applies in particular to rough volatility models.

(2) Applies them to weak rates of convergence

Theorem

If $\phi, \psi \in C^{\infty}$ with suitable growth then we get a weak rate 1/2 + H, i.e.

$$\mathcal{E}^{\mathsf{N}} = \mathcal{O}(\mathsf{N}^{-1/2-\mathsf{H}}).$$

Table of contents

A motivating example [Viens, Zhang 2019]

For $0 \le t \le s \le T$, a natural decomposition is $V_s = V_t + [V_s - V_t]$.

A motivating example [Viens, Zhang 2019]

For $0 \le t \le s \le T$, a natural decomposition is $V_s = V_t + [V_s - V_t]$. \models Instead, Viens and Zhang introduce

$$V_{s} = \int_{0}^{s} K(s, r) \mathrm{d}W_{r} = \underbrace{\int_{0}^{t} K(s, r) \mathrm{d}W_{r}}_{=:\Theta_{s}^{t}} + \underbrace{\int_{t}^{s} K(s, r) \mathrm{d}W_{r}}_{=:I_{s}^{t}}$$

- Orthogonal decomposition: $\Theta_s^t \in \mathcal{F}_t$ and $I_s^t \perp \mathcal{F}_t$;
- $t \to \Theta^t$ is a martingale on [0, s];
- (X, Θ) recovers a flow or Markov property;
- $\Theta_s^t = \mathbb{E}[V_s | \mathcal{F}_t]$ is related to the forward variance.

Markov representation

() Option prices take the form $\mathbb{E}[\phi(X_T)|\mathcal{F}_t]$ but how do we express this path-dependent process as a function?

Markov representation

() Option prices take the form $\mathbb{E}[\phi(X_T)|\mathcal{F}_t]$ but how do we express this path-dependent process as a function?

$$\begin{split} \mathbb{E}[\phi(X_T)|\mathcal{F}_t] &= \mathbb{E}\left[\phi\left(X_t + \int_t^T \sigma_s(V_s) \mathrm{d}B_s - \frac{1}{2}\int_t^T \sigma_s(V_s)^2 \,\mathrm{d}s\right) \Big|\mathcal{F}_t\right] \\ &= \mathbb{E}\left[\phi\left(X_t + \int_t^T \sigma_s(\Theta_s^t + I_s^t) \mathrm{d}B_s - \frac{1}{2}\int_t^T \sigma_s(\Theta_s^t + I_s^t)^2 \,\mathrm{d}s\right) \Big|X_t, \Theta_{[t,T]}^t\right] \\ &= u(t, X_t, \Theta_{[t,T]}^t), \end{split}$$

where $u: [0, T] \times \mathbb{R} \times C([t, T]) \rightarrow \mathbb{R}$ is defined as

$$u(t, x, \omega) := \mathbb{E}\Big[\phi(X_T) \, \big| \, X_t = x, \, \Theta^t = \omega\Big]$$

Stochastic Volterra Equations

◎ SVEs encompass rough volatility models; here without drift:

$$\begin{aligned} \boldsymbol{X}_{s} &= x + \int_{0}^{s} \mathcal{K}(s, r) \sigma(\boldsymbol{X}_{r}) \, \mathrm{d}W_{r} =: \boldsymbol{\Theta}_{s}^{t} + \int_{t}^{s} \mathcal{K}(s, r) \sigma(\boldsymbol{X}_{r}) \, \mathrm{d}W_{r} \\ \boldsymbol{X}_{s}^{t,\omega} &= \omega_{s} + \int_{t}^{s} \mathcal{K}(s, r) \sigma(\boldsymbol{X}_{r}^{t,\omega}) \, \mathrm{d}W_{r}, \qquad \text{(flow property)} \end{aligned}$$

then if pathwise uniqueness holds: $X_s = X_s^{t,\Theta^t}$, for all $s \in [t, T]$.

Stochastic Volterra Equations

◎ SVEs encompass rough volatility models; here without drift:

$$\begin{aligned} \boldsymbol{X}_{s} &= x + \int_{0}^{s} \mathcal{K}(s, r) \sigma(\boldsymbol{X}_{r}) \, \mathrm{d}W_{r} =: \boldsymbol{\Theta}_{s}^{t} + \int_{t}^{s} \mathcal{K}(s, r) \sigma(\boldsymbol{X}_{r}) \, \mathrm{d}W_{r} \\ \boldsymbol{X}_{s}^{t, \omega} &= \omega_{s} + \int_{t}^{s} \mathcal{K}(s, r) \sigma(\boldsymbol{X}_{r}^{t, \omega}) \, \mathrm{d}W_{r}, \qquad \text{(flow property)} \end{aligned}$$

then if pathwise uniqueness holds: $X_s = X_s^{t,\Theta^t}$, for all $s \in [t, T]$.

Markovian representation

Let $Y_t^{s,\omega} := \mathbb{E}[\Phi(\mathbf{X}_T^{s,\omega}) | \mathcal{F}_t]$ and $u(t,\omega) := Y_t^{t,\omega}$, then

$$\mathbb{E}[\Phi(\boldsymbol{X}_{T})|\mathcal{F}_{t}] = \mathbb{E}\left[\Phi\left(\boldsymbol{X}_{T}^{t,\Theta^{t}}\right)|\mathcal{F}_{t}\right] = Y_{t}^{t,\Theta^{t}} = u(t,\Theta^{t})$$

The functional Itô formula for Volterra processes

The Fréchet derivative $\partial_{\omega} u$ is a linear map in the direction η :

$$u(t, x, \omega + \eta \mathbb{1}_{[t,T]}) - u(t, x, \omega) = \langle \partial_{\omega} u(t, x, \omega), \eta \rangle + o(\|\eta \mathbb{1}_{[t,T]}\|),$$

 \hookrightarrow The direction of interest is $K^t(s) := K(s, t), s > t$.

The functional Itô formula for Volterra processes

The Fréchet derivative $\partial_{\omega} u$ is a linear map in the direction η :

$$u(t, x, \omega + \eta \mathbb{1}_{[t,T]}) - u(t, x, \omega) = \langle \partial_{\omega} u(t, x, \omega), \eta \rangle + o(\|\eta \mathbb{1}_{[t,T]}\|),$$

 \hookrightarrow The direction of interest is $K^t(s) := K(s, t), s > t$.

Theorem (Viens and Zhang (2019)) Suppose $u \in C^{1,2}_{+,\alpha}([0,T] \times C([t,T]))$ and denote $u_t = u(t, \Theta^t)$: $du_t = \left\{ \partial_t u_t + \frac{\sigma(\boldsymbol{X}_t)^2}{2} \langle \partial^2_\omega u_t, (K^t, K^t) \rangle \right\} dt + \sigma(\boldsymbol{X}_t) \langle \partial_\omega u_t, K^t \rangle dW_t,$

Relation with Dupire's:

- Corresponds to $H = \frac{1}{2}$ hence K = 1
- The path is only perturbed after t but not frozen

PPDE for rough volatility

Recall our model

$$\begin{cases} X_t = \int_0^t \sigma_s(V_s) \, \mathrm{d}B_s - \frac{1}{2} \int_0^t \sigma_s^2(V_s) \, \mathrm{d}s, \\ V_s = \int_0^s \mathcal{K}(s, r) \, \mathrm{d}W_r, \end{cases}$$

and
$$u(t, x, \omega) := \mathbb{E}\Big[\phi(X_T) \, \big| \, X_t = x, \, \Theta^t = \omega\Big].$$

Theorem (Bonesini, Jacquier, P. 2023+, based on many people's works) Under regularity conditions on ϕ and σ , u is the unique $C_{+,\alpha}^{1,2,2}$ solution to

$$\left\{\partial_t + \frac{1}{2}\sigma_t(\omega_t)^2(\partial_x^2 - \partial_x) + \frac{1}{2}\langle\partial_\omega^2 \cdot (\kappa^t, \kappa^t)\rangle + \rho\sigma_t(\omega_t)\langle\partial_\omega(\partial_x \cdot), \kappa^t\rangle\right\} u(t, x, \omega) = 0,$$

with terminal condition $u(T, x, \omega) = \phi(x)$.

Table of contents

Back to weak rates

 \circlearrowright We denote $\overline{u}_t := u(t, \overline{X}_t, \Theta_{[t,T]}^t)$ (recall V is sampled exactly)

$$\mathcal{E}^{N} = \mathbb{E}\left[\phi(X_{T}) - \phi\left(\overline{X}_{T}\right)\right] = \mathbb{E}\left[\overline{u}_{t_{0}}\right] - \mathbb{E}\left[\overline{u}_{t_{N}}\right] = -\sum_{i=0}^{N-1} \underbrace{\left(\mathbb{E}\left[\overline{u}_{t_{i+1}}\right] - \mathbb{E}\left[\overline{u}_{t_{i}}\right]\right)}_{=:\mathfrak{A}_{i}},$$

where, by application of the functional Itô formula and the PPDE,

$$\begin{split} \mathfrak{A}_{i} := & \frac{1}{2} \int_{t_{i}}^{t_{i+1}} \mathbb{E} \left[\partial_{xx}^{2} \overline{u}_{t} \left(\psi(V_{t})^{2} - \psi(V_{t_{i}})^{2} \right) \right] \mathrm{d}t \\ &+ \rho \int_{t_{i}}^{t_{i+1}} \mathbb{E} \left[\left\langle \partial_{\omega} (\partial_{x} \overline{u}_{t}), \mathcal{K}^{t} \right\rangle \left(\psi(V_{t}) - \psi(V_{t_{i}}) \right) \right] \mathrm{d}t. \end{split}$$

▶ How to obtain the rate from those differences?
 ▶ How to recover E[ψ(V_t) - ψ(V_{ti})] ?

Approaches that do not work

For any $g \in C^1$ and $F \in \mathbb{D}^{1,2}$,

• Cauchy-Schwarz yields the strong rate

$$\mathbb{E}\left[\left(g(V_t) - g(V_{t_i})\right) F\right] \leq \sqrt{\mathbb{E}[|g(V_t) - g(V_{t_i})|^2]} \sqrt{\mathbb{E}[F^2]} \sim \Delta_t^H$$

Approaches that do not work

For any $g\in C^1$ and $F\in \mathbb{D}^{1,2}$,

Cauchy-Schwarz yields the strong rate

$$\mathbb{E}\left[\left(g(V_t) - g(V_{t_i})\right)F\right] \leq \sqrt{\mathbb{E}[|g(V_t) - g(V_{t_i})|^2]}\sqrt{\mathbb{E}[F^2]} \sim \Delta_t^H$$

• Taylor & integration by parts: let $\Delta K(r) := K(t,r) - K(t_i,r)$ then

$$\mathbb{E}\left[\left(g(V_t) - g(V_{t_i})\right)F\right] = \mathbb{E}\left[\left(V_t - V_{t_i}\right)F\int_0^1 g'(\lambda V_t + (1-\lambda)V_{t_i})d\lambda\right]$$
$$\lesssim \int_0^t |\Delta K(r)| \left(K(t,r) + K(t_i,r)\right)dr$$

Approaches that do not work

For any $g\in C^1$ and $F\in \mathbb{D}^{1,2}$,

Cauchy-Schwarz yields the strong rate

$$\mathbb{E}\left[\left(g(V_t) - g(V_{t_i})\right)F\right] \leq \sqrt{\mathbb{E}[|g(V_t) - g(V_{t_i})|^2]}\sqrt{\mathbb{E}[F^2]} \sim \Delta_t^H$$

• Taylor & integration by parts: let $\Delta K(r) := K(t,r) - K(t_i,r)$ then

$$\mathbb{E}\left[\left(g(V_t) - g(V_{t_i})\right)F\right] = \mathbb{E}\left[\left(V_t - V_{t_i}\right)F\int_0^1 g'(\lambda V_t + (1-\lambda)V_{t_i})d\lambda\right]$$
$$\lesssim \int_0^t |\Delta K(r)| \left(K(t,r) + K(t_i,r)\right)dr$$

• Itô's formula on Θ_t^{\cdot} because V is not a local martingale

$$g(V_t) = g(\Theta_t^t) = g(\Theta_t^{t_i}) + \int_{t_i}^t K(t, r) g'(\Theta_t^r) \mathrm{d}W_r + \frac{1}{2} \int_{t_i}^t K(t, r)^2 g''(\Theta_t^r) \,\mathrm{d}r$$

• Clark-Ocone

$$g(V_t) = \mathbb{E}[g(V_t)] + \int_0^t K(t, r) \mathbb{E}[g(V_t)|\mathcal{F}_r] dW_r$$

Joint chaos expansion

Lemma

Let
$$\mathbf{s}_n = (\mathbf{s}_1, \cdots, \mathbf{s}_n)$$
. For $g \in C^{\infty}$ and $F \in \mathbb{D}^{\infty, 2}$, it holds
$$\mathbb{E}[Fg(V_t)] = \mathbb{E}[F] \mathbb{E}[g(V_t)] + \sum_{n=1}^{\infty} \frac{1}{n!} \int_{[0,t]^n} \mathbb{E}[D_{\mathbf{s}_n}F] \mathbb{E}[D_{\mathbf{s}_n}g(V_t)] d\mathbf{s}_n.$$

Joint chaos expansion

Lemma

Let
$$\mathbf{s}_n = (\mathbf{s}_1, \cdots, \mathbf{s}_n)$$
. For $g \in C^{\infty}$ and $F \in \mathbb{D}^{\infty,2}$, it holds
$$\mathbb{E}[Fg(V_t)] = \mathbb{E}[F] \mathbb{E}[g(V_t)] + \sum_{n=1}^{\infty} \frac{1}{n!} \int_{[0,t]^n} \mathbb{E}[D_{\mathbf{s}_n}F] \mathbb{E}[D_{\mathbf{s}_n}g(V_t)] d\mathbf{s}_n.$$

In the quadratic case $\phi(x)=x^2$, $\mathrm{D}_s\partial^2\overline{u}_t=0$ thus it boils down to

$$\mathfrak{A}_{i} = \int_{t_{i}}^{t_{i+1}} \mathbb{E}[\partial^{2}\overline{u}_{t}]\mathbb{E}[g(V_{t}) - g(V_{t_{i}})] dt \lesssim \int_{t_{i}}^{t_{i+1}} \left(t^{\gamma} - t_{i}^{\gamma}\right) dt.$$

 \clubsuit Turns out that instead of giving rate $\gamma,$

$$\sum_{i=1}^{N-1} \int_{t_i}^{t_{i+1}} (t^\gamma - t_i^\gamma) \, \mathrm{d}t \lesssim \Delta_t \quad \Longrightarrow \quad \mathsf{rate \ one!}$$

A touch of combinatorics (extension of Faà di Bruno's formula) For a function $f \in C^{\infty}$ and a random variable $X \in \mathbb{D}^{\infty,2}$,

$$\begin{split} \mathrm{D}_{1,2}f(X) &= f'(X)\mathrm{D}_{1,2}X + f''(X)\mathrm{D}_1X\,\mathrm{D}_2X\\ \mathrm{D}_{1,2,3}f(X) &= f'(X)\mathrm{D}_{1,2,3}X + f'''(X)\mathrm{D}_1X\,\mathrm{D}_2X\,\mathrm{D}_3X\\ &+ f''(X)\Big\{\mathrm{D}_{1,2}X\,\mathrm{D}_3X + \mathrm{D}_{1,3}X\,\mathrm{D}_2X + \mathrm{D}_{2,3}X\,\mathrm{D}_1X\Big\} \end{split}$$

A touch of combinatorics (extension of Faà di Bruno's formula) For a function $f \in C^{\infty}$ and a random variable $X \in \mathbb{D}^{\infty,2}$,

$$\begin{aligned} \mathrm{D}_{1,2}f(X) &= f'(X)\mathrm{D}_{1,2}X + f''(X)\mathrm{D}_1X\,\mathrm{D}_2X\\ \mathrm{D}_{1,2,3}f(X) &= f'(X)\mathrm{D}_{1,2,3}X + f'''(X)\mathrm{D}_1X\,\mathrm{D}_2X\,\mathrm{D}_3X\\ &+ f''(X)\Big\{\mathrm{D}_{1,2}X\,\mathrm{D}_3X + \mathrm{D}_{1,3}X\,\mathrm{D}_2X + \mathrm{D}_{2,3}X\,\mathrm{D}_1X\Big\}\\ \mathrm{D}_{1,\cdots,n}f(X) &= \sum_{k=1}^n f^{(k)}(X)\sum_{\mathcal{D}\in\boldsymbol{\mathcal{D}}_k^n}\mathcal{D}X.\end{aligned}$$

 $\triangleright \mathcal{D}_k^n$ is the set of partitions of a set of *n* objects into *k* non-empty subsets;

 $\triangleright \mathcal{D}$ is a product of k Malliavin derivatives.

... This permits to write

1

$$\mathbb{E}\big[\mathrm{D}_{\boldsymbol{s}_n}\partial_x^2\overline{\boldsymbol{u}}_t\big] = \mathbb{E}[\mathrm{D}_{\boldsymbol{s}_n}\phi''(\boldsymbol{X}_T)] = \mathbb{E}\left[\sum_{k=1}^n \phi^{(k+2)}(\boldsymbol{X}_T)\sum_{\mathcal{D}\in \frac{\boldsymbol{\mathcal{D}}_k^n}{\boldsymbol{k}}}\mathcal{D}\boldsymbol{X}_T\right]$$

A kernel story

- Let $\mathcal{I} \subset \mathbb{N}$ and define $\mathbf{K}(t, \boldsymbol{s}_{\mathcal{I}}) := \prod_{k \in \mathcal{I}} \mathbf{K}(t, s_k)$.
- Recall $X_T = x + \int_t^T \psi(V_r) \, \mathrm{d}B_r$ then if $s_1 < s_2 < \cdots < s_k$ we have

$$D_{\boldsymbol{s}_k} X_T = \int_{\boldsymbol{s}_k}^T \psi^{(k)}(V_r) \mathbf{K}(r, \boldsymbol{s}_k) dB_r + \rho \psi^{(k-1)}(V_{\boldsymbol{s}_k}) \mathbf{K}(\boldsymbol{s}_k, \boldsymbol{s}_{k-1})$$

A kernel story

Let $\mathcal{I} \subset \mathbb{N}$ and define $\mathbf{K}(t, \boldsymbol{s}_{\mathcal{I}}) := \prod_{k \in \mathcal{I}} \mathbf{K}(t, s_k)$.

• Recall $X_T = x + \int_t^T \psi(V_r) \, \mathrm{d}B_r$ then if $s_1 < s_2 < \cdots < s_k$ we have

$$D_{\boldsymbol{s}_k} X_T = \int_{\boldsymbol{s}_k}^T \psi^{(k)}(V_r) \mathbf{K}(r, \boldsymbol{s}_k) dB_r + \rho \psi^{(k-1)}(V_{\boldsymbol{s}_k}) \mathbf{K}(\boldsymbol{s}_k, \boldsymbol{s}_{k-1})$$

• By triangles,

$$\begin{split} \mathbb{E}\left[\mathbb{D}_{\boldsymbol{s}_n}(\boldsymbol{g}(\boldsymbol{V}_t) - \boldsymbol{g}(\boldsymbol{V}_{t_i}))\right] &= \mathbb{E}\left[\boldsymbol{g}^{(n)}(\boldsymbol{V}_t)\mathbf{K}(t, \boldsymbol{s}_n) - \boldsymbol{g}^{(n)}(\boldsymbol{V}_{t_i})\mathbf{K}(t_i, \boldsymbol{s}_n)\right] \\ &= \mathbf{K}(t, \boldsymbol{s}_n)\mathbb{E}\left[\boldsymbol{g}^{(n)}(\boldsymbol{V}_t) - \boldsymbol{g}^{(n)}(\boldsymbol{V}_{t_i})\right] \\ &+ \mathbb{E}\left[\boldsymbol{g}^{(n)}(\boldsymbol{V}_{t_i})\right]\sum_{l=1}^n \Delta \mathcal{K}(t, t_i, s_l)\mathbf{K}(t, \boldsymbol{s}_{[l+1,n]})\mathbf{K}(t_i, \boldsymbol{s}_{[1,l-1]}) \end{split}$$

A kernel story

Let $\mathcal{I} \subset \mathbb{N}$ and define $\mathbf{K}(t, \boldsymbol{s}_{\mathcal{I}}) := \prod_{k \in \mathcal{I}} \mathbf{K}(t, s_k)$.

• Recall
$$X_T = x + \int_t^T \psi(V_r) \, \mathrm{d}B_r$$
 then if $s_1 < s_2 < \cdots < s_k$ we have

$$D_{\boldsymbol{s}_k} X_T = \int_{\boldsymbol{s}_k}^T \psi^{(k)}(V_r) \mathbf{K}(r, \boldsymbol{s}_k) dB_r + \rho \psi^{(k-1)}(V_{\boldsymbol{s}_k}) \mathbf{K}(\boldsymbol{s}_k, \boldsymbol{s}_{k-1})$$

• By triangles,

$$\begin{split} \mathbb{E}\left[\mathrm{D}_{\boldsymbol{s}_n}(\boldsymbol{g}(\boldsymbol{V}_t) - \boldsymbol{g}(\boldsymbol{V}_{t_i}))\right] &= \mathbb{E}\left[\boldsymbol{g}^{(n)}(\boldsymbol{V}_t)\mathbf{K}(t,\boldsymbol{s}_n) - \boldsymbol{g}^{(n)}(\boldsymbol{V}_{t_i})\mathbf{K}(t_i,\boldsymbol{s}_n)\right] \\ &= \mathbf{K}(t,\boldsymbol{s}_n)\mathbb{E}\left[\boldsymbol{g}^{(n)}(\boldsymbol{V}_t) - \boldsymbol{g}^{(n)}(\boldsymbol{V}_{t_i})\right] \\ &+ \mathbb{E}\left[\boldsymbol{g}^{(n)}(\boldsymbol{V}_{t_i})\right]\sum_{l=1}^n \Delta \mathcal{K}(t,t_i,s_l)\mathbf{K}(t,\boldsymbol{s}_{[l+1,n]})\mathbf{K}(t_i,\boldsymbol{s}_{[1,l-1]}) \end{split}$$

▷ We end up with integrals of the form (at least in spirit)

$$\int_{[0,t]^n} \mathbf{K}(t_i, \boldsymbol{s}_{\llbracket 1, l-1 \rrbracket})^2 \left| \Delta \mathcal{K}(t, t_i, s_l) \right| \mathbf{K}(t, \boldsymbol{s}_{\llbracket l+1, n \rrbracket})^2 \mathrm{d} \boldsymbol{s}_n \lesssim \int_0^t \left| \Delta \mathcal{K}(t, t_i, s_l) \right| \mathrm{d} s_l \lesssim \Delta_t^{H+\frac{1}{2}}$$

Bring everything together

 \triangleleft Overall, this entails

$$\mathcal{E}^{N} \lesssim \Delta_{t}^{H+\frac{1}{2}} \sum_{i=0}^{N-1} \int_{t_{i}}^{t_{i+1}} \left(\sum_{n=1}^{\infty} \frac{C_{0}^{n}}{n!} \sum_{k=1}^{n} \mathrm{BDG}_{k} |\boldsymbol{\mathcal{D}}_{k}^{n}| \right) \, \mathrm{d}t,$$

where $C_0 = C_0(H, T, \phi, \psi)$.

Bring everything together

 \triangleleft Overall, this entails

$$\mathcal{E}^{N} \lesssim \Delta_{t}^{H+\frac{1}{2}} \sum_{i=0}^{N-1} \int_{t_{i}}^{t_{i+1}} \left(\sum_{n=1}^{\infty} \frac{C_{0}^{n}}{n!} \sum_{k=1}^{n} \mathrm{BDG}_{k} |\boldsymbol{\mathcal{D}}_{k}^{n}| \right) \, \mathrm{d}t,$$

where $C_0 = C_0(H, T, \phi, \psi)$.

• The Stirling number of the second kind:

 $\begin{aligned} |\mathcal{D}_k^n| &\leq \frac{1}{2} \binom{n}{k} k^{n-k};\\ \text{BDG}_k &\leq (4k)^{k/2}. \end{aligned}$

$$\implies \sum_{n=1}^{\infty} \sum_{k=1}^{n} \frac{C_0^n}{n!} \operatorname{BDG}_k |\mathcal{D}_k^n| \le \sum_{n=1}^{\infty} \sum_{k=1}^{n} \frac{C_1^n}{n!} k^{k/2} \frac{n!}{k!(n-k)!} k^{n-k}$$
$$= \sum_{k=1}^{\infty} (C_1 e^{C_1})^k \frac{k^{k/2}}{k!} < \infty$$

Conclusion

Summary:

- (1) We established a PPDE theory for SVEs and rough volatility models, based on previous works by Viens, Wang, Yong, Zhang.
- (2) We obtained a weak rate of convergence 1/2 + H for a (relatively) wide range of models

Conclusion

Summary:

- (1) We established a PPDE theory for SVEs and rough volatility models, based on previous works by Viens, Wang, Yong, Zhang.
- (2) We obtained a weak rate of convergence 1/2 + H for a (relatively) wide range of models

Outlook:

- \square How to obtain 1/2 + 3H which seems to be optimal?
- □ Extensions to other discretisations, drift
- \urcorner Extension to fully implicit SVEs, what could be the rate?
- □ Further applications: control, numerics, regularisation, path-dependent payoffs...

Merci !