Rough volatility, path-dependent PDEs and weak rates of convergence

Alexandre Pannier

Université Paris-Cité, LPSM
joint work with Ofelia Bonesini and Antoine Jacquier (Imperial College)

Séminaire FDD-FiME
09/02/2024

Table of contents

(1) Introduction

(2) Path-dependent PDEs

(3) Weak rates of convergence

Volatility modelling

The prices of financial derivatives at time $t \in[0, T]$ are given by

$$
\mathbb{E}\left[\phi\left(S_{T}\right) \mid \mathcal{F}_{t}\right]
$$

where the underlying $\left(S_{t}\right)_{t \in[0, T]}$ is a martingale:

$$
S_{t}=S_{0} \exp \left(\int_{0}^{t} \sigma_{s} \mathrm{~d} B_{s}-\frac{1}{2} \int_{0}^{t} \sigma_{s}^{2} \mathrm{~d} s\right)
$$

Volatility modelling

The prices of financial derivatives at time $t \in[0, T]$ are given by

$$
\mathbb{E}\left[\phi\left(S_{T}\right) \mid \mathcal{F}_{t}\right]
$$

where the underlying $\left(S_{t}\right)_{t \in[0, T]}$ is a martingale:

$$
S_{t}=S_{0} \exp \left(\int_{0}^{t} \sigma_{s} \mathrm{~d} B_{s}-\frac{1}{2} \int_{0}^{t} \sigma_{s}^{2} \mathrm{~d} s\right)
$$

¿ How does one choose the volatility $\left(\sigma_{t}\right)_{t \in[0, T]}$ such that:
(a) We can compute numerically and/or analytically the derivatives' prices
(b) Those prices are consistent with the market's
\triangleright Set $\sigma_{s}=\psi_{s}\left(W_{s}\right)$ where W is a Brownian motion \hookrightarrow Markov, semimartingale, Itô calculus, Monte Carlo, PDE...

Going rough

Main idea: Replace BM W with fractional BM V

$$
V_{t}:=\int_{0}^{t}(t-r)^{H-\frac{1}{2}} \mathrm{~d} W_{r}, \quad H \in\left(0, \frac{1}{2}\right)
$$

Going rough

Main idea: Replace BM W with fractional $\mathrm{BM} V$

$$
V_{t}:=\int_{0}^{t}(t-r)^{H-\frac{1}{2}} \mathrm{~d} W_{r}, \quad H \in\left(0, \frac{1}{2}\right)
$$

Rationale:

H Past dependence
\mathbb{P} Statistical estimation indicates $H \ll 0.5$
\mathbb{Q} Term-structure of implied volatility skew $\sim T^{H-\frac{1}{2}}$

- Microstructural fundations
\downarrow Mean-reversion at different time scales

All with one additional parameter H

Simulating rough volatility

© Let us consider a rough volatility model with log-price

$$
X_{t}:=x+\int_{0}^{t} \psi\left(V_{r}\right) \mathrm{d} B_{r}-\frac{1}{2} \int_{0}^{t} \psi\left(V_{r}\right)^{2} \mathrm{~d} r, \quad V_{t}:=\int_{0}^{t} K(t, r) \mathrm{d} W_{r}
$$

with $t \in[0, T]$ and the singular kernel $K(t, r):=(t-r)^{H-\frac{1}{2}}, H \in\left(0, \frac{1}{2}\right)$.

Simulating rough volatility

© Let us consider a rough volatility model with log-price

$$
X_{t}:=x+\int_{0}^{t} \psi\left(V_{r}\right) \mathrm{d} B_{r}-\frac{1}{2} \int_{0}^{t} \psi\left(V_{r}\right)^{2} \mathrm{~d} r, \quad V_{t}:=\int_{0}^{t} K(t, r) \mathrm{d} W_{r}
$$

with $t \in[0, T]$ and the singular kernel $K(t, r):=(t-r)^{H-\frac{1}{2}}, H \in\left(0, \frac{1}{2}\right)$.
\simeq Let $N \in \mathbb{N}$, set $\Delta_{t}:=\frac{T}{N}$. and $t_{i}:=i \Delta_{t}$ for $i=0, \ldots, N$ and define the Euler approximation:

$$
\begin{array}{ll}
\bar{X}_{t_{i+1}}=\bar{X}_{t_{i}}+\psi\left(V_{t_{i}}\right) \Delta B_{t_{i}}-\frac{1}{2} \psi\left(V_{t_{i}}\right)^{2} \Delta_{t}, \quad \bar{X}_{t_{0}}=x, \\
\bar{X}_{t}=x+\int_{0}^{t} \psi\left(V_{\kappa_{r}}\right) \mathrm{d} B_{r}-\frac{1}{2} \int_{0}^{t} \psi\left(V_{\kappa_{r}}\right)^{2} \mathrm{~d} r, & \kappa_{r}:=\frac{\lfloor r N\rfloor}{N}
\end{array}
$$

where the Gaussian process V is sampled exactly (e.g. Cholesky).

Strong rates VS weak rates

- Strong rate: V is only H-Hölder continuous hence by Itô's formula

$$
\mathbb{E}\left[\left|X_{t}-\bar{X}_{t}\right|^{2}\right] \lesssim \int_{0}^{t} \mathbb{E}\left[\left|\psi\left(V_{r}\right)-\psi\left(V_{\kappa_{r}}\right)\right|^{2}\right] \mathrm{d} r \lesssim \Delta_{t}^{2 H}
$$

- To divide the error by 2 one needs to multiply the number of time points by $2^{1 / H}$. If $H \approx 0$ it essentially doesn't converge.

Strong rates VS weak rates

- Strong rate: V is only H-Hölder continuous hence by Itô's formula

$$
\mathbb{E}\left[\left|X_{t}-\bar{X}_{t}\right|^{2}\right] \lesssim \int_{0}^{t} \mathbb{E}\left[\left|\psi\left(V_{r}\right)-\psi\left(V_{\kappa_{r}}\right)\right|^{2}\right] \mathrm{d} r \lesssim \Delta_{t}^{2 H}
$$

- To divide the error by 2 one needs to multiply the number of time points by $2^{1 / H}$. If $H \approx 0$ it essentially doesn't converge.
- Weak rate: More relevant to option pricing, take a test function ϕ :

$$
\mathcal{E}^{N}:=\mathbb{E}\left[\phi\left(X_{T}\right)\right]-\mathbb{E}\left[\phi\left(\bar{X}_{T}\right)\right]
$$

Example

For Markovian processes $\left(H=\frac{1}{2}\right), \mathcal{E}^{N}=\mathcal{O}\left(N^{-1}\right)$

- For rough volatility, is it $2 H, 1 / 2+H, 1$ or something else ?

A difficult and open problem

Challenges (when $H \neq 1 / 2$):
\# No Markov property \Rightarrow no PDE
df No semimartingale property \Rightarrow no Itô calculus

A difficult and open problem

Challenges (when $H \neq 1 / 2$):
⽢ㅡ No Markov property \Rightarrow no PDE
df No semimartingale property \Rightarrow no Itô calculus
\diamond Exhaustive literature review for weak rates of rough volatility models:

Authors	Weak rate	Assumptions
Bayer, Hall, Tempone (2020)	$1 / 2+H$	Linear vol. $(\psi(x)=x)$
Bayer, Fukasawa, Nakahara (2022)	$1 / 2+H$	Linear vol. $(\psi(x)=x)$
Gassiat (2022)	$1 / 2+3 H$	Linear vol. or cubic payoff $\left(\phi(x)=x^{3}\right)$
Friz, Salkeld, Wagenhofer (2022)	$1 / 2+3 H$	Polynomial payoff $\left(\phi(x)=x^{n}\right)$

- All of them rely on the structure for explicit computations or induction

Today's talk

(1) Establishes path-dependent PDEs for rough volatility models

Theorem (based on [Viens \& Zhang, 2019], [Wang, Yong \& Zhang, 2022]) If \boldsymbol{X} solves a Stochastic Volterra Equation, then $u(t, \omega):=\mathbb{E}\left[\phi\left(\boldsymbol{X}_{T}^{t, \omega}\right)\right]$ is the unique classical solution to a path-dependent PDE.
\hookrightarrow This applies in particular to rough volatility models.

Today's talk

(1) Establishes path-dependent PDEs for rough volatility models

Theorem (based on [Viens \& Zhang, 2019], [Wang, Yong \& Zhang, 2022]) If \boldsymbol{X} solves a Stochastic Volterra Equation, then $u(t, \omega):=\mathbb{E}\left[\phi\left(\boldsymbol{X}_{T}^{t, \omega}\right)\right]$ is the unique classical solution to a path-dependent PDE.
\hookrightarrow This applies in particular to rough volatility models.
(2) Applies them to weak rates of convergence

Theorem
If $\phi, \psi \in C^{\infty}$ with suitable growth then we get a weak rate $1 / 2+H$, i.e.

$$
\mathcal{E}^{N}=\mathcal{O}\left(N^{-1 / 2-H}\right)
$$

Table of contents

(1) Introduction

(2) Path-dependent PDEs
(3) Weak rates of convergence

A motivating example [Viens, Zhang 2019]

For $0 \leq t \leq s \leq T$, a natural decomposition is $V_{s}=V_{t}+\left[V_{s}-V_{t}\right]$.

A motivating example [Viens, Zhang 2019]

For $0 \leq t \leq s \leq T$, a natural decomposition is $V_{s}=V_{t}+\left[V_{s}-V_{t}\right]$.
\vDash Instead, Viens and Zhang introduce

$$
V_{s}=\int_{0}^{s} K(s, r) \mathrm{d} W_{r}=\underbrace{\int_{0}^{t} K(s, r) \mathrm{d} W_{r}}_{=: \Theta_{s}^{t}}+\underbrace{\int_{t}^{s} K(s, r) \mathrm{d} W_{r}}_{=: I_{s}^{t}}
$$

- Orthogonal decomposition: $\Theta_{s}^{t} \hat{\in} \mathcal{F}_{t}$ and $I_{s}^{t} \Perp \mathcal{F}_{t}$;
- $t \rightarrow \Theta^{t}$ is a martingale on $[0, s]$;
- (X, Θ) recovers a flow or Markov property;
- $\Theta_{s}^{t}=\mathbb{E}\left[V_{s} \mid \mathcal{F}_{t}\right]$ is related to the forward variance.

Markov representation

\oint Option prices take the form $\mathbb{E}\left[\phi\left(X_{T}\right) \mid \mathcal{F}_{t}\right]$ but how do we express this path-dependent process as a function?

Markov representation

\oint Option prices take the form $\mathbb{E}\left[\phi\left(X_{T}\right) \mid \mathcal{F}_{t}\right]$ but how do we express this path-dependent process as a function?

$$
\begin{aligned}
\mathbb{E}\left[\phi\left(X_{T}\right) \mid \mathcal{F}_{t}\right] & =\mathbb{E}\left[\left.\phi\left(X_{t}+\int_{t}^{T} \sigma_{s}\left(V_{s}\right) \mathrm{d} B_{s}-\frac{1}{2} \int_{t}^{T} \sigma_{s}\left(V_{s}\right)^{2} \mathrm{~d} s\right) \right\rvert\, \mathcal{F}_{t}\right] \\
& =\mathbb{E}\left[\left.\phi\left(X_{t}+\int_{t}^{T} \sigma_{s}\left(\Theta_{s}^{t}+I_{s}^{t}\right) \mathrm{d} B_{s}-\frac{1}{2} \int_{t}^{T} \sigma_{s}\left(\Theta_{s}^{t}+I_{s}^{t}\right)^{2} \mathrm{~d} s\right) \right\rvert\, X_{t}, \Theta_{[t, T]}^{t}\right] \\
& =u\left(t, X_{t}, \Theta_{[t, T]}^{t}\right),
\end{aligned}
$$

where $u:[0, T] \times \mathbb{R} \times C([t, T]) \rightarrow \mathbb{R}$ is defined as

$$
u(t, x, \omega):=\mathbb{E}\left[\phi\left(X_{T}\right) \mid X_{t}=x, \Theta^{t}=\omega\right]
$$

Stochastic Volterra Equations

© SVEs encompass rough volatility models; here without drift:

$$
\begin{aligned}
\boldsymbol{X}_{s} & =x+\int_{0}^{s} K(s, r) \sigma\left(\boldsymbol{X}_{r}\right) \mathrm{d} W_{r}=: \boldsymbol{\Theta}_{s}^{t}+\int_{t}^{s} K(s, r) \sigma\left(\boldsymbol{X}_{r}\right) \mathrm{d} W_{r} \\
\boldsymbol{X}_{s}^{t, \omega} & =\omega_{s}+\int_{t}^{s} K(s, r) \sigma\left(\boldsymbol{X}_{r}^{t, \omega}\right) \mathrm{d} W_{r}, \quad \text { (flow property) }
\end{aligned}
$$

then if pathwise uniqueness holds: $\boldsymbol{X}_{s}=\boldsymbol{X}_{s}^{t, \Theta^{t}}$, for all $s \in[t, T]$.

Stochastic Volterra Equations

© SVEs encompass rough volatility models; here without drift:

$$
\begin{aligned}
\boldsymbol{X}_{s} & =x+\int_{0}^{s} K(s, r) \sigma\left(\boldsymbol{X}_{r}\right) \mathrm{d} W_{r}=: \boldsymbol{\Theta}_{s}^{t}+\int_{t}^{s} K(s, r) \sigma\left(\boldsymbol{X}_{r}\right) \mathrm{d} W_{r} \\
\boldsymbol{X}_{s}^{t, \omega} & =\omega_{s}+\int_{t}^{s} K(s, r) \sigma\left(\boldsymbol{X}_{r}^{t, \omega}\right) \mathrm{d} W_{r}, \quad \text { (flow property) }
\end{aligned}
$$

then if pathwise uniqueness holds: $\boldsymbol{X}_{s}=\boldsymbol{X}_{s}^{t, \Theta^{t}}$, for all $s \in[t, T]$.

Markovian representation

Let $Y_{t}^{s, \omega}:=\mathbb{E}\left[\Phi\left(\boldsymbol{X}_{T}^{s, \omega}\right) \mid \mathcal{F}_{t}\right]$ and $u(t, \omega):=Y_{t}^{t, \omega}$, then

$$
\mathbb{E}\left[\Phi\left(\boldsymbol{X}_{T}\right) \mid \mathcal{F}_{t}\right]=\mathbb{E}\left[\Phi\left(\boldsymbol{X}_{T}^{t, \Theta^{t}}\right) \mid \mathcal{F}_{t}\right]=Y_{t}^{t, \Theta^{t}}=u\left(t, \Theta^{t}\right)
$$

The functional Itô formula for Volterra processes

The Fréchet derivative $\partial_{\omega} u$ is a linear map in the direction η :

$$
u\left(t, x, \omega+\eta \mathbb{1}_{[t, T]}\right)-u(t, x, \omega)=\left\langle\partial_{\omega} u(t, x, \omega), \eta\right\rangle+o\left(\left\|\eta \mathbb{1}_{[t, T]}\right\|\right)
$$

\rightarrow The direction of interest is $K^{t}(s):=K(s, t), s>t$.

The functional Itô formula for Volterra processes

The Fréchet derivative $\partial_{\omega} u$ is a linear map in the direction η :

$$
u\left(t, x, \omega+\eta \mathbb{1}_{[t, T]}\right)-u(t, x, \omega)=\left\langle\partial_{\omega} u(t, x, \omega), \eta\right\rangle+o\left(\left\|\eta \mathbb{1}_{[t, T]}\right\|\right)
$$

\rightarrow The direction of interest is $K^{t}(s):=K(s, t), s>t$.
Theorem (Viens and Zhang (2019))
Suppose $u \in C_{+, \alpha}^{1,2}([0, T] \times C([t, T]))$ and denote $u_{t}=u\left(t, \Theta^{t}\right)$:

$$
\mathrm{d} u_{t}=\left\{\partial_{t} u_{t}+\frac{\sigma\left(\boldsymbol{X}_{t}\right)^{2}}{2}\left\langle\partial_{\omega}^{2} u_{t},\left(K^{t}, K^{t}\right)\right\rangle\right\} \mathrm{d} t+\sigma\left(\boldsymbol{X}_{t}\right)\left\langle\partial_{\omega} u_{t}, K^{t}\right\rangle \mathrm{d} W_{t}
$$

Relation with Dupire's:

- Corresponds to $H=\frac{1}{2}$ hence $K=1$
- The path is only perturbed after t but not frozen

PPDE for rough volatility

Recall our model

$$
\left\{\begin{array}{l}
X_{t}=\int_{0 \cdot}^{t} \sigma_{s}\left(V_{s}\right) \mathrm{d} B_{s}-\frac{1}{2} \int_{0}^{t} \sigma_{s}^{2}\left(V_{s}\right) \mathrm{d} s, \\
V_{s}=\int_{0}^{s} K(s, r) \mathrm{d} W_{r},
\end{array}\right.
$$

and $u(t, x, \omega):=\mathbb{E}\left[\phi\left(X_{T}\right) \mid X_{t}=x, \Theta^{t}=\omega\right]$.
Theorem (Bonesini, Jacquier, P. 2023+, based on many people's works) Under regularity conditions on ϕ and σ, u is the unique $C_{+, \alpha}^{1,2,2}$ solution to $\left\{\partial_{t}+\frac{1}{2} \sigma_{t}\left(\omega_{t}\right)^{2}\left(\partial_{x}^{2}-\partial_{x}\right)+\frac{1}{2}\left\langle\partial_{\omega}^{2} \cdot,\left(K^{t}, K^{t}\right)\right\rangle+\rho \sigma_{t}\left(\omega_{t}\right)\left\langle\partial_{\omega}\left(\partial_{x} \cdot\right), K^{t}\right\rangle\right\} u(t, x, \omega)=0$, with terminal condition $u(T, x, \omega)=\phi(x)$.

Table of contents

(1) Introduction

(2) Path-dependent PDEs

(3) Weak rates of convergence

Back to weak rates

\circlearrowright We denote $\bar{u}_{t}:=u\left(t, \bar{X}_{t}, \Theta_{[t, T]}^{t}\right)$ (recall V is sampled exactly)

$$
\mathcal{E}^{N}=\mathbb{E}\left[\phi\left(X_{T}\right)-\phi\left(\bar{X}_{T}\right)\right]=\mathbb{E}\left[\bar{u}_{t_{0}}\right]-\mathbb{E}\left[\bar{u}_{t_{N}}\right]=-\sum_{i=0}^{N-1} \underbrace{\left(\mathbb{E}\left[\bar{u}_{t_{i+1}}\right]-\mathbb{E}\left[\bar{u}_{t_{i}}\right]\right)}_{=: \mathscr{H}_{i}},
$$

where, by application of the functional Itô formula and the PPDE,

$$
\begin{aligned}
\mathfrak{A}_{i}:= & \frac{1}{2} \int_{t_{i}}^{t_{i+1}} \mathbb{E}\left[\partial_{x x}^{2} \bar{u}_{t}\left(\psi\left(V_{t}\right)^{2}-\psi\left(V_{t_{i}}\right)^{2}\right)\right] \mathrm{d} t \\
& +\rho \int_{t_{i}}^{t_{i+1}} \mathbb{E}\left[\left\langle\partial_{\omega}\left(\partial_{x} \bar{u}_{t}\right), K^{t}\right\rangle\left(\psi\left(V_{t}\right)-\psi\left(V_{t_{i}}\right)\right)\right] \mathrm{d} t .
\end{aligned}
$$

- How to obtain the rate from those differences?
- How to recover $\mathbb{E}\left[\psi\left(V_{t}\right)-\psi\left(V_{t_{i}}\right)\right]$?

Approaches that do not work

For any $g \in C^{1}$ and $F \in \mathbb{D}^{1,2}$,

- Cauchy-Schwarz yields the strong rate

$$
\mathbb{E}\left[\left(g\left(V_{t}\right)-g\left(V_{t_{i}}\right)\right) F\right] \leq \sqrt{\mathbb{E}\left[\left|g\left(V_{t}\right)-g\left(V_{t_{i}}\right)\right|^{2}\right]} \sqrt{\mathbb{E}\left[F^{2}\right]} \sim \Delta_{t}^{H}
$$

Approaches that do not work

For any $g \in C^{1}$ and $F \in \mathbb{D}^{1,2}$,

- Cauchy-Schwarz yields the strong rate

$$
\mathbb{E}\left[\left(g\left(V_{t}\right)-g\left(V_{t_{i}}\right)\right) F\right] \leq \sqrt{\mathbb{E}\left[\left|g\left(V_{t}\right)-g\left(V_{t_{i}}\right)\right|^{2}\right]} \sqrt{\mathbb{E}\left[F^{2}\right]} \sim \Delta_{t}^{H}
$$

- Taylor \& integration by parts: let $\Delta K(r):=K(t, r)-K\left(t_{i}, r\right)$ then

$$
\begin{aligned}
\mathbb{E}\left[\left(g\left(V_{t}\right)-g\left(V_{t_{i}}\right)\right) F\right] & =\mathbb{E}\left[\left(V_{t}-V_{t_{i}}\right) F \int_{0}^{1} g^{\prime}\left(\lambda V_{t}+(1-\lambda) V_{t_{i}}\right) \mathrm{d} \lambda\right] \\
& \lesssim \int_{0}^{t}|\Delta K(r)|\left(K(t, r)+K\left(t_{i}, r\right)\right) \mathrm{d} r
\end{aligned}
$$

Approaches that do not work

For any $g \in C^{1}$ and $F \in \mathbb{D}^{1,2}$,

- Cauchy-Schwarz yields the strong rate

$$
\mathbb{E}\left[\left(g\left(V_{t}\right)-g\left(V_{t_{i}}\right)\right) F\right] \leq \sqrt{\mathbb{E}\left[\left|g\left(V_{t}\right)-g\left(V_{t_{i}}\right)\right|^{2}\right]} \sqrt{\mathbb{E}\left[F^{2}\right]} \sim \Delta_{t}^{H}
$$

- Taylor \& integration by parts: let $\Delta K(r):=K(t, r)-K\left(t_{i}, r\right)$ then

$$
\begin{aligned}
\mathbb{E}\left[\left(g\left(V_{t}\right)-g\left(V_{t_{i}}\right)\right) F\right] & =\mathbb{E}\left[\left(V_{t}-V_{t_{i}}\right) F \int_{0}^{1} g^{\prime}\left(\lambda V_{t}+(1-\lambda) V_{t_{i}}\right) \mathrm{d} \lambda\right] \\
& \lesssim \int_{0}^{t}|\Delta K(r)|\left(K(t, r)+K\left(t_{i}, r\right)\right) \mathrm{d} r
\end{aligned}
$$

- Itô's formula on Θ_{t} because V is not a local martingale

$$
g\left(V_{t}\right)=g\left(\Theta_{t}^{t}\right)=g\left(\Theta_{t}^{t_{i}}\right)+\int_{t_{i}}^{t} K(t, r) g^{\prime}\left(\Theta_{t}^{r}\right) \mathrm{d} W_{r}+\frac{1}{2} \int_{t_{i}}^{t} K(t, r)^{2} g^{\prime \prime}\left(\Theta_{t}^{r}\right) \mathrm{d} r
$$

- Clark-Ocone

$$
g\left(V_{t}\right)=\mathbb{E}\left[g\left(V_{t}\right)\right]+\int_{0}^{t} K(t, r) \mathbb{E}\left[g\left(V_{t}\right) \mid \mathcal{F}_{r}\right] \mathrm{d} W_{r}
$$

Joint chaos expansion

Lemma

Let $\boldsymbol{s}_{n}=\left(s_{1}, \cdots, s_{n}\right)$. For $g \in C^{\infty}$ and $F \in \mathbb{D}^{\infty, 2}$, it holds

$$
\mathbb{E}\left[F g\left(V_{t}\right)\right]=\mathbb{E}[F] \mathbb{E}\left[g\left(V_{t}\right)\right]+\sum_{n=1}^{\infty} \frac{1}{n!} \int_{[0, t]^{n}} \mathbb{E}\left[\mathrm{D}_{\boldsymbol{s}_{n}} F\right] \mathbb{E}\left[\mathrm{D}_{\boldsymbol{s}_{n}} g\left(V_{t}\right)\right] \mathrm{d} \boldsymbol{s}_{n}
$$

Joint chaos expansion

Lemma

Let $\boldsymbol{s}_{n}=\left(s_{1}, \cdots, s_{n}\right)$. For $g \in C^{\infty}$ and $F \in \mathbb{D}^{\infty, 2}$, it holds

$$
\mathbb{E}\left[F g\left(V_{t}\right)\right]=\mathbb{E}[F] \mathbb{E}\left[g\left(V_{t}\right)\right]+\sum_{n=1}^{\infty} \frac{1}{n!} \int_{[0, t]^{n}} \mathbb{E}\left[\mathrm{D}_{\boldsymbol{s}_{n}} F\right] \mathbb{E}\left[\mathrm{D}_{\boldsymbol{s}_{n}} g\left(V_{t}\right)\right] \mathrm{d} \boldsymbol{s}_{n}
$$

In the quadratic case $\phi(x)=x^{2}, \mathrm{D}_{s} \partial^{2} \bar{u}_{t}=0$ thus it boils down to

$$
\mathfrak{A}_{i}=\int_{t_{i}}^{t_{i+1}} \mathbb{E}\left[\partial^{2} \bar{u}_{t}\right] \mathbb{E}\left[g\left(V_{t}\right)-g\left(V_{t_{i}}\right)\right] \mathrm{d} t \lesssim \int_{t_{i}}^{t_{i+1}}\left(t^{\gamma}-t_{i}^{\gamma}\right) \mathrm{d} t .
$$

\& Turns out that instead of giving rate γ,

$$
\sum_{i=1}^{N-1} \int_{t_{i}}^{t_{i+1}}\left(t^{\gamma}-t_{i}^{\gamma}\right) \mathrm{d} t \lesssim \Delta_{t} \quad \Longrightarrow \quad \text { rate one! }
$$

A touch of combinatorics (extension of Faà di Bruno's formula)

For a function $f \in C^{\infty}$ and a random variable $X \in \mathbb{D}^{\infty, 2}$,

$$
\begin{aligned}
\mathrm{D}_{1,2} f(X)= & f^{\prime}(X) \mathrm{D}_{1,2} X+f^{\prime \prime}(X) \mathrm{D}_{1} X \mathrm{D}_{2} X \\
\mathrm{D}_{1,2,3} f(X)= & f^{\prime}(X) \mathrm{D}_{1,2,3} X+f^{\prime \prime \prime}(X) \mathrm{D}_{1} X \mathrm{D}_{2} X \mathrm{D}_{3} X \\
& +f^{\prime \prime}(X)\left\{\mathrm{D}_{1,2} X \mathrm{D}_{3} X+\mathrm{D}_{1,3} X \mathrm{D}_{2} X+\mathrm{D}_{2,3} X \mathrm{D}_{1} X\right\}
\end{aligned}
$$

A touch of combinatorics (extension of Faà di Bruno's formula)

 For a function $f \in C^{\infty}$ and a random variable $X \in \mathbb{D}^{\infty, 2}$,$$
\begin{aligned}
\mathrm{D}_{1,2} f(X)= & f^{\prime}(X) \mathrm{D}_{1,2} X+f^{\prime \prime}(X) \mathrm{D}_{1} X \mathrm{D}_{2} X \\
\mathrm{D}_{1,2,3} f(X)= & f^{\prime}(X) \mathrm{D}_{1,2,3} X+f^{\prime \prime \prime}(X) \mathrm{D}_{1} X \mathrm{D}_{2} X \mathrm{D}_{3} X \\
& +f^{\prime \prime}(X)\left\{\mathrm{D}_{1,2} X \mathrm{D}_{3} X+\mathrm{D}_{1,3} X \mathrm{D}_{2} X+\mathrm{D}_{2,3} X \mathrm{D}_{1} X\right\} \\
\mathrm{D}_{1, \ldots, n} f(X)= & \sum_{k=1}^{n} f^{(k)}(X) \sum_{\mathcal{D} \in \mathcal{D}_{k}^{n}} \mathcal{D} X .
\end{aligned}
$$

$\triangleright \mathcal{D}_{k}^{n}$ is the set of partitions of a set of n objects into k non-empty subsets;
$\triangleright \mathcal{D}$ is a product of k Malliavin derivatives.
\therefore This permits to write

$$
\mathbb{E}\left[\mathrm{D}_{\boldsymbol{s}_{n}} \partial_{x}^{2} \bar{u}_{t}\right]=\mathbb{E}\left[\mathrm{D}_{\boldsymbol{s}_{n}} \phi^{\prime \prime}\left(X_{T}\right)\right]=\mathbb{E}\left[\sum_{k=1}^{n} \phi^{(k+2)}\left(X_{T}\right) \sum_{\mathcal{D} \in \mathcal{D}_{k}^{n}} \mathcal{D} X_{T}\right]
$$

A kernel story

Let $\mathcal{I} \subset \mathbb{N}$ and define $\mathbf{K}\left(t, \boldsymbol{s}_{\mathcal{I}}\right):=\prod_{k \in \mathcal{I}} \mathbf{K}\left(t, s_{k}\right)$.

- Recall $X_{T}=x+\int_{t}^{T} \psi\left(V_{r}\right) \mathrm{d} B_{r}$ then if $s_{1}<s_{2}<\cdots<s_{k}$ we have

$$
\mathrm{D}_{\boldsymbol{s}_{k}} X_{T}=\int_{s_{k}}^{T} \psi^{(k)}\left(V_{r}\right) \mathbf{K}\left(r, \boldsymbol{s}_{k}\right) \mathrm{d} B_{r}+\rho \psi^{(k-1)}\left(V_{s_{k}}\right) \mathbf{K}\left(s_{k}, \boldsymbol{s}_{k-1}\right)
$$

A kernel story

Let $\mathcal{I} \subset \mathbb{N}$ and define $\mathbf{K}\left(t, \boldsymbol{s}_{\mathcal{I}}\right):=\prod_{k \in \mathcal{I}} \mathbf{K}\left(t, s_{k}\right)$.

- Recall $X_{T}=x+\int_{t}^{T} \psi\left(V_{r}\right) \mathrm{d} B_{r}$ then if $s_{1}<s_{2}<\cdots<s_{k}$ we have

$$
\mathrm{D}_{\boldsymbol{s}_{k}} X_{T}=\int_{s_{k}}^{T} \psi^{(k)}\left(V_{r}\right) \mathbf{K}\left(r, \boldsymbol{s}_{k}\right) \mathrm{d} B_{r}+\rho \psi^{(k-1)}\left(V_{s_{k}}\right) \mathbf{K}\left(s_{k}, \boldsymbol{s}_{k-1}\right)
$$

- By triangles,

$$
\begin{aligned}
\mathbb{E}\left[\mathrm{D}_{\boldsymbol{s}_{n}}\left(g\left(V_{t}\right)-g\left(V_{t_{i}}\right)\right)\right]= & \mathbb{E}\left[g^{(n)}\left(V_{t}\right) \mathbf{K}\left(t, \boldsymbol{s}_{n}\right)-g^{(n)}\left(V_{t_{i}}\right) \mathbf{K}\left(t_{i}, \boldsymbol{s}_{n}\right)\right] \\
= & \mathbf{K}\left(t, \boldsymbol{s}_{n}\right) \mathbb{E}\left[g^{(n)}\left(V_{t}\right)-g^{(n)}\left(V_{t_{i}}\right)\right] \\
& +\mathbb{E}\left[g^{(n)}\left(V_{t_{i}}\right)\right] \sum_{l=1}^{n} \Delta K\left(t, t_{i}, s_{l}\right) \mathbf{K}\left(t, \boldsymbol{s}_{[l+1, n]}\right) \mathbf{K}\left(t_{i}, \boldsymbol{s}_{[1, l-1]}\right)
\end{aligned}
$$

A kernel story

Let $\mathcal{I} \subset \mathbb{N}$ and define $\mathbf{K}\left(t, \boldsymbol{s}_{\mathcal{I}}\right):=\prod_{k \in \mathcal{I}} \mathbf{K}\left(t, s_{k}\right)$.

- Recall $X_{T}=x+\int_{t}^{T} \psi\left(V_{r}\right) \mathrm{d} B_{r}$ then if $s_{1}<s_{2}<\cdots<s_{k}$ we have

$$
\mathrm{D}_{\boldsymbol{s}_{k}} X_{T}=\int_{s_{k}}^{T} \psi^{(k)}\left(V_{r}\right) \mathbf{K}\left(r, \boldsymbol{s}_{k}\right) \mathrm{d} B_{r}+\rho \psi^{(k-1)}\left(V_{s_{k}}\right) \mathbf{K}\left(s_{k}, \boldsymbol{s}_{k-1}\right)
$$

- By triangles,

$$
\begin{aligned}
\mathbb{E}\left[\mathrm{D}_{s_{n}}\left(g\left(V_{t}\right)-g\left(V_{t_{i}}\right)\right)\right]= & \mathbb{E}\left[g^{(n)}\left(V_{t}\right) \mathbf{K}\left(t, \boldsymbol{s}_{n}\right)-g^{(n)}\left(V_{t_{i}}\right) \mathbf{K}\left(t_{i}, \boldsymbol{s}_{n}\right)\right] \\
= & \mathbf{K}\left(t, \boldsymbol{s}_{n}\right) \mathbb{E}\left[g^{(n)}\left(V_{t}\right)-g^{(n)}\left(V_{t_{i}}\right)\right] \\
& +\mathbb{E}\left[g^{(n)}\left(V_{t_{i}}\right)\right] \sum_{l=1}^{n} \Delta K\left(t, t_{i}, s_{l}\right) \mathbf{K}\left(t, \boldsymbol{s}_{[l+1, n]}\right) \mathbf{K}\left(t_{i}, \boldsymbol{s}_{[1, l-1]}\right)
\end{aligned}
$$

\triangleright We end up with integrals of the form (at least in spirit)
$\int_{[0, t]^{n}} \mathbf{K}\left(t_{i}, \boldsymbol{s}_{\llbracket 1, l-1]}\right)^{2}\left|\Delta K\left(t, t_{i}, s_{l}\right)\right| \mathbf{K}\left(t, \boldsymbol{s}_{[l+1, n]}\right)^{2} \mathrm{~d} \boldsymbol{s}_{n} \lesssim \int_{0}^{t}\left|\Delta K\left(t, t_{i}, s_{l}\right)\right| \mathrm{d} s_{l} \lesssim \Delta_{t}^{H+\frac{1}{2}}$

Bring everything together

\varangle Overall, this entails

$$
\mathcal{E}^{N} \lesssim \Delta_{t}^{H+\frac{1}{2}} \sum_{i=0}^{N-1} \int_{t_{i}}^{t_{i+1}}\left(\sum_{n=1}^{\infty} \frac{C_{0}^{n}}{n!} \sum_{k=1}^{n} \mathrm{BDG}_{k}\left|\mathcal{D}_{k}^{n}\right|\right) \mathrm{d} t
$$

where $C_{0}=C_{0}(H, T, \phi, \psi)$.

Bring everything together

\varangle Overall, this entails

$$
\mathcal{E}^{N} \lesssim \Delta_{t}^{H+\frac{1}{2}} \sum_{i=0}^{N-1} \int_{t_{i}}^{t_{i+1}}\left(\sum_{n=1}^{\infty} \frac{C_{0}^{n}}{n!} \sum_{k=1}^{n} \mathrm{BDG}_{k}\left|\mathcal{D}_{k}^{n}\right|\right) \mathrm{d} t
$$

where $C_{0}=C_{0}(H, T, \phi, \psi)$.

- The Stirling number of the second kind: $\left|\mathcal{D}_{k}^{n}\right| \leq \frac{1}{2}\binom{n}{k} k^{n-k}$;
- The BDG constant: $\quad \mathrm{BDG}_{k} \leq(4 k)^{k / 2}$.

$$
\begin{aligned}
\Longrightarrow \sum_{n=1}^{\infty} \sum_{k=1}^{n} \frac{C_{0}^{n}}{n!} \mathrm{BDG}_{k}\left|\mathcal{D}_{k}^{n}\right| & \leq \sum_{n=1}^{\infty} \sum_{k=1}^{n} \frac{C_{1}^{n}}{n!} k^{k / 2} \frac{n!}{k!(n-k)!} k^{n-k} \\
& =\sum_{k=1}^{\infty}\left(C_{1} \mathrm{e}^{C_{1}}\right)^{k} \frac{k^{k / 2}}{k!}<\infty
\end{aligned}
$$

Conclusion

Summary:

(1) We established a PPDE theory for SVEs and rough volatility models, based on previous works by Viens, Wang, Yong, Zhang.
(2) We obtained a weak rate of convergence $1 / 2+H$ for a (relatively) wide range of models

Conclusion

Summary:

(1) We established a PPDE theory for SVEs and rough volatility models, based on previous works by Viens, Wang, Yong, Zhang.
(2) We obtained a weak rate of convergence $1 / 2+H$ for a (relatively) wide range of models

Outlook:

\llcorner How to obtain $1 / 2+3 H$ which seems to be optimal?
\ulcorner Extensions to other discretisations, drift
\urcorner Extension to fully implicit SVEs, what could be the rate?
\lrcorner Further applications: control, numerics, regularisation, path-dependent payoffs...

Merci !

