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Introduction

Generative modeling (for time series)

• Given datasets from an (unknown) distribution µ (target) of a time series, e.g.

Medical data of a patient

Renewable energy production

Finance: asset/commodity price, ...

I The goal is to

generate new (or real-looking) samples of µ:

Augmented data added to original training data
Useful for improving clinical predictions, weather forecast
Financial industry: market stress test, market risk measurement, deep hedging
Combined with Reinforcement learning → helpful to improve the learning of
optimal strategy: Generative Augmented Reinforcement Learning (GARL)
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Introduction

Generative modeling (GM) techniques

• Several competing methods including

Likelihood-based models (2011-): energy-based models (EBM), variational
auto-encoders (VAE), normalizing flow models, etc

Implicit generative models (2014-): generative adversarial network (GAN)

Score-based diffusion models (2020-): emergent class of generative AI models
that achieved state-of-the-art performance by outperforming GANs.

but mostly for static data/image.
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Introduction

Challenges of GM for time series

A “good” GM for time series data should

not only learn the time marginals and the joint distribution

learn the joint distribution while preserving temporal dynamics: respect the
causality of variables across time
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Introduction

State-of-the-art generative methods for time series

• GAN type methods:

Time series GAN (Yoon et al. 19): combination of an unsupervised adversarial
loss on real/synthetic data and supervised loss for generating sequential data

Quant GAN (Wiese et al. 20): adversarial generator using temporal convolutional
networks

Causal optimal transport GAN (Xu et al. 20): adversarial generator using
the adapted Wasserstein distance for processes

PCF-GAN (Lou et al. 23): Path characteristic function into GAN

VolGAN (Vuletic and Cont 23): Arbitrage-free implied volatility surface

• Neural SDEs: SDE representation of time series with parametric (e.g. NN) coefficients
to be trained for fitting with real samples (Remlinger et al. 21, Kidger et al. 21)

• Signature embedding of time series: Fermanian (19), Ni et al. (20), Buehler et al.
(20), Morrill et al. (20), etc

I Most of these GM are parametric and require the training of NN

I We propose here a nonparametric generative model based on Schrödinger bridge, in
the spirit of score-based diffusion models, but over a finite horizon without time reversal,
and adapted for time series.
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Schrödinger bridge for time series

Outline

1 Schrödinger bridge for time series

2 Numerical experiments with applications



7/26

Schrödinger bridge for time series

Reminder on the (classical) Schrödinger bridge (SB) problem

• Entropy optimal transport problem of Schrödinger (1932), see survey in Léonard (14):
Given:

reference measure on path spaces (e.g. Wiener W) over a finite horizon T

two distributions µ, ν (e.g. data and prior)

find the closest probability measure P to the reference w.r.t. Kullback-Leibler divergence,
i.e. relative entropy, which admits as marginals: µ at time 0 and ν at time T .

I Stochastic control formulation by Girsanov’s theorem (Dai Pra 1991, Chen et al. 20)
Minimize over control process α

E
[1

2

∫ T

0

|αt |2dt
]

(equal to KL(P,W) :=

∫
log

dP
dW

dP )

subject to

dXt = αtdt + dWt , 0 ≤ t ≤ T , X0 ∼ µ, XT ∼ ν.
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Schrödinger bridge for time series

Application of SB to generative modeling

The optimal drift of the SB problem is in feedback form: α∗t = a∗(t,Xt) with a∗

characterized in terms of a Schrödinger system, and the solution can be solved
numerically by

Iterative Proportional Fitting (IPF), a.k.a. Sinkhorn algorithm

Score-based matching: refinement of IPF

→ Generative model for sampling µdata: recent works by

De Bortoli et al. (21-), Vargas et al. (21), Wang et al. (21)
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Schrödinger bridge for time series

Schrödinger bridge time series problem

Let µ ∈ P((Rd)N) be the data time series distribution of some Rd -valued process
observed at N dates: target time series measure.

• Entropic interpolation of µ: : Find a diffusion process X on Rd satisfying

dXt = αtdt + dWt , 0 ≤ t ≤ T , X0 = 0,

with a controlled drift α minimizing

J(α) := E
[1

2

∫ T

0

|αt |2dt
]

and such that (Xt1 , . . . ,XtN ) ∼ µ (perfect match of the target time series measure), for
some time grid t0 = 0 < . . . < ti < . . . < tN = T .

Remark: the time grid T = {ti : i ∈ J1,NK} for the interpolation of the Schrödinger
diffusion may be different from the observed times of the time series.
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Schrödinger bridge for time series

Assumptions

Assume that µ admits a density w.r.t. Lebesgue measure on (Rd)N , denoted by misuse
of notation: µ(x1, . . . , xN).

Denote by µW
T the distribution of Brownian motion W on T , i.e. of (Wt1 , . . . ,WtN ),

hence with density:

µWT (x1, . . . , xN) =

N−1∏
i=0

1√
2π(ti+1 − ti )

exp
(
−
|xi+1 − xi |2

2(ti+1 − ti )

)
.

• We assume that the relative entropy of µ w.r.t. µW
T is finite, i.e.

(H) KL(µ|µW
T ) :=

∫
log

µ

µW
T
dµ < ∞.

Remark: Assumption (H) is satisfied whenever µ comes from a process with

Gaussian noise

Heavy-tailed distribution but with second moment
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Schrödinger bridge for time series

Solution to Schrödinger bridge time series (SBTS)

Theorem (Diffusion SBTS)

Under (H), the optimal controlled drift of the SBTS problem is in the path-
dependent form:

α∗t = a∗(t,Xt ; X t1:ti ), ti ≤ t < ti+1, i = 0, . . . ,N − 1,

where we set X t1:ti := (Xt1 , . . . ,Xti ), and

a∗(t, x ; x1:i ) = ∇x logEW

[ µ
µW
T

(Xt1 , . . . ,XtN )
∣∣X t1:ti = x1:i ,Xt = x

]
,

for x1:i = (x1, . . . , xi ) ∈ (Rd)i , x ∈ Rd . Here EW denotes the expectation under
which X is a Brownian motion by Girsanov’s theorem.

→ By construction, the diffusion (called SBTS ) process

dXt = a∗(t,Xt ; (Xti )ti≤t)dt + dWt , X0 = 0,

satisfies (Xt1 , . . . ,XtN ) ∼ µ.
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Schrödinger bridge for time series

Application to generative modeling

• Choice of the time grid T = {ti : i ∈ J1,NK}, ∆ti = ti+1 − ti .

When d = 1: calibrate ∆ti to the (empirical) variance of µ over [ti , ti+1]
(time-changed Brownian motion):

∆ti = Varµ(Xi+1 − Xi ).

For d > 1: normalize each component of the random vector of the time series by
its Std, and then use ∆ti = 1.

• Estimate/learn the Schrödinger drift from samples of µ, see next slides

• Simulate e.g. by Euler scheme the SBTS diffusion →
New samples of µ with realizations of (Xt1 , . . . ,XtN )

Prediction by computing conditional law of Xti+1 |X t1:ti
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Schrödinger bridge for time series Estimation of drift function

Alternate expression of the Schrödinger drift function

Using Bayes formula, we derive the following expression:

a∗(t, x ; x1:i ) =
1

ti+1 − t

Eµ
[
(Xti+1 − x)Fi (t, xi , x ,Xti+1 )

∣∣X t1:ti = x1:i

]
Eµ
[
Fi (t, xi , x ,Xti+1 )

∣∣X t1:ti = x1:i

] , (1)

for t ∈ [ti , ti+1), i = 0, . . . ,N − 1, x1:i ∈ (Rd)i , x ∈ Rd , where

Fi (t, xi , x , xi+1) = exp

(
− |xi+1 − x |2

2(ti+1 − t)
+
|xi+1 − xi |2

2(ti+1 − ti )

)
.

Here Eµ[·|·] is the (conditional) expectation under µ → One can then estimate the drift
function by relying directly on samples of data distribution µ.

Remark: When µ is the distribution arising from a Markov chain, then the conditional
expectations in (1) (and so the drift function) will depend on the past values X t1:ti =
(Xt1 , . . . ,Xti ) only via the last value Xti .

In practice, we can test the Markov property of µ, and see to what order we need to
condition on the past.
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Schrödinger bridge for time series Estimation of drift function

Kernel estimation of the drift

• Approximate the conditional expectation under µ by nonparametric regression
methods, e.g. kernel:

I From data samples X (m)
1:N = (X

(m)
1 , . . . ,X

(m)
N ), m = 1, . . . ,M from µ, the

Nadaraya-Watson estimator of the drift function in (1) is given by

â(t, x ; x1:i ) =
1

ti+1 − t

M∑
m=1

(X
(m)
i+1 − x)Fi (t,X

(m)
i , x ,X

(m)
i+1 )K i

(X (m)
1:i − x1:i

h

)
M∑

m=1

Fi (t,X
(m)
i , x ,X

(m)
i+1 )K i

(X (m)
1:i − x1:i

h

) ,

for x1:i = (x1, . . . , xi ), where K i is a kernel function on (Rd)i , e.g. in multiplicative form:
K i (x1:i ) =

∏i
j=1 K(xj), with K kernel function on Rd , h > 0 is the bandwith parameter.

Remarks:

Choice of kernel is not crucial: we take the quartic kernel K(x) ∝ (1− |x |2)21|x|≤1

Choice of bandwith h is more crucial: tradeoff between bias and variance.

Plug-in estimate of a∗
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Schrödinger bridge for time series Estimation of drift function

SBTS Algorithm

Nπ: number of uniform steps in Euler scheme between two observation dates ti , ti+1:

tπk,i = ti + k/Nπ, k = 0, . . . ,Nπ − 1.

Algorithm 1: SBTS Simulation

Input: data samples of time series (X
(m)
1 , · · · ,X (m)

N ), m = 1, . . . ,M, and Nπ .
Initialization: initial state x0 = 0;
for i = 0, . . . ,N − 1 do

Initialize state y0 = xi ;
for k = 0, . . . ,Nπ − 1 do

Compute â(tπk,i , yk ; x1:i ) by kernel estimator;

Sample εk ∈ N (0, 1) and compute: yk+1 = yk + 1
Nπ

â(tπk,i , yk ; x1:i ) + 1√
Nπ
εk ;

end
Set xi+1 = yNπ .

end
Return: x1, · · · , xN an (approximate) sample of µ

→ Complexity of order: O(MNNπ).
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Numerical experiments

Outline

1 Schrödinger bridge for time series

2 Numerical experiments with applications
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Numerical experiments Toy examples

GARCH model

{
Xti+1 = σti+1εti+1

σ2
ti+1

= α0 + α1X
2
ti + α2X

2
ti−1

, i = 1, . . . ,N,

where α0 = 5, α1 = 0.4, α2 = 0.1, εti ∼ N (0, 0.1), N = 60.

• Parameters: M = 1000, bandwith h = 0.2, Nπ = 100
Runtime for 1000 generated paths = 100s.
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Figure: Samples path of reference GARCH (left) and generator SBTS (right)
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Numerical experiments Toy examples

Metrics for SBST generator vs GARCH model
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Figure: Top left: p-value of the Kolmogorov-Smirnov test for the marginals Xti . Top right:
samples plot of the joint distribution (Xt1 ,XtN ).
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Numerical experiments Toy examples

A multivariate AR Gaussian model

Xti+1 = φXti + εti+1 , with εti ∼ N (0, σ1d + (1− σ)Id),

φ ∈ [0, 1]: correlation across time steps, σ ∈ [−1, 1]: correlation across the components.

I We compute the predictive score: Mean absolute error between conditional mean
(from generated model) and the true value: E[Xti+1 |X ti ] = φXti .

Temporal correlation (fixing σ = 0.8) Feature correlation (fixing φ = 0.8)
Settings φ = 0.2 φ = 0.5 φ = 0.8 σ = 0.2 σ = 0.5 σ = 0.8

Predictive score (lower the better)
SBTS .161± .016 .180± .026 .244± .014 .325± .052 .295± .038 .244± .014

TimeGAN .640± 0.003 0.412± 0.002 .251± .002 .282± .005 .261± .002 .251± .002

Table: Predictive score for SBTS vs TimeGan
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Numerical experiments Toy examples

Fractional Brownian motion

Fractional Brownian motion (FBM) with Hurst index H = 0.1.

• Parameters: M = 1000, N = 60, Nπ = 100, bandwith h = 0.05.
Runtime for 1000 generated paths = 100s.
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Figure: Four samples path of reference FBM (left) and generator SBTS (right)
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Numerical experiments Toy examples

Metrics for SBST generator vs FBM
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Bottom: Covariance matrix for reference FBM and SBTS
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Numerical experiments Toy examples

Estimation of Hurst index

Standard estimator of Hurst index:

Ĥ =
1

2

[
1−

log
( N−1∑

i=0

|Xti+1 − Xti |2
)

logN

]
.

I From our generated SBTS with N = 60, we get:

Ĥ = 0.102, Std = 0.003.
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Numerical experiments Application with real-data sets

Application to deep hedging on real data sets (SPX)

Data: Index prices of SPX from jan. 1, 2010 to jan. 30, 2020, with sliding window of N
= 5 days, → M = 2500 samples.

• Consider a ATM call option on SPX: g(XT ) = (XT − K)+, and we search for a price
p∗ and hedging strategy ∆∗ minimizing the quadratic criterion (loss function):

(p,∆) 7→ E
∣∣∣ p +

N−1∑
i=0

∆ti (Xti+1 − Xti )− g(XT )︸ ︷︷ ︸
PnL

∣∣∣2 = replication error

I We parametrize ∆ by a LSTM network that is trained from synthetic data sets
produced by SBTS (10 times more), and we compare the results with real-data sets.

Figure: Procedure of backtest for deep hedging
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Numerical experiments Application with real-data sets

Comparison of the PnL and replication error with real-data and generative SBTS
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Figure: Deep hedging PnL distribution from test set

Premium Mean PnL Std PnL
Data 0.0059 -0.0119 0.0124
SBTS 0.0078 -0.0101 0.0114

Table: Price, Mean of PnL and its Std (replication error) on the test set.
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Conclusion

Concluding remarks

• Novel generative model for time series based on Schrödinger bridge (SB) approach:

Solution described by a forward stochastic differential equation (SDE) over a finite
period, which matchs perfectly the data distribution: bridge between data-driven
model and classical diffusion model-based approach.

Drift estimated by nonparametric regression, e.g. kernel method: practical and
low-cost computationally (plug-in estimate that does not require training of neural
networks as in GAN type methods)

• Series of numerical experiments, including financial applications with real-data, to
illustrate the performance and accuracy of our generative SBTS.

• Further developments:

SBTS model can be enriched to fit more accurately with data time series:

diffusion coefficient
jump-diffusion process

Diffusion SB valued in functional space in view of applications to implied volatility
surface generation

Kernel method suffer from curse of dimensionality. Alternately, the drift function
can be approximated by neural networks, and more precisely with a LSTM
architecture.
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Conclusion

Reference

q M. Hamdouche, P. Henry-Labordère, H. Pham. Generative modeling for time
series via Schrödinger bridge. SSRN 4412434, arXiv:2304.05093

Code available on Github: https://github.com/hamdouchm/SBTimeSeries

https://github.com/hamdouchm/SBTimeSeries
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