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Introduction



Market making

What is a market maker?

• A market maker is a liquidity provider. He provides bid and ask

prices for a list of assets to other market participants.

• Today, often replaced by algorithms.

A market maker faces a complex optimization problem

• Makes money out of the bid-ask spread.

• Faces the risk that the price moves adversely without him being able

to unwind his position rapidly enough.
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From economics to mathematics

Classical literature in economics on market making

• Ho and Stoll. Optimal dealer pricing under transactions and return

uncertainty. JoFE, 1981.

• O’Hara and Oldfield. The microeconomics of market making.

JoFQA, 1986.

• Grossman and Miller. Liquidity and market structure. JoF, 1988.

New interest after the crisis

• Avellaneda and Stoikov. High-frequency trading in a limit order

book. QF, 2008.

• Guéant, Lehalle, and Fernandez-Tapia. Dealing with the Inventory

Risk : A solution to the market making problem. MAFE, 2013.

• Cartea, Jaimungal, and Ricci. Buy Low, Sell High : A High

Frequency Trading perspective. SIFIN, 2014.
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An interesting research strand

Many extensions of the initial one-asset model

• Multi-asset framework.

• General intensities (e.g. logistic).

• Different objective functions.

• Drift / signal / alpha.

• Adverse selection.

• Client tiering.

• Stochastic trade sizes.

• Market and limit orders.

• Different asset classes.

• Mean field game version.

• ...
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Externalisation

The problem

On many markets (e.g. FX cash markets), market maker have access to a

liquidity pool (e.g. D2D market) were they can unwind part of their

inventory.

Literature

• Barzykin, Bergault, and Guéant. Algorithmic market making in

dealer markets with hedging and market impact. MaFi, 2023.

• Cartea and Sánchez-Betancourt. Brokers and Informed Traders:

Dealing with Toxic Flow and Extracting Trading Signals. Preprint,

2022.

• Nutz, Webster, and Zhao. Unwinding Stochastic Order Flow: When

to Warehouse Trades. Preprint, 2023.
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Externalisation: our contribution

Goals of this paper

We propose a mean-field version of the paper by Cartea and

Sánchez-Betancourt:

• What happens when a broker faces a large number of (informed)

traders?

• How should the broker hedge?

• And, on another note, how should each individual trader use its

signal?
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The N−player game



The market

Reference price process

Under probability P, the price process (St)t is given by

dSt = σSdW S
t .

Common signal

Everyone observe a common signal (αt)t given by

dαt = −kααtdt + σαdW α
t .
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Informed traders dynamics

Private signal

Each trader observe a particular signal given for trader n by

dαn
t = −k̄αn

t dt + σ̄dW n
t .

Inventory

The inventory (Qn
t )t of trader n is given by

dQn
t = νnt dt.

Cash process

The cash process (X n
t )t of trader n is given by

dX n
t = −νnt

(
St + ηIνnt

)
dt.
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Broker’s dynamics

Inventory

The inventory (QB
t )t of the broker is given by

dQB
t =

(
NνBt −

N∑
n=1

νnt

)
dt.

Cash process

The cash process (XB
t )t of the broker is given by

dXB
t =

N∑
n=1

νnt
(
St + ηIνnt

)
dt − NνBt

(
St + ηBνnt

)
dt.
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The problem of the n−th informed trader

Change of probability

We introduce the probability Pn,νB

given by

dPn,νB

dP

∣∣∣∣∣
Fn

t

= exp

(∫ t

0

b νB
u + αn

u + αu

σS
dW S

u − 1

2

∫ t

0

(
b νB

u + αn
u + αu

σS

)2

du

)
.

Under this probability, the price has dynamics

dSt =
(
b νBt + αn

t + αt

)
dt + σSdW̃ S,n.
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The problem of the n−th informed trader

Objective function

For a given (νBt )t∈[0,T ], the n−th informed trader maximises the

following objective function

En,νB

[
X n
T + Qn

TST − ā (Qn
T )

2 − ϕ̄

∫ T

0

(Qn
t )

2
dt

]
.

This amounts to maximizing

En,νB

[∫ T

0

{
Qn

t

(
b νBt + αn

t + αt

)
− ηI (νnt )

2 − 2 āQn
t ν

n
t − ϕ̄ (Qn

t )
2
}
dt

]
.
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T )

2 − ϕ̄

∫ T

0

(Qn
t )

2
dt

]
.

This amounts to maximizing

En,νB

[∫ T

0

{
Qn

t

(
b νBt + αn

t + αt

)
− ηI (νnt )

2 − 2 āQn
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The problem of the broker
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N
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EB,νB

[
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T + QB

T ST − aB

N

(
QB

T

)2 − ϕB

N

∫ T

0

(
QB

t

)2
dt

]
.

This amounts to maximizing

EB,νB

[∫ T

0

{
QB

t

(
b νBt +αt

)
+ηI

N∑
n=1

(νnt )
2−NηB

(
νBt

)2
−2

aB

N
QB

t

(
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−
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N

(
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t

)2}
dt

]
.

14



The problem of the broker

Objective function

For a given (ν1t )t∈[0,T ], . . . , (ν
N
t )t∈[0,T ], the broker wants to maximise the

following objective function

EB,νB

[
XB
T + QB

T ST − aB

N

(
QB

T

)2 − ϕB

N

∫ T

0

(
QB

t

)2
dt

]
.

This amounts to maximizing

EB,νB

[∫ T

0

{
QB

t

(
b νBt +αt

)
+ηI

N∑
n=1

(νnt )
2−NηB

(
νBt

)2
−2

aB

N
QB

t

(
NνBt−

N∑
n=1

νnt

)
−
ϕB

N

(
QB

t

)2}
dt

]
.

14



The problem of the broker

Objective function

For a given (ν1t )t∈[0,T ], . . . , (ν
N
t )t∈[0,T ], the broker wants to maximise the

following objective function

EB,νB

[
XB
T + QB

T ST − aB

N

(
QB

T

)2 − ϕB

N

∫ T

0

(
QB

t

)2
dt

]
.

This amounts to maximizing

EB,νB

[∫ T

0

{
QB

t

(
b νBt +αt

)
+ηI

N∑
n=1

(νnt )
2−NηB

(
νBt

)2
−2

aB

N
QB

t

(
NνBt−

N∑
n=1

νnt

)
−
ϕB

N

(
QB

t

)2}
dt

]
.

14



The problem of the broker

Objective function

The optimisation problem remains unchanged if we scale the objective
function by dividing it by N, in which case the broker maximises

EB,νB

[∫ T

0

{
Q̄B

t

(
b νBt +αt

)
+ηI

1

N

N∑
n=1

(νnt )
2−ηB

(
νBt

)2
−2aB Q̄B

t

(
νBt−

1

N

N∑
n=1

νnt

)
−ϕB

(
Q̄B

t

)2}
dt

]

where
(
Q̄B

t

)
t
=
(

QB
t

N

)
t
, that is,

dQ̄B
t =

(
νBt − 1

N

N∑
n=1

νnt

)
dt.
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Facing many informed traders



The framework

Common signal
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Private signal of the representative informed trader
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t)t given by
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The framework

A mean-field of informed traders

Let us denote by (µt)t the process with values in P(R) representing at

time t the distribution of the execution rates of the (other) informed

traders conditionally to Fα
t . The mean field execution rate (ν̄t)t is given

by

ν̄t =

∫
R
x µt(dx).

Inventory of the broker

The (scaled) inventory (Q̄B
t )t of the broker is given by

dQ̄B
t =

(
νBt − ν̄t

)
dt,
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Optimisation problems

The problem of the representative informed trader

The representative informed trader wants to solve

sup
ν I∈A

H I ,νB

(ν I )

where

H I ,νB

(ν I )=E
[∫ T

0

{
Q I

t

(
b νB

t + αI
t + αt

)
− ηI

(
ν I
t

)2
− 2 āQ I

t ν
I
t − ϕ̄

(
Q I

t

)2}
dt

]
.
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Optimisation problems

The problem of the broker

We consider the following problem for the broker

sup
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HB,µ(νB),
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HB,µ(νB) = E
[ ∫ T

0

{
Q̄B

t

(
b νBt + αt

)
+ ηI

∫
R
x2µt(dx)− ηB

(
νBt

)2
− 2 aB Q̄B

t

(
νBt −

∫
R
x µt(dx)

)
− ϕB

(
Q̄B

t

)2 }
dt

]
,

with b ≤ 2aB , 2ηB , 2ηI , 4ϕB , 4ϕ̄.
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Optimisation problems

Definition

A solution of the above game is given by a probability flow µ⋆ ∈ P(R), a
control ν I ,⋆ ∈ A, and a control νB,⋆ ∈ A such that

(i) H I ,νB,⋆

(ν I ,⋆) = sup
ν I∈A

H I ,νB,⋆

(ν I );

(ii) HB,µ⋆

(νB,⋆) = sup
νB∈A

HB,µ⋆

(νB);

(iii) µ⋆
t is the distribution of ν I ,⋆t conditionally to Fα

t for

Lebesgue–almost every t ∈ [0,T ],

where Fα := (Fα
t )t∈[0,T ] is the P−completed filtration generated by W α.
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The solution



The informed trader’s optimality condition

Lemma

Let νB ∈ A. The functional H I ,νB

(·) : A → R is strictly concave up to a

P⊗ dt−null set, i.e. if there exists A ∈ A⊗ B([0,T ]) with

P⊗ dt(A) > 0 such that for (ω, t) ∈ A we have that ζt(ω) ̸= νt(ω), then

for every ρ ∈ (0, 1), we have

H I ,νB

(ρ ζ + (1− ρ) ν) > ρH I ,νB

(ζ) + (1− ρ)H I ,νB

(ν) .

Lemma

The functional H I ,νB

is everywhere Gâteaux differentiable in A. The

Gâteaux derivative at a point ν I ∈ A in a direction w I ∈ A is given by

〈
DH I ,νB

(ν I ),w I〉 = E
[ ∫ T

0

w I
t

{
− 2 ηIν I

t − 2 aIQ I
T

+

∫ T

t

(
b νB

u + αI
u + αu − 2ϕIQ I

u

)
du

}
dt

]
.
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The informed trader’s optimality condition

Theorem

We have that

ν I ,⋆ = argmax
ν I∈A

H I ,νB

(ν I )

if and only if ν I ,⋆ is the unique strong solution to the FBSDE−d
(
2 ηIν I ,⋆t

)
=
(
b νBt + αI

t + αt − 2ϕIQ I ,⋆
t

)
dt − dZ I

t ,

2 ηIν I ,⋆T = −2 aIQ I ,⋆
T ,

where Z I ∈ H2
T is a martingale.
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The informed trader’s optimality condition

Proof

Let us first assume that
〈
DH I ,νB

(ν I ,⋆),w I
〉
= 0 for all w I ∈ A. This implies

that

E
[
−2 ηIν I ,⋆

t − 2 aIQ I
T +

∫ T

t

(
b νB

u + αI
u + αu − 2ϕIQ I ,⋆

u

)
du

∣∣∣∣Ft

]
= 0

almost surely for all t ∈ [0,T ]. Therefore,

−2 ηIν I ,⋆
t = E

[
2 aIQ I ,⋆

T −
∫ T

t

(
b νB

u + αI
u + αu − 2ϕIQ I ,⋆

u

)
du

∣∣∣∣Ft

]
=

∫ t

0

(
b νB

u + αI
u + αu − 2ϕIQ I ,⋆

u

)
du

+ E
[
2 aIQ I ,⋆

T −
∫ T

0

(
b νB

u + αI
u + αu − 2ϕIQ I ,⋆

u

)
du

∣∣∣∣Ft

]
=

∫ t

0

(
b νB

u + αI
u + αu − 2ϕIQ I ,⋆

u

)
du − Z I

t ,
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The informed trader’s optimality condition

Proof

where the process Z I given by

Z I
t := −E

[
2 aIQ I ,⋆

T −
∫ T

0

(
b νB

u + αI
u + αu − 2ϕIQ I ,⋆

u

)
du

∣∣∣∣Ft

]
is a martingale, by definition. Hence it is clear that ν I ,⋆ is solution to the

FBSDE.

Conversely, assume that ν I ,⋆ is solution to the FBSDE. Then ν I ,⋆ can be

represented implicitly as

2 ηIν I ,⋆
t = E

[
− 2 aIQ I ,⋆

T +

∫ T

t

(
b νB

u + αI
u + αu − 2ϕIQ I ,⋆

u

)
du

∣∣∣∣Ft

]
.

Plugging this into the expression of the Gâteaux derivative, it is clear that it

vanishes almost surely for any w I ∈ A.
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The broker’s optimality condition

Lemma

Let (µt)t∈[0,T ] with values in P(R) be the distribution of the execution

rates of the informed traders conditionally to Fα
t . The functional

HB,µ(·) : A → R is strictly concave up to a P⊗ dt−null set.

Lemma

The functional HB,µ is everywhere Gâteaux differentiable in A. The

Gâteaux derivative at a point νB ∈ A in a direction wb ∈ A is given by

〈
DHB,µ(νB),wB〉 = E

[ ∫ T

0

wB
t

{
(b − 2 aB)Q̄B

T −2 ηBνB
t

+

∫ T

t

(
b

∫
R
x µu(dx) + αu − 2ϕBQ̄B

u

)
du

}
dt

]
.
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The broker’s optimality condition

Theorem

We have that

νB,⋆ = argmax
νB∈A

HB,µ(νB)

if and only if νB,⋆ is the unique strong solution to the FBSDE−d
(
2 ηBνB,⋆

t

)
=
(
b ν̄t + αt − 2ϕBQ̄B,⋆

t

)
dt − dZB

t ,

2 ηBνB,⋆
T = (b − 2 aB)Q̄B,⋆

T ,

where ZB ∈ H2
T is a martingale.
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Equilibrium condition

The mean field FBSDE system

At equilibrium, we have the following system of FBSDEs

−d
(
2 ηIν I ,⋆t

)
=
(
b νBt + αI

t + αt − 2ϕIQ I ,⋆
t

)
dt − dZ I

t ,

−d
(
2 ηBνB,⋆

t

)
=
(
b ν̄⋆t + αt − 2ϕBQ̄B,⋆

t

)
dt − dZB

t ,

2 ηIν I ,⋆T = −2 aIQ I ,⋆
T

2 ηBνB,⋆
T = −(2 aB − b)Q̄B,⋆

T ,

ν̄⋆t = E
[
ν I ,⋆t |Fα

t

]
.
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Optimal strategy of the broker

FBSDE system

At the equilibrium, we solve the system

−d
(
2 ηI ν̄⋆t

)
=
(
b νB,⋆

t + αt − 2 ϕ̄Q̄⋆
t

)
dt − dZ̄ I

t ,

−d
(
2 ηBνB,⋆

t

)
=
(
b ν̄⋆t + αt − 2ϕBQ̄B,⋆

t

)
dt − dZB

t ,

2 ηI ν̄⋆T = −2 āQ̄⋆
T

2 ηBνB,⋆
T = −(2 aB − b)Q̄B,⋆

T .
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Optimal strategy of the broker

Ansatz

We look for a solution to the above system in the form

ν̄⋆t = g a
t αt + gb

t Q̄⋆
t + g c

t Q̄B,⋆
t ,

νB,⋆
t = hatαt + hbt Q̄

⋆
t + hct Q̄

B,⋆
t ,

where g a
t , g

b
t , g

c
t and hat , h

b
t , h

c
t are deterministic C1 functions, with

terminal conditions g a
T = haT = g c

T = hbT = 0, gb
T = −ā/ηI and

hcT = −(2 aB − b)/2 ηB , and where

Q̄⋆
t =

∫ t

0

ν̄⋆u du , and Q̄B,⋆
t =

∫ t

0

(
νB,⋆
u − ν̄⋆u

)
du .
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Optimal strategy of the broker

A system of ODEs

We observe that the system of equations becomes

0 = dg a
t +

[
−kαg a

t + gb
t g a

t + g c
t (h

a
t − g a

t ) +
b ha

t + 1

2 ηI

]
dt

0 = dha
t +

[
−kαha

t + hb
t g

a
t + hc

t (h
a
t − g a

t ) +
b g a

t + 1

2 ηB

]
dt

0 = dgb
t +

[(
gb
t

)2
+ g c

t

(
hb
t − gb

t

)
+

b hb
t − 2 ϕ̄

2 ηI

]
dt

0 = dhb
t +

[
hb
t g

b
t + hc

t

(
hb
t − gb

t

)
+

b gb
t

2 ηB

]
dt

0 = dg c
t +

[
gb
t g c

t + g c
t (h

c
t − g c

t ) +
b hc

t

2 ηI

]
dt

0 = dhc
t +

[
hb
t g

c
t + hc

t (h
c
t − g c

t ) +
b g c

t − 2ϕB

2 ηB

]
dt ,

with terminal condition g a
T = ha

T = g c
T = hb

T = 0, gb
T = −ā/ηI and

hc
T = −(2 aB − b)/2 ηB . We see that the system for gb

t , g
c
t , h

b
t , h

c
t is

independent of the solution to g a
t , h

a
t . 30



Optimal strategy of the broker

A Riccati equation

Let P : [0,T ] → R4 be given by

Pt = −

(
hct hbt
g c
t gb

t

)

and let U ,Y ,Q,S ∈ R2×2 be given by

U =

(
1 −1

0 1

)
,Y =

(
0 b

2 ηB

b
2 ηI 0

)
,Q =

−ϕB

ηB 0

0 − ϕ̄
ηI

 ,S =

 2 aB−b
2 ηB 0

0 ā
ηI

 .

The system of ODEs for gb
t , g

c
t , h

b
t , h

c
t can be written as the following

matrix Riccati differential equation{
0 = dPt

dt + Y Pt − Pt U Pt − Q , t ∈ [0,T ) ,

PT = S .
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Optimal strategy of the broker

Solution of the Riccati ODE (Freiling et al. 2000, Freiling 2002)

The unique solution takes the form

Pt = Tt R−1
t ,

where Rt ,Tt solve the linear system of differential equations

d

dt

(
Rt

Tt

)
=

(
0 U

−Q −Y

) (
Rt

Tt

)
,

(
RT

TT

)
=

(
I

S

)
.
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Optimal strategy of the broker

A linear ODE

Finally, we just have to solve the linear system of ODEs given by:0 = dg a
t +

[
−kαg a

t + gb
t g a

t + g c
t (hat − g a

t ) +
b hat+1
2 ηI

]
dt

0 = dhat +
[
−kαhat + hbt g

a
t + hct (h

a
t − g a

t ) +
b ga

t +1
2 ηB

]
dt ,

with terminal conditions g a
T = haT = 0.
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Optimal strategy of the broker

A linear ODE

Let

Xt =

(
ha
t

g a
t

)
, At =

− 1
2 ηB

− 1
2 ηI

 , Bt =

(
kα − hc

t hc
t − hb

t − b
2 ηB

−g c
t − b

2 ηI kα + g c
t − gb

t

)
,

then, we have that the system for hat and g a
t can be written as

dXt = (At + Bt Xt)dt ,

with terminal condition XT = 0.
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Optimal strategy of the broker

The strategy

The closed-form optimal solution to the FBSDE is then(
νB,⋆
t

ν̄⋆t

)
= Xt αt − Pt

(
Q̄B,⋆

t

Q̄⋆
t

)
.

Remark

The optimal trading strategy of the broker can be written as

νB,⋆
t = qat

(
ν̄⋆t − gb

t Q̄⋆
t − g c

t Q̄B,⋆
t

)
+ hbt Q̄

⋆
t + hct Q̄

B,⋆
t

= qat ν̄
⋆
t +

(
hbt − qat g

b
t

)
Q̄⋆

t + (hct − qat g
c
t ) Q̄

B,⋆
t ,

where the externalisation rate qat is defined as

qat =
hat
g a
t

.
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Optimal strategy of the informed trader

FBSDE of the representative trader

−d
(
2 ηIν I ,⋆t

)
=
(
b νB,⋆

t + αI
t + αt − 2ϕIQ I ,⋆

t

)
dt − dZ I

t ,

2 ηIν I ,⋆T = −2 aIQ I ,⋆
T .

Ansatz

As before, we make an ansatz and look for a solution with the form

ν I ,⋆t = f at αt + f a,It αI
t + f bt Q̄

⋆
t + f b,It Q I ,⋆

t + f ct Q̄
B,⋆
t ,

where f a, f a,I , f b, f b,I , f c are deterministic C1 functions, with terminal

conditions f aT = f a,IT = f bT = f cT = 0 and f b,IT = −aI/ηI , and where

Q I ,⋆
t =

∫ t

0

ν I ,⋆u du.
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Optimal strategy of the informed trader

A system of ODEs

We observe that the system of equations becomes

0 = df at +

[
−kαf at + f bt g

a
t + f b,It f at + f ct (h

a
t − g a

t ) +
bha

t + 1

2ηI

]
dt

0 = df a,It +

[
−k I f a,It + f b,It f a,It +

1

2ηI

]
dt

0 = df bt +

[
f bt g

b
t + f b,It f bt + f ct (h

b
t − gb

t ) +
bhb

t

2ηI

]
dt

0 = df b,It +

[(
f b,It

)2
− ϕI

ηI

]
dt

0 = df ct +

[
f bt g

c
t + f b,It f ct + f ct (hc

t − g c
t ) +

bhc
t

2ηI

]
dt,

with terminal conditions f aT = f a,IT = f bT = f cT = 0 and f b,IT = −aI/ηI .
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Optimal strategy of the informed trader

A Riccati ODE

Notice that the equation for f b,I is independent of the others, and is

given by 0 = df b,It +

[(
f b,It

)2
− ϕI

ηI

]
dt,

f b,IT = −aI/ηI .

This is a simple Riccati ODE, and its solution is given by

f b,It = −

√
ϕI

ηI
tanh

√ϕI

ηI
(T − t)

− e2
∫ T
t

yp(s)ds

ηI/aI +
∫ T

t
e2

∫ T
u

yp(s)dsdu

with

yp(t) = −

√
ϕI

ηI
tanh

√ϕI

ηI
(T − t)

 .
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Optimal strategy of the informed trader

A linear ODE

Once we have solved the equation for f b,I , the equation for f a,I is just a

linear ODE given by0 = df a,It +
[
−k I f a,It + f b,It f a,It + 1

2ηI

]
dt

f a,IT = 0.

Its solution for t ∈ [0,T ] is therefore given by

f a,It =
1

2ηI

∫ T

t

e−
∫ u
t (k

I−f b,Is )dsdu .
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Optimal strategy of the informed trader

A linear system of ODEs

Let Ab,c : [0,T ] → R4 and bb,c : [0,T ] → R2 be given by

Ab,c
t = −

(
gb
t + f b,It hb

t − gb
t

g c
t hc

t − g c
t + f b,It

)
and bb,c

t = − b

2ηI

(
hb
t

hc
t

)
.

We introduce the function F b,c : [0,T ] → R2 given by

F b,c
t =

(
f bt
f ct

)
.

Then F b,c satisfies

d

dt
F b,c
t = Ab,c

t F b,c
t + bb,c

t

with terminal condition F b,c
T = 0.
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Optimal strategy of the informed trader

A linear ODE

Finally, if we define ba : [0,T ] → R by

bat = −f bt g
a
t − f ct (h

a
t − g a

t )−
bhat + 1

2ηI
∀t ∈ [0,T ],

then the unique solution to the linear Equation for f a is given by

f at = −
∫ T

t

baue
−

∫ u
t
(kα−f b,Is ds)du

for t ∈ [0,T ].
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Numerical results



Model parameters

• Time horizon: T = 1 day;

• Initial price: S0 = 100 $;

• Price volatility: σS = 1 $ · day−1/2;

• Initial common signal: α0 = 0 $ · day−1;

• Signal volatility: σα = 1 $ · day−3/2;

• Mean-reversion of signal: kα = 5 day−1;

• Transaction costs of traders: ηI = 10−3 $ · day;
• Transaction cost of the broker: ηB = 1.2 · 10−3 $ · day;
• Terminal penalties: aI = aB = 1 $;

• Risk aversion: ϕI = ϕB = 10−2 $ · day−1.
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Sample paths of signal and price
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Figure 1: Signal and price.
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Sample paths of execution rates
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Figure 2: Mean-field execution rate and broker’s execution rate.
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Sample paths of inventories
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Figure 3: Mean-field inventory and broker’s inventory.
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Representative trader: model parameters

• Initial private signal: αI
0 = 0 $ · day−1;

• Signal volatility: σ̄ = 0.5 $ · day−3/2;

• Mean-reversion of signal: k̄ = 5 day−1.
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Sample paths of signals
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Figure 4: Signals.
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Sample paths of trader’s execution rates
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Figure 5: Mean-field execution rate and representative trader’s execution rate.
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Sample paths of inventories
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Figure 6: Mean-field inventory and representative trader’s inventory.
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Sample paths for the broker
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Figure 7: Execution rate and inventory of the broker.
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The End

Thank You!
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