Forecasting extreme trajectories using semi-norm representations

Séminaire FDD-FiME Arthur THOMAS Gilles DE TRUCHIS and Sébastien FRIES October 3, 2024

Motivations

Extreme values and sharp reversals are at the heart of **prediction challenges**

• **Traditional time series** often relies on "the best predictor"

$$
\widehat{X}_{t+h} := \mathbb{E}(X_{t+h}|\mathcal{I}_t), \ \ h > 0
$$

with \mathcal{I}_t the past information

• **However**, future realizations far from central values lead to

huge prediction errors !

Le cours du cacao a depassé celui du cuivre

En dollars nar tonne

Xt is **anticipative**

Figure: $X_t = \rho X_{t+1} + \varepsilon_t$, $\varepsilon_t \sim$ i.i.d. heavy-tailed

What do you choose?

X_t is **causal**

۸'n **Figure:** $X_t = \rho X_{t-1} + \varepsilon_t$, $\varepsilon_t \sim$ i.i.d. heavy-tailed

200

⇒ **The heavy elephant in the room: Forecasting!**

- **Econometrics/Statistics** literature:
	- **[Rosenblatt \(2000\)](#page-64-0), [Lanne and Saikkonen \(2011\),](#page-61-0) [Gouriéroux and Zakoian \(2017\)](#page-60-0)**
	- $-$ Theoretically mimics bubble data¹
	- $-$ Estimation is well covered²

• **Applications:**

- Economic: Macroeconometrics, Financial data, Bitcoins, Commodities prices, Portfolio m anagement 3
- **Climate variables:** Global sea level, GHG emissions, global temperature, sea ice area, and some natural oscillation indices⁴
- Physics, astronomy, engineering...

¹[Gouriéroux et al. \(2020\)](#page-60-1)

² [Cavaliere et al. \(2017\)](#page-58-0), [Fries and Zakoian \(2019\)](#page-59-0), [Hecq et al. \(2016\)](#page-61-1), [Hecq et al. \(2017b\)](#page-62-0), [Hecq et al. \(2020\)](#page-62-1), [Andrews et al. \(2009\),](#page-57-0) [Lanne and Saikkonen \(2011\)](#page-61-0), [Lanne & Saikkonen \(2013\),](#page-63-0) [Gourieroux & Jasiak \(2023\)](#page-61-2)

3 [Lanne and Saikkonen \(2011\)](#page-61-0), [Lanne & Luoto \(2013\)](#page-62-2), [Moussa & Thomas \(2023\)](#page-62-3), [Hecq et al. \(2023\)](#page-62-4), [Hecq et al. \(2024\)](#page-62-5), [Fries and Zakoian \(2019\),](#page-59-0) [Fries \(2021\),](#page-59-1) [Hencic & Gourieroux \(2015\)](#page-62-6), [Hecq et al. \(2017a\)](#page-61-3), [Hecq et al. \(2017b\),](#page-62-0) [Friedrich et al. \(2020\),](#page-59-2) [Hecq & Voisin \(2021\)](#page-62-7), [de Truchis et al. \(2024\)](#page-58-1)

⁴[Blasques et al \(2023\),](#page-64-1) [Giancaterini et al. \(2022\)](#page-59-3)

Outline

- We use *α*-**stable linear time series** and discuss a new **semi-norm** representation
	- *⇒* this naturally leads to the concept of **past-representability**
- We focus on **extreme** trajectories of past-representable processes and show that
	- *⇒* to some extent, the stochastic nature of the trajectories vanishes
	- ... to give way to deterministic features related to MA(*∞*) coefficients
- We suggest two **forecasting procedures for asymptotically extreme trajectories**
- We use a **Monte-Carlo** study to evaluate our results in a non-asymptotic framework
- We illustrate the empirical relevance of our results on **climatic data**⁵

⁵We develop a web app to replicate the results and play with other time series (emprical data and simulated one)

Introduction to stable moving-averages

Anticipative v.s. causal processes

Large shocks are non Gaussian

• **Stable laws** are natural candidates

ε^t ∼ S(*α, β, σ, µ*) $\alpha \in (0, 2)$: tail index $\beta \in [-1, 1]$: asymmetry *σ >* 0 : scale *µ* ∈ R : location

- ε_1 and ε_2 are Stable random variables if $a\varepsilon_1 + b\varepsilon_2$ is Stable
- To simplify the slides we focus on $\beta = 0 \Rightarrow \varepsilon_t \sim S \alpha S$
- Unconditional moments exist up to the tail index *α*

 $\mathbb{E}(|\varepsilon_1|^u) < \infty \Rightarrow \mathbb{E}(|X_t|^u) < \infty, \quad u < \alpha$

Two-sided stable moving-averages

We consider linear **strictly stationary** processes driven by *ε^t iid∼ SαS*

Figure: X_t is anticipative: $k \in \mathbb{Z}_+$

Figure: X_t is causal: $k \in \mathbb{Z}$ _−

Causal v.s. anticipative processes

We remain agnostic while developing our theory even if

• the **anticipative** profile is **visually more familiar**

$$
X_t = \rho X_{t+1} + \varepsilon_t \Rightarrow d_k = \rho^k, \ \ k \ge 0, \ |\rho| < 1
$$

However, on the **empirical side**,

• **causal processes** are massively more considered

$$
X_t = \rho X_{t-1} + \varepsilon_t \Rightarrow d_k = \rho^k, \ \ k \le 0, \ |\rho| < 1
$$

Figure: On financial markets $k \in \mathbb{Z}_+$ or $k \in \mathbb{Z}$

Some trajectories/processes are more predictable than others

$$
X_t = \rho X_{t+1} + \varepsilon_t \qquad \qquad Y_t = \rho Y_{t-1} + \varepsilon_t
$$

Forecasting stable-MA(*∞***) with conditional moments**

• Backward conditional moments as well

 $\mathbb{E}(|X_t|^b |X_{t+1}) < \infty, \quad b < a$

• **Forward conditional moments** are more promising

 $X_{t+1} = \mathbb{E}(|X_t|^f | X_{t-1}) < \infty, \ \ f < 2\alpha + 1$

as the conditional expectation always exists

Forecasting with *α***-stable vectors**

• [Fries \(2022\)](#page-63-1) suggests a new strategy based on

$$
\boldsymbol{X}_t = (X_t, X_{t+h})',
$$

that is an *α*-stable vector, as its characteristic function alway exists

$$
\mathbb{E}\left[e^{i\langle \boldsymbol{u},\boldsymbol{X}\rangle}\right] = \exp\left\{-\int_{S_d} |\langle \boldsymbol{u},\boldsymbol{s}\rangle|^\alpha \bigg(1-i,\text{sign}(\langle \boldsymbol{u},\boldsymbol{s}\rangle) \text{tg}(\pi\alpha/2)\bigg)\Gamma(d\boldsymbol{s})\right\}
$$
(2)

and relies on a finite ${\sf spectral}$ measure Γ defined on the unit sphere $S_d \in \mathbb{R}^d$

N.B. Any norm can be used to define the unit sphere: hereafter we retain the Euclidean one

$$
S_d = \{ \mathbf{s} \in \mathbb{R}^d : ||\mathbf{s}||_e = 1 \}
$$

The spectral measure

- For $d = 2$, S_d is a circle and Γ acts as a compass
- Given a particular position on the map (the realization of *X^t*)
- ... Γ charges the mass where X_{t+1} is likely to go
- *x^t* **close to central values**: "magnetic" perturbations occur
- *⇒* Γ charges numerous mass points
	- *x^t* **far from central values**: some patterns emerge
- *⇒* Γ charges a small number of mass points

Tail conditional distribution of the AR(1)

- Typically, for $X_t = \rho X_{t+1} + \varepsilon_t$, with $\varepsilon_t \stackrel{iid}{\sim} \mathcal{S}\alpha\mathcal{S}$, if $x_t \to +\infty$
- \Rightarrow For $\textbf{\emph{X}}_t=(\textit{X}_t,\textit{X}_{t+h})'$, Γ points to the "East" coordinates or

$$
\frac{X_t}{||X_t||_e} = \frac{(\rho^h, 1)}{\sqrt{1 + \rho^{2h}}}
$$

- Straightforward interpretation: conditionally to $x_t \rightarrow +\infty$
	- $-$ Either X_{t+h} crashes to central values with probability $1 \rho^{\alpha h}$
	- $-$ Or X_{t+h} continue to grow with probability $\rho^{\alpha h}$
- *⇒* when *h* is also large, the crash probability goes to 1

 $X_i = (X_i, X_i, Y_i)$

Baseline path of stable-MA(*∞***)**

• Now consider the general case

$$
X_t = \sum_{k \in \mathbb{Z}} d_k \varepsilon_{t+k}, \quad \varepsilon_t \stackrel{iid}{\sim} \mathcal{S}(\alpha, \beta, \sigma, 0)
$$

• Set $\tau = t + k$ such that

$$
X_t = \sum_{k \in \mathbb{Z}} d_k \varepsilon_{t+k} = \sum_{\tau \in \mathbb{Z}} d_{\tau-t} \varepsilon_{\tau}
$$

 \Rightarrow X_t is a linear combination of deterministic baseline paths scaled by *ε^τ* and shift in time

1	$\tau - m$
0.9	$a_{\tau,1} = d_k$
0.8	$\tau = 20$
0.7	$k = 0$
0.6	$m = 10$
0.5	$m = 10$
0.4	$a_{\tau,2}$
0.3	Anticipative side
0.2	$a_{\tau,1}$
0.3	$a_{\tau,2}$
0.1	$a_{\tau,3}$
0.2	$a_{\tau,4}$
0.3	$a_{\tau,1}$
0.4	$a_{\tau,2}$
0.2	$a_{\tau,3}$
0.3	$a_{\tau,4}$
0.4	$a_{\tau,5}$
0.5	$a_{\tau,2}$
0.6	$a_{\tau,3}$

$$
t\longmapsto d_{\tau-t}
$$

Spectral measure of stable-MA(*∞***) vectors**

Tail conditional distribution of stable-MA(*∞***)**

Theorem 1 is a direct application of Theorem 4.4.8 by [Samorodnitsky and Taqqu \(1994\)](#page-64-2)

Theorem 1 *For any Borel sets A, B of* S_{m+h+1} , \mathbb{P} $\int X_t$ $\frac{1}{\|X_t\|_e} \in A$ $\|X_t\|_e > x, \frac{X_t}{\|X\|_e}$ $\frac{X_t}{\|X_t\|_e} \in B$ $\overline{\Lambda}$ $\longrightarrow \frac{\Gamma(A \cap B)}{\Gamma(B)}$ $\Gamma(B)$

Corollary 1

 \mathcal{L} et $A\subset S_{m+h+1}$, a Borel set that does not contain any point $\pm |d_k/\|d_k\|_e.$ Then,

$$
\mathbb{P}\bigg(\frac{X_t}{\|X_t\|_e} \in A\bigg| \|X_t\|_e > x\bigg) \xrightarrow[x \to +\infty]{} \frac{\Gamma(A)}{\Gamma(S_{m+h+1})} = 0
$$

⇒ During extreme events, *X^t* is necessarily **colinear to** some *d^k*

Conditioning set

In view of empirical applications, Theorem 1 is not very useful as

belongs to the conditioning set and *X^t* embeds future variables

- An a priori is needed regarding the behavior of X_{t+1}, \ldots, X_{t+h} to choose *B*
- Ideally we would like to **exclude the future from the conditioning set**

A simple solution with complex implications

A simple solution is to consider, for any sequence (*Xt−m, . . . , Xt*+*h*) *∈* R *m*+*h*+1 ,

$$
||(X_{t-m},\ldots,X_t,X_{t+1},\ldots,X_{t+h})|| = ||(X_{t-m},\ldots,X_t,0,\ldots,0)||
$$

However, $\|\cdot\|$ is not positive definite and is actually a **semi-norm**

From a topological point of view, the unit-sphere homeomorphically comes down to

$$
C_{m+h+1}^{\|\cdot\|} = \{\mathbf{s} \in \mathbb{R}^d : ||\mathbf{s}|| = 1\},\
$$

a **unit-cylinder**

1. Can we obtain proper representation of α -stable vectors on the unit-cylinder ?

1. Can we obtain proper representation of α -stable vectors on the unit-cylinder ? Yes but not for all processes you need to have at least one $d_k \neq 0$, with $k > 0$

- 1. Can we obtain proper representation of α -stable vectors on the unit-cylinder? Yes but not for all processes you need to have at least one $d_k \neq 0$, with $k > 0$
	- *⇒* Causal processes are ruled out
- 2. Can we derive tail conditional distributions under this semi-norm representation?

- 1. Can we obtain proper representation of α -stable vectors on the unit-cylinder? Yes but not for all processes you need to have at least one $d_k \neq 0$, with $k > 0$
	- *⇒* Causal processes are ruled out
- 2. Can we derive tail conditional distributions under this semi-norm representation? yes

Stable vectors on $\mathit{C_d^{\left\| \cdot \right\|}}$ *d*

General theoretical results

Definition of stable vectors on $C_d^{\|\cdot\|}$ *d*

Definition 1

Let $X = (X_1, \ldots, X_d)$ *be an* α -stable random vector. For the $S \alpha S$ case, we say that X is representable o n $C_d^{||\cdot||}$ if there exists a Borel measure $\Gamma^{||\cdot||}$ on $C_d^{||\cdot||}$ satisfying for all $\bm{u}\in\mathbb{R}^d$

$$
\int_{C_d^{||\cdot||}} |\langle u, s \rangle|^{\alpha} \Gamma^{\|\cdot\|}(d\mathbf{s}) < +\infty,
$$
\n(3)

such that the characteristic function of X can be written as in ([2\)](#page-12-0) *with* (*Sd,* Γ) *replaced by*

 $(C_d^{\|\cdot\|}, \Gamma^{\|\cdot\|}).$

• As cylinders are unbounded sets, the integrability condition ensures the sanity of the def.

Representation of stable vectors on $C_d^{\|\cdot\|}$ *d*

Theorem 2

Denote $K^{\|\cdot\|}=\{x\in S_d:\|x\|=0\}$ and let X be a $S\alpha S$ on \R^d with spectral measure Γ on $S_d.$ Then,

X is representable on $C_d^{\|\cdot\|} \iff \Gamma(K^{\|\cdot\|}) = 0.$

 M oreover, if X is representable on $C_d^{\|\cdot\|}$, its spectral measure is then given by $\Gamma^{\|\cdot\|}$ where

 $\Gamma^{\|\cdot\|}(d\mathbf{s}) = ||\mathbf{s}||_e^{-\alpha} \Gamma \circ T_{\|\cdot\|}^{-1}(d\mathbf{s})$

 w ith $T_{\|\cdot\|}:S_d\setminus K^{\|\cdot\|}\longrightarrow C_d^{\|\cdot\|}$ defined by $T_{\|\cdot\|}(\bm{s})=\bm{s}/\|\bm{s}\|$

- $\bm{\cdot}$ Unit cylinders do not span all directions of \mathbb{R}^d and encode less information
- The representation exists if these directions are irrelevant to characterize the distribution

Toward tail conditional distribution on $C_d^{\|\cdot\|}$ *d*

Lemma 1

Let $\pmb{X}=(X_1,\ldots,X_d)$ be an α -stable random vector and let $\|\cdot\|$ be a seminorm on \mathbb{R}^d . If \pmb{X} is representable on $C_d^{\|\cdot\|}$, then for every Borel sets $A,B\subset C_d^{\|\cdot\|}$ with $\Gamma^{\|\cdot\|}\Big(\partial (A\cap B)\Big)=\Gamma^{\|\cdot\|}\big(\partial B\big)=0$, $\mathsf{and}\; \Gamma^{\|\cdot\|}(B)>0$,

$$
\mathbb{P}_x^{\|\cdot\|}(X,A|B):=\mathbb{P}\bigg(\frac{X}{\|X\|}\in A\bigg|\|X\|>x,\frac{X}{\|X\|}\in B\bigg)_{x\to+\infty}\frac{\Gamma^{\|\cdot\|}(A\cap B)}{\Gamma^{\|\cdot\|}(B)}
$$

where ∂B (resp. ∂(*A ∩ B*)*) denotes the boundary of B (resp. A ∩ B)*

• Under our representation Theorem, the result of Taqqu (1994) can be recovered

Semi-norm representation of stable moving averages

Theoretical results for trajectories

Representation of stable moving averages on $C_d^{\|\cdot\|}$ *d*

Lemma 2

Let $X_t=(X_{t-m},\ldots,X_{t+h})\in\mathbb{R}^{m+h+1}$ and $\|\cdot\|$ a semi-norm on \mathbb{R}^{m+h+1} . In the S α S case, X_t is $\mathit{representable}$ on $\mathit{C}_{m+h+1}^{\|\cdot\|}$ if and only if

$$
\forall k \in \mathbb{Z}, \quad \left[(d_{k+m}, \ldots, d_k) = \mathbf{0} \quad \Longrightarrow \quad \forall \ell \leq k-1, \quad d_\ell = 0 \right].
$$

 \Rightarrow If a piece of the past trajectory of X_t is null, the whole future trajectory has to be

$$
(d_{k+m},\ldots,d_k,\ldots,d_\ell)=\mathbf{0}
$$

• At this stage, this results is quite intriguing and not necessarily clear-cut

The past-representability property

The past-representability condition **fails** if for some *m*

$$
(d_{k+m},\ldots,d_k)=\mathbf{0}
$$

and for some $\ell \in \mathbb{Z}$ we have $d_{\ell} \neq 0$ such that

$$
X_{t+1} = \underbrace{d_{\ell}}_{\neq 0} \varepsilon_{t+1+\ell} + \sum_{k \neq \ell} d_k \varepsilon_{t+1+k},
$$

thereby implying that $\varepsilon_{t+1+\ell}$ is independent of X_{t-m}, \ldots, X_t

⇒ Observed path is uninformative about extreme events in *Xt*+1

⇒ Non-anticipative processes are ruled-out

Application to anticipative stable-AR(2)

Figure: Unit cylinder and unit sphere representations of $X_t = 0.7X_{t+1} + 0.1X_{t+2} + \varepsilon_t$

- \Rightarrow $\Gamma^{\|\cdot\|}$ successfully encodes all information contained in S_2 sphere on $\mathcal{C}_2^{\|\cdot\|}$
- \Rightarrow This confirms that the directions of \mathbb{R}^3 not spanned by the unit-cylinder are irrelevant
- *⇒* Extreme realizations of *Xt*+1 never occur conditionally to small realisations of *Xt−*¹ and *X^t* .

Tail conditional distribution of stable MA(*∞***)**

Proposition 1

Let X^t ∈ R *^m*+*h*+1 *be a piece of trajectory of a past-representable stable MA(∞), then*

$$
\mathbb{P}_x^{\|\cdot\|}\bigg(X_t,A\Big|B(V)\bigg)\xrightarrow[x\to+\infty]{\Gamma^{\|\cdot\|}\bigg(\bigg\{\frac{\vartheta \mathbf{d}_k}{\|\mathbf{d}_k\|}\in A:\ \frac{\vartheta f(\mathbf{d}_k)}{\|\mathbf{d}_k\|}\in V\bigg\}\bigg)}{\Gamma^{\|\cdot\|}\bigg(\bigg\{\frac{\vartheta \mathbf{d}_k}{\|\mathbf{d}_k\|}\in C_{m+h+1}^{\|\cdot\|}:\ \frac{\vartheta f(\mathbf{d}_k)}{\|\mathbf{d}_k\|}\in V\bigg\}\bigg)},
$$

 f or any Borel sets $A\subset C_{m+h+1}^{\|\cdot\|},\ V\subseteq S_{m+1}^{\|\cdot\|}$ such that $\Big\{\dfrac{\vartheta \boldsymbol{d}_k}{\|\boldsymbol{d}_k\|}$ $\frac{\vartheta \boldsymbol{d}_k}{\|\boldsymbol{d}_k\|} \in C^{\|\cdot\|}_{m+h+1} : \quad \frac{\vartheta f(\boldsymbol{d}_k)}{\|\boldsymbol{d}_k\|}$ $\frac{d}{\Vert \boldsymbol{d}_k \Vert} \in V$ $\overline{\mathcal{L}}$ *6*= *∅,* $\Gamma^{\|\cdot\|}\Big(\partial (A\cap B(V))\Big)=\Gamma^{\|\cdot\|}(\partial B(V))=0$, where $B(V)=V\times\mathbb{R}^h$ and f is a transformation function.

Toward path prediction

Remark

 S etting $V=S_{m+1}^{||\cdot||}\Longrightarrow B(V)=C_{m+1}^{||\cdot||}$ and A a small closed neighborhood of $(\vartheta \bm{d}_k/||\bm{d}_k||)$ $\lim_{x \to +\infty} \mathbb{P}\left(X_t / \|X_t\| \in A \middle| \|X_t\| > x\right) = 1$

⇒ Far from central values, the **observed path**

 $(X_{t-m},...,X_{t},X_{t+1})/||X_{t}||$

necessarily **features patterns of the same shape** as some finite piece

 $\frac{\partial (d_{k+m},\ldots,d_k)}{d_{k+1}}$

- *k* points to which piece of the moving average's coefficient it corresponds
- *ϑ ∈ {−*1*,* +1*}* indicates whether the pattern is flipped upside down if *ε^τ <* 0, *τ > t*

Path prediction strategy

Forecasting procedure

(ι) Carefully define the Borel sets A and $B(V)$ $(i\iota)$ When $(X_{t-m}, \ldots, X_{t-1}, X_t)$ is large with respect to the semi-norm, use the fact that

 $(X_{t-m},\ldots,X_{t-1},X_t)/||X_t|| = \vartheta(d_{k+m},\ldots,\overline{d_{k+1},d_k})/||\boldsymbol{d}_k||$

to identify to wich finite piece

$$
\vartheta_0(d_{k_0+m},\ldots,d_{k_0+1},d_{k_0})/\|d_{k_0}\|
$$

of the MA(∞) sequence, X_t corresponds $^-(\iota\iota\iota)$ Then, for V_0 any small closed neighbourhood of $\vartheta_0 f(\bm{d}_{k_0})/ \|\bm{d}_{k_0}\|$, compute

 $\mathbb{P}_x^{\|\cdot\|}\left(X_t, A\Big|B(V_0)\right)$

Path prediction and uncertainty

• In practice, only noisy observations are available and we can only achieve

 $(X_{t-m},\ldots,X_{t-1},X_t)/\|X_t\|\approx \vartheta(d_{k+m},\ldots,d_{k+1},d_k)/\|d_k\|$

on a realised trajectory

• Even if the observed path can be confidently identified with a particular pattern in

 $\partial d_k / ||d_k||$

in general, uncertainty regarding the future trajectory **remains**

- *⇒* several patterns can coincide on their first *^m* + 1 components, but differ by the last *^h*
- The tail conditional distribution is obtained as the semi-norm of X_t grows to ∞
	- *⇒* only an approximation of the true dynamics during extreme events

Application to some particular stable MA(*∞***)**

Path prediction in particular cases

The tail conditional distribution of anticipative AR(1**)**

Proposition 2

 L et $X_t = \rho X_{t+1} + \varepsilon_t$. Then, the following hold when $m \geq 1$ and if $0 \leq k_0 \leq h$ $\mathbb{P}_x^{\|\cdot\|}\left(\boldsymbol{X}_t, A_{\vartheta, k} \Big| B(V_0)\right) \underset{x \to \infty}{\longrightarrow}$ $\sqrt{ }$ J ¹ $|\rho|^{\alpha k} (1 - |\rho|^{\alpha}) \delta_{\vartheta_0}(\vartheta), \quad 0 \leq k \leq h - 1,$ $|\rho|^{\alpha h} \delta_{\vartheta_0}(\vartheta),$ *k* = *h*.

with Aϑ,^k a closed neighborhood of ^ϑd^k ∥dk∥ which does not contain any other charged point of Γ *∥·∥*

- The crash date is not observed and can happen either in the next *h −* 1 periods, or after *h*
- The probability that the bubble will crash in *k* periods is $|\rho|^{\alpha k} (1 |\rho|^{\alpha})$
- \cdot The probability that the bubble will last at least h more periods is $|\rho|^{\alpha h}$

The anticipative AR(2**)**

The anticipative AR(2) is the strictly stationary solution of

$$
(1 - \lambda_1 F)(1 - \lambda_2 F)X_t = \varepsilon_t, \qquad \varepsilon_t \stackrel{i.i.d.}{\sim} \mathcal{S}(\alpha, \beta, \sigma, 0), \qquad X_t F^j = X_{t+j}
$$

and admits the moving average representation $X_t = \sum_{k \in \mathbb{Z}} d_k \varepsilon_{t+k}$ with

$$
d_k = \begin{cases} \begin{array}{c} \lambda_1^{k+1} - \lambda_2^{k+1} \\ \lambda_1 - \lambda_2 \end{array} 1_{\{k \ge 0\}}, & \text{if} \quad \lambda_1 \neq \lambda_2, \\ (k+1)\lambda^k 1_{\{k \ge 0\}}, & \text{if} \quad \lambda_1 = \lambda_2 = \lambda. \end{cases}
$$

where $0<|\lambda_i|< 1$ for $i=1,2$

The tail conditional distribution of anticipative AR(2**)**

(4)

Proposition 3

Let X_t an anticipative AR(2), $m \ge 1$, $h \ge 1$, and $d_k = (d_{k+m}, \ldots, d_k, d_{k-1}, \ldots, d_{k-h})$. For some $\vartheta_0 \in S_1$, $k_0 \ge -m$, and $B(V_0) = V_0 \times \mathbb{R}^h$, then,

$$
\mathbb{P}_x^{\|\cdot\|}\Big(X_t,A\Big|B(V_0)\Big)\underset{x\to\infty}{\longrightarrow}\left\{\begin{array}{ll}1, & \qquad \text{if }\frac{\vartheta_0\boldsymbol{d}_{k_0}}{\|\boldsymbol{d}_{k_0}\|}\in A, \\ 0, & \qquad \text{otherwise},\end{array}\right.
$$

for any closed neighbourhood A ⊂ C ∥·∥ ^m+*h*+1 *such that*

 $\partial A \cap {\partial \overline{d_k}}/{\Vert \overline{d_k} \Vert}: \ \vartheta \in S_1, \ k \geq -m} = \emptyset.$

• When *X^t* is **anticipative enough**, one can **infer in advance** the peak and crash dates with very high confidence, in principle, **with certainty !**

Monte Carlo study

Forecasting procedures in practice

Forecasting crash probabilities

We first investigate a crash-probability forecasting procedure

• We generate 1000 trajectories of

$$
X_t = 0.7X_{t+1} + 0.1X_{t+2} = \varepsilon_t, \quad \varepsilon_t \stackrel{i.i.d.}{\sim} \mathcal{S}(1.5, 1, 0.5, 0), \quad t = 1, \dots, 10^6
$$

• We consider $h = \{1, 5, 10\}$ and $m = 1$ such that $\boldsymbol{X_t} = (X_{t-1}, X_t, X_{t+h})$ and

$$
A = B(V_0) \times [-\delta, \delta], \quad B(V_0) = \left\{ \frac{\vartheta_0 \mathbf{d}_{k_0 - 1}}{\|\mathbf{d}_{k_0}\|} \pm 0.1 \right\} \times \left\{ \frac{\vartheta_0 \mathbf{d}_{k_0}}{\|\mathbf{d}_{k_0}\|} \pm 0.1 \right\}, \quad \delta = 0.3
$$

- \bullet The semi-norm is defined as $\|X_t\| = \sqrt{X_t^2 + X_{t-1}^2}$ and said large when $\|X_t\| \geq 2q_\alpha$
- \bullet *q*_{α} \in {0.9, 0.99, 0.999, 0.9999}, is a theoretical quantile of the marginal distribution of X_t

Simulation results

• The "empirical" probability on the left-hand side of Proposition [4](#page-39-0) is compute as

$$
\widehat{p}_q = \frac{\sum_{t=1}^{N-h} \mathbb{1}\left(\left\{\frac{(X_{t-1},X_t)}{\|X_t\|} \in B(V_0)\right\} \cap \left\{\frac{X_{t+h}}{\|X_t\|} \le \delta\right\} \cap \{\|X_t\| > 2q\}\right)}{\sum_{t=1}^{N-h} \mathbb{1}\left(\left\{\frac{(X_{t-1},X_t)}{\|X_t\|} \in B(V_0)\right\} \cap \{\|X_t\| > 2q\}\right)}
$$
(5)

and the "theoretical" one (right-hand side) similarly but using $\frac{d_{k_0+h}}{\|d_{k_0}\|}\leq\delta$ instead of $\frac{X_{t+h}}{\|X_t\|}\leq\delta$

Table: Comparison of theoretical and empirical crash probabilities of bubbles generated by the anticipative AR(2)

Forecasting crash dates

In this second numerical analysis, we study a crash-date forecasting procedure

• We generate 1000 trajectories of the following *SαS* AR(2)

$$
X_t = 0.7X_{t+1} + 0.1X_{t+2}\varepsilon_t, \ \varepsilon_t \stackrel{i.i.d.}{\sim} \mathcal{S}(\alpha, 0, 0.1, 0), \ t = 1, ..., N
$$

- We identify a positive bubble peak as $max(x_t)$, consider $m = \{1, 3, 5, 7, 9, 11\}$ and
- ... treat as unobserved all future values and $\lceil n \times 0.01 \rceil$ periods preceding the bubble burst

$$
k_0 = \{3, 5, 10\}
$$

\Rightarrow This impacts to which quantile X_t is likely to belong to

N/α	0.9		1.5	1.8
$250 \Rightarrow q_{X_t}$ Very High	0.99	0.99	0.99	0.94
$500 \Rightarrow q_{X_t}$ High	0.98	0.98	0.94	0.89
$1000 \Rightarrow q_{X_t}$ Moderately	0.97	0.96	በ 91	0.78

• We compute the bias as the difference between the true crash date and the predicted one

Simulation results

Table: Bias for the crash date predictor

Empirical illustration

Forecasting climate anomalies

Forecasting climate anomalies

- A growing literature highlights the impact of climate variables on economic performance
- Weather shocks have an impact on growth, inflation, energy and commodity agricultural returns
- A common proxy is the Southern Oscillation Index (SOI)
- Forecasting El Niño/La Niña anomalies is of primary interest from extreme weather warnings to agricultural planning

THE CONVERSATION

En 2015-2016. El Niño avait causé une crise alimentaire touchant 40 millions de personnes en Afrique australe.

Le retour d'El Niño apporte insécurité alimentaire et instabilité macroéconomique en **Afrique australe**

Publié: 28 mars 2024, 17:57 CET

Florian Morvillier, Erica Perego, Fanny Schaeffer, CEPII

Data

- $\bm{\cdot}$ *SOI_t* is a monthly variable based on air-pressure differentials in the South Pacific
- El Niño (resp. La Niña) anomalies: *SOI^t >* 1 (resp. *SOI^t < −*1) during at least the 3 periods

Figure: Southern Oscillation Index (SOI)

Estimation results

• We estimate a stable anticipative AR(2): $X_t = \varphi_1 X_{t+1} + \varphi_2 X_{t+2} + \varepsilon$ for the *SOI_t* over the period 01/1951 - 12/1991

Table: AR(2) estimation for SOI

φ_1 $0.44***$	φ_2 $0.30***$	$1.88***$	$-0.48*$	$0.46***$	$0.01*$
(1.50E-04)	(1.00E-04)	(0.06)	(0.27)	(3.00E-03)	(0.02)

Notes: Standard deviations are in parentheses. Asterisks *∗*, *∗∗*, and *∗∗∗* indicate significance at the 90%, 95% and 99% level, respectively.

The anticipative AR(2**)**

The anticipative AR(2) is the strictly stationary solution of

$$
(1 - \lambda_1 F)(1 - \lambda_2 F)X_t = \varepsilon_t, \qquad \varepsilon_t \stackrel{i.i.d.}{\sim} \mathcal{S}(\alpha, \beta, \sigma, 0), \qquad X_t F^j = X_{t+j}
$$

and admits the moving average representation $X_t = \sum_{k \in \mathbb{Z}} d_k \varepsilon_{t+k}$ with

$$
d_k = \begin{cases} \begin{array}{c} \lambda_1^{k+1} - \lambda_2^{k+1} \\ \lambda_1 - \lambda_2 \end{array} 1_{\{k \ge 0\}}, & \text{if} \quad \lambda_1 \neq \lambda_2, \\ (k+1)\lambda^k 1_{\{k \ge 0\}}, & \text{if} \quad \lambda_1 = \lambda_2 = \lambda. \end{cases}
$$

where $0<|\lambda_i|< 1$ for $i=1,2$

Forecast of the first out-of-sample La Niña reversal

Table: Forecasting out-of-sample El Niño and La Niña anomalies

For the 14 El Niño/La Niña occurrences, our procedure leads to

- an average error of 0.42 months in finding the peak date
- an average error of 0.57 months in finding the end date

Extensions

A step toward multivariate

A simple bi-dimensional process define (X_t) for all $t \in \mathbb{Z}$ as

$$
\begin{cases}\nX_t &= (X_{1,t}, X_{2,t})', \\
X_{1,t} &= \rho_1 X_{1,t+1} + \varepsilon_{1,t}, \\
X_{2,t} &= \rho_2 X_{2,t-1} + \varepsilon_{2,t}, \\
\varepsilon_t &= (\varepsilon_{1,t}, \varepsilon_{2,t})'\n\end{cases}
$$

i.i.d. *S* α *S* with spectral measure Γ_2 on S_2 and zero shift vector

A step toward multivariate

A step toward multivariate

┑

Thank for your attention!

References I

-
- Andrews, B., Calder, M., and Davis, R. (2009). Maximum likelihood estimation for *α*-stable autoregressive process. *Annals of Statistics*, 37, 1946–1982.

Alley, R. B., Emanuel, K. A., and Zhang, F. (2019). Advances in weather prediction. *Science*, 363(6425), 342–344.

Basrak, B., and Segers, J. (2009). Regularly varying multivariate time series. *Stochastic Processes and their Applications*, 119, 1055–1080.

Brenner, A. D. (2002). El Niño and World Primary Commodity Prices: Warm Water or Hot Air? *The Review of Economics and Statistics*, 84(1), 176–183.

- Behme, A., Lindner, A., and Maller, R. (2011). Stationary solutions of the stochastic differential equation with Lévy noise. *Stochastic Processes and their Applications*, 121, 91–108.
- Cashin, P., Mohaddes, K., and Raissi, M. (2017). Fair weather or foul? The macroeconomic effects of El Niño. *Journal of International Economics*, 106, 37–54.

References II

-
- Cavaliere, G., Nielsen, H. B., and Rahbek, A. (2017). Bootstrapping non-causal autoregressions: with applications to explosive bubble modelling. *Journal of Business and Economic Statistics*.

Chen, B., Choi, J., and Escanciano, J. C. (2017). Testing for fundamental vector moving average representations. *Quantitative Economics*, 8, 149–180.

Cioczek-Georges, R., and Taqqu, M. S. (1994). How do conditional moments of stable vectors depend on the spectral measure? *Stochastic Processes and their Applications*, 54, 95–111.

Cioczek-Georges, R., and Taqqu, M. S. (1998). Sufficient conditions for the existence of conditional moments of stable random variables. *Stochastic Processes and Related Topics*, 35–67.

Cubadda, G., Hecq, A., and Telg, S. (2019). Detecting Co-Movements in Non-Causal Time Series. *Oxford Bulletin of Economics and Statistics*, 81(3), 697–715.

Davis, R., and Resnick, S. (1985). Limit theory for moving averages of random variables with regularly varying tail probabilities. *Annals of Probability*, 13, 179–195.

- Davis, R., and Resnick, S. (1986). Limit theory for the sample covariance and correlation functions of moving averages. *Annals of Statistics*, 14, 533–558.
- de Truchis, G., Dumitrescu, E., Fries, S., and Thomas, A. (2024). Bet on a bubble asset ? An optimal portfolio allocation strategy. *WP*.

References III

-
- Dell, M., Jones, B. F., and Olken, B. A. (2014). What Do We Learn from the Weather? The New Climate-Economy Literature. *Journal of Economic Literature*, 52(3), 740–798.

- Dombry, C., Hashorva, E., and Soulier, P. (2017). Tail measure and tail spectral process of regularly varying time series. *arXiv preprint arXiv:1710.08358*.
- Erdős, P., and Stone, A. H. (1970). On the sum of two Borel sets. *Proceedings of the American Mathematical Society*, 25, 304–306.

Fries, S., and Zakoian, J.-M. (2019). MIXED CAUSAL-NONCAUSAL AR PROCESSES AND THE MODELLING OF EXPLOSIVE BUBBLES. *Econometric Theory*, 35(6), 1234–1270.

Fries, S. (2021). Conditional Moments of Noncausal Alpha-Stable Processes and the Prediction of Bubble Crash Odds. *Journal of Business and Economic Statistics*, 0(0), 1–21.

Friedrich, M., Fries, S., Pahle, M., and Edenhofer, O. (2020). Rules vs. Discretion in Cap-and-Trade Programs: Evidence from the EU Emission Trading System. *CESifo working paper*.

Giancaterini, F., Hecq, A., and Morana, C. (2022). Is Climate Change Time-Reversible? *Econometrics*, 10(4).

Gouriéroux, C., and Jasiak, J. (2016). Filtering, prediction and simulation methods for noncausal processes. *Journal of Time Series Analysis*, 37, 405–430.

References IV

-
- Gouriéroux, C., and Jasiak, J. (2017). Noncausal vector autoregressive process: Representation, identification and semi-parametric estimation. *Journal of Econometrics*, 200, 118–134.

Gouriéroux, C., Jasiak, J., and Monfort, A. (2020). Stationary bubble equilibria in rational expectation models. *Journal of Econometrics*, 218(2), 714–735.

Gouriéroux, C., and Zakoian, I.-M. (2015). On uniqueness of moving average representations of heavy tailed stationary processes. *Journal of Time Series Analysis*, 36, 876–887.

Gouriéroux, C., and Zakoian, J.-M. (2017). Local explosion modelling by non-causal process. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, 79, 737–756.

Gourieroux, C., and Jasiak, J. (2024). Nonlinear Fore(Back)casting and Innovation Filtering for Causal-Noncausal VAR Models *Working paper*. Retrevied at <https://arxiv.org/abs/2205.09922>

Halilbegovich, B., Meinguet, F., and Smeekes, S. (2018). Simulation evidence on hypotheses testing for heavy-tailed time series. *Computational Statistics & Data Analysis*, 128, 123–145.

Johansen, S., and Nielsen, M. Ø. (2010). Likelihood inference for a nonstationary fractional autoregressive model. *Journal of Econometrics*, 158, 51–66.

References V

-
- Jones, B. F., Olken, B. A., and Dell, M. (2004). Climate Change and Economic Growth: Evidence from the Last Half Century. *National Bureau of Economic Research Working Paper No. 10539*.

Lindner, A. M. (2011). Stationarity, mixing, and distributional properties of solutions of SDEs driven by Lévy noise. *Stochastic Processes and their Applications*, 121(3), 539–568.

McCloskey, A., and Zakoian, J.-M. (2021). Modelling financial bubbles via thresholds and COGARCH processes. *Journal of Financial Econometrics*, 19(1), 64–95.

Mikosch, T., and Straumann, D. (2002). Whittle estimation in a heavy-tailed GARCH(1*,* 1) model. *Stochastic Processes and their Applications*, 100(1), 117–135.

Segers, J. (2007). Multivariate regular variation of heavy-tailed sequences and application to limit theory for functions of multivariate Markov chains. *Bernoulli*, 13, 1024–1038.

Lanne, M., and Saikkonen, P. (2011). Noncausal autoregressions for economic time series. *Journal of Time Series Econometrics*, 3.

Gourieroux, C., & Jasiak, J. (2023). Generalized Covariance Estimator. *Journal of Business & Economic Statistics*, 41(4), 1315-1327.

- Hecq, A., Lieb, L., & Telg, S. M. (2016). Identification of mixed causal-noncausal models in finite samples. *Annals of Economics and Statistics*, 123/124, 307-331.
- Hecq, A., Telg, S., & Lieb, L. (2017). Do seasonal adjustments induce noncausal dynamics in inflation rates? *Econometrics*, 5, 48.

References VI

Hecq, A., Telg, S., & Lieb, L. (2017). Simulation, estimation and selection of mixed causal-noncausal autoregressive models: The MARX Package. SSRN. <https://ssrn.com/abstract=3015797>

Hencic, A., & Gourieroux, C. (2015). Noncausal autoregressive model in application to bitcoin/usd exchange rates. *Econometrics of Risk*, 17-40.

Hecq, A., Issler, J. V., & Telg, S. (2020). Mixed causal–noncausal autoregressions with exogenous regressors. *Journal of Applied Econometrics*, 35(3), 328-343.

Hecq, A., & Voisin, E. (2021). Forecasting bubbles with mixed causal-noncausal autoregressive models. *Econometrics and Statistics*, 20, 29-45.

Hecq, A., Issler, J., & Voisin, E. (2023). An Early Warning Test for the Brazilian Inflation-Targeting Regime During the COVID-19 Pandemic. *Brazilian Review of Econometrics*.

Hecq, A., Issler, J., & Voisin, E. (2024). A short term credibility index for central banks under inflation targeting: an application to Brazil. *Journal of International Money and Finance*.

Lanne, M., & Luoto, J. (2013). Autoregression-based estimation of the new Keynesian Phillips curve. *Journal of Economic Dynamics and Control*, 37(3), 561-570.

Moussa, Z., & Thomas, A. (2023). Identifying oil supply news shocks and their effects on the global oil market. *Working Papers*, HAL, hal-04333455. Retrieved from <https://ideas.repec.org/p/hal/wpaper/hal-04333455.html>

References VII

- Lanne, M., & Saikkonen, P. (2013). Noncausal vector autoregression. *Econometric Theory*, 29, 447–481.
- de Truchis, G., Dumitrescu, E., Fries, S. & Thomas, A. (2024). Bet on a bubble asset ? An optimal portfolio allocation strategy. WP.
- Dumitrescu, & Thomas, A. (2024). Learning the predictive density of mixed-causal ARMA processes. Work in progress.
- F
- Fries, S. (2022). Conditional moments of noncausal alpha-stable processes and the prediction of bubble crash odds. Journal of Business & Economic Statistics, 40(4), 1596-1616.
- F
- Fries, S., & Zakoian, J. M. (2019). Mixed causal-noncausal ar processes and the modelling of explosive bubbles. Econometric Theory, 35(6), 1234-1270..

Gourieroux, C., Hencic, A., and Jasiak, J. (2021a). Forecast performance and bubble analysis in noncausal MAR (1, 1) processes. Journal of Forecasting, 40(2), 301-326.

Gourieroux, C., Jasiak, J., and Tong, M. (2021b). Convolution based filtering and forecasting: An application to WTI crude oil prices. Journal of Forecasting, 40(7), 1230-1244.

F.

- Hecq, A., and Voisin, E. (2021). Forecasting bubbles with mixed causal-noncausal autoregressive models. Econometrics and Statistics, 20, 29-45.
- Lanne, M., anb Luoto, J. (2016). Noncausal bayesian vector autoregression. Journal of Applied Econometrics, 31(7), 1392-1406.

References VIII

Lanne, M., Luoto, J., and Saikkonen, P. (2012). Optimal forecasting of noncausal autoregressive time series. International Journal of Forecasting, 28(3), 623-631.

Nyberg, H., and Saikkonen, P. (2014). Forecasting with a noncausal VAR model. Computational statistics & data analysis, 76, 536-555.

Samorodnitsky, G., and M. S., Taqqu. 1994. *Stable non-Gaussian random processes*, Chapman & Hall, London, 516-536,

Blasques, F. and Koopman, S.J and Mingoli, G 2023. Observation-Driven filters for Time-Series with Stochastic Trends and Mixed Causal Non-Causal Dynamics *Working Papers*

Rosenblatt, M. (2000). *Gaussian and Non-Gaussian Linear Time Series and Random Fields Working Papers*

