Forecasting extreme trajectories using semi-norm representations

Séminaire FDD-FiME Arthur THOMAS Gilles DE TRUCHIS and Sébastien FRIES October 3, 2024

Motivations

Extreme values and sharp reversals are at the heart of **prediction challenges**

• Traditional time series often relies on "the best predictor"

$$\widehat{X}_{t+h} := \mathbb{E}(X_{t+h}|\mathcal{I}_t), \quad h > 0$$

with \mathcal{I}_t the past information

• However, future realizations far from central values lead to

huge prediction errors!

Le cours du cacao a depassé celui du cuivre

En dollars par tonne

X_t is **anticipative**

i.i.d. heavy-tailed

What do you choose?

X_t is **causal**

Figure: $X_t = \rho X_{t-1} + \varepsilon_t, \ \varepsilon_t \sim$ i.i.d. heavy-tailed

⇒ The heavy elephant in the room: Forecasting!

- Econometrics/Statistics literature:
 - Rosenblatt (2000), Lanne and Saikkonen (2011), Gouriéroux and Zakoian (2017)
 - Theoretically mimics bubble data¹
 - Estimation is well covered²

• Applications:

- Economic: Macroeconometrics, Financial data, Bitcoins, Commodities prices, Portfolio management³
- Climate variables: Global sea level, GHG emissions, global temperature, sea ice area, and some natural oscillation indices⁴
- Physics, astronomy, engineering...

²Cavaliere et al. (2017), Fries and Zakoian (2019), Hecq et al. (2016), Hecq et al. (2017b), Hecq et al. (2020), Andrews et al. (2009), Lanne and Saikkonen (2011), Lanne & Saikkonen (2013), Gourieroux & Jasiak (2023)

³Lanne and Saikkonen (2011), Lanne & Luoto (2013), Moussa & Thomas (2023), Hecq et al. (2023), Hecq et al. (2024), Fries and Zakoian (2019), Fries (2021), Hencic & Gourieroux (2015), Hecq et al. (2017a), Hecq et al. (2017b), Friedrich et al. (2020), Hecq & Voisin (2021), de Truchis et al. (2024)

⁴Blasques et al (2023), Giancaterini et al. (2022)

¹Gouriéroux et al. (2020)

Outline

- We use α -stable linear time series and discuss a new semi-norm representation
 - \Rightarrow this naturally leads to the concept of **past-representability**
- We focus on **extreme** trajectories of past-representable processes and show that
 - \Rightarrow to some extent, the stochastic nature of the trajectories vanishes
 - ... to give way to deterministic features related to MA(∞) coefficients
- We suggest two forecasting procedures for asymptotically extreme trajectories
- We use a **Monte-Carlo** study to evaluate our results in a non-asymptotic framework
- We illustrate the empirical relevance of our results on **climatic data**⁵

⁵We develop a web app to replicate the results and play with other time series (emprical data and simulated one)

Introduction to stable moving-averages

Anticipative v.s. causal processes

Large shocks are non Gaussian

• Stable laws are natural candidates

$$\begin{split} \varepsilon_t \sim \mathcal{S}(\alpha, \beta, \sigma, \mu) \\ & \alpha \in (0, 2) \quad : \quad \text{tail index} \\ & \beta \in [-1, 1] : \quad \text{asymmetry} \\ & \sigma > 0 \quad : \quad \text{scale} \\ & \mu \in \mathbb{R} \quad : \quad \text{location} \end{split}$$

- ε_1 and ε_2 are Stable random variables if $a\varepsilon_1 + b\varepsilon_2$ is Stable
- To simplify the slides we focus on $\beta = 0 \Rightarrow \varepsilon_t \sim \mathcal{S} \alpha \mathcal{S}$
- Unconditional moments exist up to the tail index lpha

 $\mathbb{E}(|\varepsilon_1|^u) < \infty \Rightarrow \mathbb{E}(|X_t|^u) < \infty, \ u < \alpha$

Two-sided stable moving-averages

We consider linear **strictly stationary** processes driven by $\varepsilon_t \stackrel{iid}{\sim} S \alpha S$

Figure: X_t is anticipative: $k \in \mathbb{Z}_+$

Figure: X_t is causal: $k \in \mathbb{Z}_-$

Causal v.s. anticipative processes

We remain agnostic while developing our theory even if

• the anticipative profile is visually more familiar

$$X_t = \rho X_{t+1} + \varepsilon_t \Rightarrow d_k = \rho^k, \ k \ge 0, \ |\rho| < 1$$

However, on the empirical side,

• causal processes are massively more considered

$$X_t = \rho X_{t-1} + \varepsilon_t \Rightarrow d_k = \rho^k, \ k \le 0, \ |\rho| < 1$$

Figure: On financial markets $k \in \mathbb{Z}_+$ or $k \in \mathbb{Z}$

Some trajectories/processes are more predictable than others

$$X_t = \rho X_{t+1} + \varepsilon_t$$

 $Y_t = \rho Y_{t-1} + \varepsilon_t$

Forecasting stable-MA(∞) with conditional moments

• Backward conditional moments as well

 $\mathbb{E}(|X_t|^b|X_{t+1}) < \infty, \ b < \alpha$

Forward conditional moments are more promising

 $X_{t+1} = \mathbb{E}(|X_t|^f | X_{t-1}) < \infty, \ f < 2\alpha + 1$

as the conditional expectation always exists

Forecasting with α -stable vectors

• Fries (2022) suggests a new strategy based on

$$\boldsymbol{X}_t = (X_t, X_{t+h})',$$

that is an $\alpha\text{-stable vector, as its characteristic function alway exists}$

$$\mathbb{E}\left[e^{i\langle \boldsymbol{u},\boldsymbol{x}\rangle}\right] = \exp\left\{-\int_{S_d} |\langle \boldsymbol{u},\boldsymbol{s}\rangle|^{\alpha} \left(1-i,\operatorname{sign}(\langle \boldsymbol{u},\boldsymbol{s}\rangle)\operatorname{tg}(\pi\alpha/2)\right)\Gamma(d\boldsymbol{s})\right\}$$
(2)

and relies on a finite **spectral measure** Γ defined on the unit sphere $S_d \in \mathbb{R}^d$

N.B. Any norm can be used to define the unit sphere: hereafter we retain the Euclidean one

$$S_d = \{ \boldsymbol{s} \in \mathbb{R}^d : ||\boldsymbol{s}||_e = 1 \}$$

The spectral measure

- For d = 2, S_d is a circle and Γ acts as a compass
- Given a particular position on the map (the realization of X_t)
- ... Γ charges the mass where X_{t+1} is likely to go
- *x_t* close to central values: "magnetic" perturbations occur
- $\Rightarrow \Gamma$ charges numerous mass points
 - *x_t* far from central values: some patterns emerge
- $\Rightarrow \Gamma$ charges a small number of mass points

Tail conditional distribution of the AR(1)

- Typically, for $X_t = \rho X_{t+1} + \varepsilon_t$, with $\varepsilon_t \stackrel{iid}{\sim} S \alpha S$, if $x_t \to +\infty$
- \Rightarrow For $X_t = (X_t, X_{t+h})'$, Γ points to the "East" coordinates or

$$\frac{\pmb{X}_t}{||\pmb{X}_t||_e} = \frac{(\rho^h, 1)}{\sqrt{1 + \rho^{2h}}}$$

- Straightforward interpretation: conditionally to $x_t
 ightarrow +\infty$
 - Either X_{t+h} crashes to central values with probability $1ho^{lpha h}$
 - Or X_{t+h} continue to grow with probability $ho^{lpha h}$
- \Rightarrow when *h* is also large, the crash probability goes to 1

 $\boldsymbol{X}_t = (\boldsymbol{X}_t \,,\, \boldsymbol{X}_{t+h} \,)'$

Baseline path of stable-MA(∞)

Now consider the general case

$$X_t = \sum_{k \in \mathbb{Z}} d_k \varepsilon_{t+k}, \ \varepsilon_t \stackrel{iid}{\sim} \mathcal{S}(\alpha, \beta, \sigma, 0)$$

• Set $\tau = t + k$ such that

$$X_t = \sum_{k \in \mathbb{Z}} d_k \varepsilon_{t+k} = \sum_{\tau \in \mathbb{Z}} d_{\tau-t} \varepsilon_{\tau}$$

 $\Rightarrow X_t \text{ is a linear combination of} \\ \text{deterministic baseline paths} \\ \text{scaled by } \varepsilon_\tau \text{ and shift in time} \\ \end{cases}$

$$t \longmapsto d_{\tau-t}$$

Spectral measure of stable-MA(∞) vectors

D

Tail conditional distribution of stable-MA(∞)

Theorem 1 is a direct application of Theorem 4.4.8 by Samorodnitsky and Taqqu (1994)

Theorem 1 For any Borel sets A, B of S_{m+h+1} , $\mathbb{P}\left(\frac{X_t}{\|X_t\|_e} \in A \middle| \|X_t\|_e > x, \frac{X_t}{\|X_t\|_e} \in B\right) \xrightarrow{X \to +\infty} \frac{\Gamma(A \cap B)}{\Gamma(B)}$

Corollary 1

Let $A \subset S_{m+h+1}$, a Borel set that does not contain any point $\pm d_k/\|d_k\|_e$. Then,

$$\mathbb{P}\left(\frac{\boldsymbol{X}_t}{\|\boldsymbol{X}_t\|_e} \in A \left| \|\boldsymbol{X}_t\|_e > x\right) \xrightarrow[x \to +\infty]{} \frac{\Gamma(A)}{\Gamma(S_{m+h+1})} = 0$$

 \Rightarrow During extreme events, X_t is necessarily **colinear to** some d_k

Conditioning set

In view of empirical applications, Theorem 1 is not very useful as

$$\frac{\boldsymbol{X}_{t}}{\|\boldsymbol{X}_{t}\|_{e}}, \quad \|\boldsymbol{X}_{t}\|_{e} = \|(\underbrace{X_{t-m}, \ldots, X_{t}}_{\text{observed}}, \underbrace{X_{t+1}, \ldots, X_{t+h}}_{\text{unobserved}})\|_{e}$$

belongs to the conditioning set and X_t embeds future variables

- An a priori is needed regarding the behavior of X_{t+1}, \ldots, X_{t+h} to choose B
- · Ideally we would like to exclude the future from the conditioning set

A simple solution with complex implications

A simple solution is to consider, for any sequence $(X_{t-m}, \ldots, X_{t+h}) \in \mathbb{R}^{m+h+1}$,

$$\|(X_{t-m},\ldots,X_t,X_{t+1},\ldots,X_{t+h})\| = \|(X_{t-m},\ldots,X_t,0,\ldots,0)\|$$

However, $\|\cdot\|$ is not positive definite and is actually a **semi-norm** From a topological point of view, the unit-sphere homeomorphically comes down to

$$C_{m+h+1}^{\|\cdot\|} = \{ \mathbf{s} \in \mathbb{R}^d : ||\mathbf{s}|| = 1 \},\$$

a unit-cylinder

1. Can we obtain proper representation of α -stable vectors on the unit-cylinder ?

1. Can we obtain proper representation of α -stable vectors on the unit-cylinder ? Yes but not for all processes you need to have at least one $d_k \neq 0$, with k > 0

- 1. Can we obtain proper representation of α -stable vectors on the unit-cylinder ? Yes but not for all processes you need to have at least one $d_k \neq 0$, with k > 0
 - \Rightarrow Causal processes are ruled out
- 2. Can we derive tail conditional distributions under this semi-norm representation?

- 1. Can we obtain proper representation of α -stable vectors on the unit-cylinder ? Yes but not for all processes you need to have at least one $d_k \neq 0$, with k > 0
 - \Rightarrow Causal processes are ruled out
- 2. Can we derive tail conditional distributions under this semi-norm representation? yes

Stable vectors on $C_d^{\|\cdot\|}$

General theoretical results

Definition 1

Let $\mathbf{X} = (X_1, \dots, X_d)$ be an α -stable random vector. For the $S\alpha S$ case, we say that \mathbf{X} is representable on $C_d^{\|\cdot\|}$ if there exists a Borel measure $\Gamma^{\|\cdot\|}$ on $C_d^{\|\cdot\|}$ satisfying for all $\mathbf{u} \in \mathbb{R}^d$

$$\int_{C_a^{\|\cdot\|}} |\langle \boldsymbol{u}, \boldsymbol{s} \rangle|^{\alpha} \Gamma^{\|\cdot\|}(d\boldsymbol{s}) < +\infty,$$

(3)

such that the characteristic function of X can be written as in (2) with (S_d, Γ) replaced by

 $(C_d^{\|\cdot\|}, \Gamma^{\|\cdot\|}).$

• As cylinders are unbounded sets, the integrability condition ensures the sanity of the def.

Representation of stable vectors on $C_d^{\|\cdot\|}$

Theorem 2

Denote $K^{\|\cdot\|} = \{x \in S_d : \|x\| = 0\}$ and let X be a $S\alpha S$ on \mathbb{R}^d with spectral measure Γ on S_d . Then,

X is representable on $C_d^{\|\cdot\|} \iff \Gamma(K^{\|\cdot\|}) = 0.$

Moreover, if **X** is representable on $C_d^{\|\cdot\|}$, its spectral measure is then given by $\Gamma^{\|\cdot\|}$ where

 $\Gamma^{\|\cdot\|}(d\mathbf{s}) = \|\mathbf{s}\|_e^{-lpha} \Gamma \circ T_{\|\cdot\|}^{-1}(d\mathbf{s})$

with $T_{\|\cdot\|}:S_d\setminus K^{\|\cdot\|}\longrightarrow C_d^{\|\cdot\|}$ defined by $T_{\|\cdot\|}(\pmb{s})=\pmb{s}/\|\pmb{s}\|$

- Unit cylinders do not span all directions of \mathbb{R}^d and encode less information
- The representation exists if these directions are irrelevant to characterize the distribution

Toward tail conditional distribution on $C_d^{\|\cdot\|}$

Lemma 1

Let $\mathbf{X} = (X_1, \ldots, X_d)$ be an α -stable random vector and let $\|\cdot\|$ be a seminorm on \mathbb{R}^d . If \mathbf{X} is representable on $C_d^{\|\cdot\|}$, then for every Borel sets $A, B \subset C_d^{\|\cdot\|}$ with $\Gamma^{\|\cdot\|} \left(\partial(A \cap B)\right) = \Gamma^{\|\cdot\|} (\partial B) = 0$, and $\Gamma^{\|\cdot\|}(B) > 0$,

$$\mathbb{P}_x^{\|\cdot\|}(\pmb{X},A|B) := \mathbb{P}\bigg(\frac{\pmb{X}}{\|\pmb{X}\|} \in A \bigg| \|\pmb{X}\| > x, \frac{\pmb{X}}{\|\pmb{X}\|} \in B\bigg) {\underset{x \to +\infty}{\longrightarrow}} \frac{\Gamma^{\|\cdot\|}(A \cap B)}{\Gamma^{\|\cdot\|}(B)}$$

where ∂B (resp. $\partial (A \cap B)$) denotes the boundary of *B* (resp. $A \cap B$)

• Under our representation Theorem, the result of Taqqu (1994) can be recovered

Semi-norm representation of stable moving averages

Theoretical results for trajectories

Representation of stable moving averages on $C_d^{\|\cdot\|}$

Lemma 2

Let $X_t = (X_{t-m}, \dots, X_{t+h}) \in \mathbb{R}^{m+h+1}$ and $\|\cdot\|$ a semi-norm on \mathbb{R}^{m+h+1} . In the $S\alpha S$ case, X_t is representable on $C_{m+h+1}^{\|\cdot\|}$ if and only if

$$orall k \in \mathbb{Z}, \quad \left[(d_{k+m}, \dots, d_k) = \mathbf{0} \implies orall \ell \leq k-1, \quad d_\ell = 0
ight].$$

 \Rightarrow If a piece of the past trajectory of X_t is null, the whole future trajectory has to be

$$(d_{k+m},\ldots,d_k,\ldots,d_\ell)=\mathbf{0}$$

• At this stage, this results is quite intriguing and not necessarily clear-cut

The past-representability property

The past-representability condition **fails** if for some m

$$(d_{k+m},\ldots,d_k)=\mathbf{0}$$

and for some $\ell \in \mathbb{Z}$ we have $d_\ell \neq 0$ such that

$$X_{t+1} = \underbrace{d_\ell}_{
eq 0} \varepsilon_{t+1+\ell} + \sum_{k \neq \ell} d_k \varepsilon_{t+1+k},$$

thereby implying that $\varepsilon_{t+1+\ell}$ is independent of X_{t-m}, \ldots, X_t

 \Rightarrow Observed path is uninformative about extreme events in X_{t+1}

 \Rightarrow Non-anticipative processes are ruled-out

Application to anticipative stable-AR(2)

Figure: Unit cylinder and unit sphere representations of $X_t = 0.7X_{t+1} + 0.1X_{t+2} + \varepsilon_t$

- $\Rightarrow \Gamma^{\|\cdot\|}$ successfully encodes all information contained in S_2 sphere on $C_2^{\|\cdot\|}$
- \Rightarrow This confirms that the directions of \mathbb{R}^3 not spanned by the unit-cylinder are irrelevant
- \Rightarrow Extreme realizations of X_{t+1} never occur conditionally to small realisations of X_{t-1} and X_t .

Tail conditional distribution of stable MA(∞)

Proposition 1

Let $X_t \in \mathbb{R}^{m+h+1}$ be a piece of trajectory of a past-representable stable MA(∞), then

$$\mathbb{P}_x^{\|\cdot\|}\left(\boldsymbol{X}_t, A \middle| B(V)\right) \underset{x \to +\infty}{\longrightarrow} \frac{\Gamma^{\|\cdot\|}\left(\left\{\frac{\vartheta \boldsymbol{d}_k}{\|\boldsymbol{d}_k\|} \in A: \quad \frac{\vartheta f(\boldsymbol{d}_k)}{\|\boldsymbol{d}_k\|} \in V\right\}\right)}{\Gamma^{\|\cdot\|}\left(\left\{\frac{\vartheta \boldsymbol{d}_k}{\|\boldsymbol{d}_k\|} \in C_{m+h+1}^{\|\cdot\|}: \quad \frac{\vartheta f(\boldsymbol{d}_k)}{\|\boldsymbol{d}_k\|} \in V\right\}\right)},$$

for any Borel sets $A \subset C_{m+h+1}^{\|\cdot\|}$, $V \subseteq S_{m+1}^{\|\cdot\|}$ such that $\left\{ \frac{\partial \boldsymbol{d}_k}{\|\boldsymbol{d}_k\|} \in C_{m+h+1}^{\|\cdot\|}$: $\frac{\partial f(\boldsymbol{d}_k)}{\|\boldsymbol{d}_k\|} \in V \right\} \neq \emptyset$, $\Gamma^{\|\cdot\|} \left(\partial (A \cap B(V)) \right) = \Gamma^{\|\cdot\|} (\partial B(V)) = 0$, where $B(V) = V \times \mathbb{R}^h$ and f is a transformation function.

Toward path prediction

Remark

Setting $V = S_{m+1}^{\|\cdot\|} \Longrightarrow B(V) = C_{m+1}^{\|\cdot\|}$ and A a small closed neighborhood of $(\vartheta \boldsymbol{d}_k / \| \boldsymbol{d}_k \|)$ $\lim_{x \to +\infty} \mathbb{P} \Big(\boldsymbol{X}_t / \| \boldsymbol{X}_t \| \in A \Big| \| \boldsymbol{X}_t \| > x \Big) = 1$

 \Rightarrow Far from central values, the **observed path**

 $(X_{t-m},\ldots,X_t,X_{t+1})/\|\boldsymbol{X}_t\|$

necessarily features patterns of the same shape as some finite piece

 $\vartheta(d_{k+m},\ldots,d_k)/\|\boldsymbol{d}_k\|$

- *k* points to which piece of the moving average's coefficient it corresponds
- + $\vartheta \in \{-1,+1\}$ indicates whether the pattern is flipped upside down if $\varepsilon_{ au} < 0, au > t$

Path prediction strategy

Forecasting procedure

(ι) Carefully define the Borel sets A and B(V)

($\iota\iota$) When $(X_{t-m},\ldots,X_{t-1},X_t)$ is large with respect to the semi-norm, use the fact that

 $(X_{t-m},\ldots,X_{t-1},X_t)/\|\boldsymbol{X}_t\|=\vartheta(d_{k+m},\ldots,d_{k+1},d_k)/\|\boldsymbol{d}_k\|$

to identify to wich finite piece

$$artheta_0(d_{k_0+m},\ldots,d_{k_0+1},d_{k_0})/\|oldsymbol{d}_{k_0}\|$$

of the MA(∞) sequence, X_t corresponds ($\iota\iota\iota$) Then, for V_0 any small closed neighbourhood of $\vartheta_0 f(d_{k_0}) / \|d_{k_0}\|$, compute

 $\mathbb{P}_x^{\|\cdot\|}\left(\boldsymbol{X}_t, A \middle| B(V_0)\right)$

Path prediction and uncertainty

• In practice, only noisy observations are available and we can only achieve

 $(X_{t-m},\ldots,X_{t-1},X_t)/\|\boldsymbol{X}_t\|\approx \vartheta(d_{k+m},\ldots,d_{k+1},d_k)/\|\boldsymbol{d}_k\|$

on a realised trajectory

• Even if the observed path can be confidently identified with a particular pattern in

 $\vartheta \boldsymbol{d}_k / \| \boldsymbol{d}_k \|,$

in general, uncertainty regarding the future trajectory remains

- \Rightarrow several patterns can coincide on their first m+1 components, but differ by the last h
- The tail conditional distribution is obtained as the semi-norm of X_t grows to ∞
 - \Rightarrow only an approximation of the true dynamics during extreme events

Application to some particular stable MA(∞)

Path prediction in particular cases

The tail conditional distribution of anticipative AR(1)

Proposition 2

Let $X_t = \rho X_{t+1} + \varepsilon_t$. Then, the following hold when $m \ge 1$ and if $0 \le k_0 \le h$ $\mathbb{P}_x^{\|\cdot\|} \left(\mathbf{X}_t, A_{\vartheta, k} \Big| B(V_0) \right) \xrightarrow[x \to \infty]{} \begin{cases} |\rho|^{\alpha k} (1 - |\rho|^{\alpha}) \delta_{\vartheta_0}(\vartheta), & 0 \le k \le h - 1, \\ |\rho|^{\alpha h} \delta_{\vartheta_0}(\vartheta), & k = h. \end{cases}$

with $A_{\vartheta,k}$ a closed neighborhood of $\frac{\vartheta d_k}{\|d_k\|}$ which does not contain any other charged point of $\Gamma^{\|\cdot\|}$

- The crash date is not observed and can happen either in the next h-1 periods, or after h
- The probability that the bubble will crash in k periods is $|
 ho|^{lpha k}(1-|
 ho|^{lpha})$
- The probability that the bubble will last at least h more periods is $|
 ho|^{lpha h}$

The anticipative AR(2)

The anticipative AR(2) is the strictly stationary solution of

$$(1 - \lambda_1 F)(1 - \lambda_2 F)X_t = \varepsilon_t, \qquad \varepsilon_t \stackrel{i.i.d.}{\sim} \mathcal{S}(\alpha, \beta, \sigma, 0), \qquad X_t F^j = X_{t+j}$$

and admits the moving average representation $X_t = \sum_{k \in \mathbb{Z}} d_k arepsilon_{t+k}$ with

$$d_k = \begin{cases} \begin{array}{cc} \frac{\lambda_1^{k+1} - \lambda_2^{k+1}}{\lambda_1 - \lambda_2} \, \mathbbm{1}_{\{k \ge 0\}}, & \quad \text{if} \quad \lambda_1 \neq \lambda_2, \\ (k+1)\lambda^k \, \mathbbm{1}_{\{k \ge 0\}}, & \quad \text{if} \quad \lambda_1 = \lambda_2 = \lambda. \end{cases}$$

where $0 < |\lambda_i| < 1$ for i = 1, 2

The tail conditional distribution of anticipative AR(2)

(4)

Proposition 3

Let X_t an anticipative AR(2), $m \ge 1$, $h \ge 1$, and $d_k = (d_{k+m}, \ldots, d_k, d_{k-1}, \ldots, d_{k-h})$. For some $\vartheta_0 \in S_1$, $k_0 \ge -m$, and $B(V_0) = V_0 \times \mathbb{R}^h$, then,

$$\mathbb{P}_{x}^{\|\cdot\|}\left(\boldsymbol{X}_{t},A\left|B(V_{0})\right)\underset{x\to\infty}{\longrightarrow}\left\{\begin{array}{ccc}1, & \text{if } \frac{\vartheta_{0}\boldsymbol{d}_{k_{0}}}{\|\boldsymbol{d}_{k_{0}}\|}\in A,\\0, & \text{otherwise},\end{array}\right.$$

for any closed neighbourhood $A \subset C_{m+h+1}^{\|\cdot\|}$ such that

 $\partial A \cap \{ \vartheta \boldsymbol{d}_k / \| \boldsymbol{d}_k \| : \ \vartheta \in S_1, \ k \geq -m \} = \emptyset.$

• When *X_t* is **anticipative enough**, one can **infer in advance** the peak and crash dates with very high confidence, in principle, **with certainty**!

Monte Carlo study

Forecasting procedures in practice

Forecasting crash probabilities

We first investigate a crash-probability forecasting procedure

• We generate 1000 trajectories of

 $X_t = 0.7X_{t+1} + 0.1X_{t+2} = \varepsilon_t, \ \varepsilon_t \stackrel{i.i.d.}{\sim} \mathcal{S}(1.5, 1, 0.5, 0), \ t = 1, \dots, 10^6$

• We consider $h = \{1, 5, 10\}$ and m = 1 such that $X_t = (X_{t-1}, X_t, X_{t+h})$ and

$$A = B(V_0) \times [-\delta, \delta], \ B(V_0) = \left\{ \frac{\vartheta_0 \mathbf{d}_{k_0 - 1}}{\|\mathbf{d}_{k_0}\|} \pm 0.1 \right\} \times \left\{ \frac{\vartheta_0 \mathbf{d}_{k_0}}{\|\mathbf{d}_{k_0}\|} \pm 0.1 \right\}, \ \delta = 0.3$$

- The semi-norm is defined as $\|m{X}_t\| = \sqrt{X_t^2 + X_{t-1}^2}$ and said large when $\|m{X}_t\| \geq 2q_lpha$
- $q_{\alpha} \in \{0.9, 0.99, 0.999, 0.9999\}$, is a theoretical quantile of the marginal distribution of X_t

Simulation results

• The "empirical" probability on the left-hand side of Proposition 4 is compute as

$$\widehat{p}_{q} = \frac{\sum_{t=1}^{N-h} \mathbb{1}\left(\left\{\frac{(X_{t-1}, X_{t})}{\|X_{t}\|} \in B(V_{0})\right\} \cap \left\{\frac{X_{t+h}}{\|X_{t}\|} \le \delta\right\} \cap \{\|X_{t}\| > 2q\}\right)}{\sum_{t=1}^{N-h} \mathbb{1}\left(\left\{\frac{(X_{t-1}, X_{t})}{\|X_{t}\|} \in B(V_{0})\right\} \cap \{\|X_{t}\| > 2q\}\right)}$$
(5)

and the "theoretical" one (right-hand side) similarly but using $\frac{d_{k_0+h}}{\|d_{k_0}\|} \leq \delta$ instead of $\frac{X_{t+h}}{\|X_t\|} \leq \delta$

Table: Comparison of theoretical and empirical crash probabilities of bubbles generated by the anticipative AR(2)

	h = 1	h = 5	h = 10
$p_{0.9} \hat{p}_{0.9}$	84.09\22.75 (22.39-23.14)	93.00\39.70 (39.27-40.14)	98.45\46.76 (46.32-47.21)
$p_{0.99} \rangle \hat{p}_{0.99}$	91.56\89.11 (87.90-90.36)	95.55\94.63 (93.67-95.56)	95.71\96.85 (96.11-97.56)
$p_{0.999} \hat{p}_{0.999}$	99.50\98.75 (97.04-100)	99.40\99.40 (98.21-100)	99.72\99.67 (98.63-100)
$p_{0.9999} \hat{p}_{0.9999}$	99.96\99.86 (96.42-100)	99.91\99.92 (99.90-100)	99.97\99.98 (100-100)

Forecasting crash dates

In this second numerical analysis, we study a crash-date forecasting procedure

• We generate 1000 trajectories of the following $\mathcal{S}\alpha\mathcal{S}$ AR(2)

 $X_t = 0.7X_{t+1} + 0.1X_{t+2}\varepsilon_t, \quad \varepsilon_t \stackrel{i.i.d.}{\sim} \mathcal{S}(\alpha, 0, 0.1, 0), \quad t = 1, \dots, N$

- We identify a positive bubble peak as $max(x_t)$, consider $m = \{1, 3, 5, 7, 9, 11\}$ and
- ... treat as unobserved all future values and $\lceil n imes 0.01 \rceil$ periods preceding the bubble burst

$$k_0 = \{3, 5, 10\}$$

 \Rightarrow This impacts to which quantile X_t is likely to belong to

N/α	0.9	1.2	1.5	1.8
$250 \Rightarrow q_{X_t}$ Very High	0.99	0.99	0.99	0.94
$500 \Rightarrow q_{X_t}$ High	0.98	0.98	0.94	0.89
$1000 \Rightarrow q_{X_t}$ Moderately	0.97	0.96	0.91	0.78

• We compute the bias as the difference between the true crash date and the predicted one

Simulation results

	m	= 1	m = 3						
q_{X_t}/α	0.9	1.2	1.5	1.8	0.9	1.2	1.5	1.8	
Very High	-0.9785	-0.3985	0.0262	0.2199	-0.7320	-0.2420	-0.0073	0.2815	
High	0.7174	1.3771	1.9292	2.2544	0.9421	1.6189	2.0938	2.2914	
Moderately High	5.8112	6.6166	7.1317	7.4263	6.0680	6.8229	7.1698	7.3565	
	m	= 5			m = 7				
q_{X_t}/α	0.9	1.2	1.5	1.8	0.9	1.2	1.5	1.8	
Very High	-0.5457	-0.2076	0.0483	0.2300	-0.5043	-0.1256	0.1099	0.2715	
High	1.2378	1.7442	2.1075	2.3412	1.2978	1.8118	2.0987	2.2571	
Moderately High	6.2749	6.9284	7.2065	7.3582	6.3193	6.9760	7.2655	7.3763	
	m	= 9	m = 11						
q_{X_t}/α	0.9	1.2	1.5	1.8	0.9	1.2	1.5	1.8	
Very High	-0.4079	-0.0811	0.1556	0.2976	-0.4200	-0.0480	0.1891	0.3300	
High	1.3407	1.8471	2.1537	2.2857	1.3633	1.8568	2.1417	2.3565	
Moderately High	6.3805	7.0095	7.2599	7.4021	6.4407	7.0253	7.3097	7.4745	

Table: Bias for the crash date predictor

Empirical illustration

Forecasting climate anomalies

Forecasting climate anomalies

- A growing literature highlights the impact of climate variables on economic performance
- Weather shocks have an impact on growth, inflation, energy and commodity agricultural returns
- A common proxy is the Southern Oscillation Index (SOI)
- Forecasting El Niño/La Niña anomalies is of primary interest from extreme weather warnings to agricultural planning

THE CONVERSATION

En 2015-2016, El Niño avait causé une crise alimentaire touchant 40 millions de personnes en Afrique australe.

Le retour d'El Niño apporte insécurité alimentaire et instabilité macroéconomique en Afrique australe

Publié: 28 mars 2024, 17:57 CET

Florian Morvillier, Erica Perego, Fanny Schaeffer, CEPII

Ð

Data

- SOIt is a monthly variable based on air-pressure differentials in the South Pacific
- El Niño (resp. La Niña) anomalies: $SOI_t > 1$ (resp. $SOI_t < -1$) during at least the 3 periods

Figure: Southern Oscillation Index (SOI)

Estimation results

• We estimate a stable anticipative AR(2): $X_t = \varphi_1 X_{t+1} + \varphi_2 X_{t+2} + \varepsilon$ for the *SOI*_t over the period 01/1951 - 12/1991

Table: AR(2) estimation for SOI

$arphi_1 \ 0.44^{***}$	$arphi_2 \ 0.30^{***}$	α 1.88***	β -0.48*	σ 0.46***	$\mu \\ 0.01^*$
(1.50E-04)	(1.00E-04)	(0.06)	(0.27)	(3.00E-03)	(0.02)

Notes: Standard deviations are in parentheses. Asterisks *, **, and *** indicate significance at the 90%, 95% and 99% level, respectively.

The anticipative AR(2)

The anticipative AR(2) is the strictly stationary solution of

$$(1 - \lambda_1 F)(1 - \lambda_2 F)X_t = \varepsilon_t, \qquad \varepsilon_t \stackrel{i.i.d.}{\sim} \mathcal{S}(\alpha, \beta, \sigma, 0), \qquad X_t F^j = X_{t+j}$$

and admits the moving average representation $X_t = \sum_{k \in \mathbb{Z}} d_k arepsilon_{t+k}$ with

$$d_k = \begin{cases} \begin{array}{cc} \frac{\lambda_1^{k+1} - \lambda_2^{k+1}}{\lambda_1 - \lambda_2} \, \mathbbm{1}_{\{k \ge 0\}}, & \quad \text{if} \quad \lambda_1 \neq \lambda_2, \\ (k+1)\lambda^k \, \mathbbm{1}_{\{k \ge 0\}}, & \quad \text{if} \quad \lambda_1 = \lambda_2 = \lambda. \end{cases}$$

where $0 < |\lambda_i| < 1$ for i = 1, 2

Forecast of the first out-of-sample La Niña reversal

Forecast of the first out-of-sample La Niña reversal

Table: Forecasting out-of-sample El Niño and La Niña anomalies

Type of anomaly	El Niño	El Niño	La Niña	El Niño	La Niña	La Niña	El Niño	La Niña	La Niña	La Niña	La Niña
Start date	12/1991	07/1994	11/2007	12/2009	07/2010	11/2010	07/2015	11/2021	02/2022	08/2022	11/2022
Peak date	01/1992	09/1994	02/2008	02/2010	09/2010	12/2010	10/2015	01/2021	03/2022	10/2022	12/2022
End date	04/1992	10/1994	03/2008	03/2010	11/2010	04/2011	11/2015	03/2021	05/2022	11/2022	02/2023
Forecasted Peak	01/1992	09/1994	02/2008	03/2010	08/2010	01/2011	09/2015	01/2021	04/2022	10/2022	01/2023
Forecasted End	02/1992	10/1994	03/2008	04/2010	09/2010	02/2011	10/2015	02/2021	05/2022	11/2022	02/2023
Peak forecast error	0	0	0	1	-1	1	-1	0	1	0	-1
End forecast error	-2	0	0	1	-1	-2	-1	-1	0	0	0
k_0	1	2	3	3	1	2	2	2	2	2	2
m	10	10	10	9	10	10	10	10	10	10	10

For the 14 El Niño/La Niña occurrences, our procedure leads to

- an average error of 0.42 months in finding the peak date
- an average error of 0.57 months in finding the end date

Extensions

A step toward multivariate

A simple bi-dimensional process define (X_t) for all $t \in \mathbb{Z}$ as

$$\begin{cases} \mathbf{X}_{t} &= (X_{1,t}, X_{2,t})', \\ X_{1,t} &= \rho_{1}X_{1,t+1} + \varepsilon_{1,t}, \\ X_{2,t} &= \rho_{2}X_{2,t-1} + \varepsilon_{2,t}, \\ \mathbf{\varepsilon}_{t} &= (\varepsilon_{1,t}, \varepsilon_{2,t})' \end{cases}$$

i.i.d. $S\alpha S$ with spectral measure Γ_2 on S_2 and zero shift vector

A step toward multivariate

Ð

A step toward multivariate

Thank for your attention!

References I

- Andrews, B., Calder, M., and Davis, R. (2009). Maximum likelihood estimation for α -stable autoregressive process. Annals of Statistics, 37, 1946–1982.
- Alley, R. B., Emanuel, K. A., and Zhang, F. (2019). Advances in weather prediction. Science, 363(6425), 342–344.
 - Basrak, B., Planini'c, H., and Soulier, P. (2016). An invariance principle for sums and record times of regularly varying stationary sequences. *Probability Theory and Related Fields*, 1–46.
- Basrak, B., and Segers, J. (2009). Regularly varying multivariate time series. *Stochastic Processes and their Applications*, 119, 1055–1080.
 - Behme, A. D. (2011). Distributional properties of solutions of $dV_t = V_t dU_t + dL_t$ with Lévy noise. Advances in Applied Probability, 43(3), 688–711.
 - Brenner, A. D. (2002). El Niño and World Primary Commodity Prices: Warm Water or Hot Air? *The Review of Economics and Statistics*, 84(1), 176–183.
- Behme, A., Lindner, A., and Maller, R. (2011). Stationary solutions of the stochastic differential equation with Lévy noise. *Stochastic Processes and their Applications*, 121, 91–108.
 - Cashin, P., Mohaddes, K., and Raissi, M. (2017). Fair weather or foul? The macroeconomic effects of El Niño. *Journal of International Economics*, 106, 37–54.

References II

- Cavaliere, G., Nielsen, H. B., and Rahbek, A. (2017). Bootstrapping non-causal autoregressions: with applications to explosive bubble modelling. *Journal of Business and Economic Statistics*.

Chen, B., Choi, J., and Escanciano, J. C. (2017). Testing for fundamental vector moving average representations. *Quantitative Economics*, 8, 149–180.

Cioczek-Georges, R., and Taqqu, M. S. (1994). How do conditional moments of stable vectors depend on the spectral measure? Stochastic Processes and their Applications, 54, 95–111.

Cioczek-Georges, R., and Taqqu, M. S. (1998). Sufficient conditions for the existence of conditional moments of stable random variables. *Stochastic Processes and Related Topics*, 35–67.

Cubadda, G., Hecq, A., and Telg, S. (2019). Detecting Co-Movements in Non-Causal Time Series. Oxford Bulletin of Economics and Statistics, 81(3), 697–715.

- Davis, R., and Resnick, S. (1985). Limit theory for moving averages of random variables with regularly varying tail probabilities. *Annals of Probability*, 13, 179–195.
- Davis, R., and Resnick, S. (1986). Limit theory for the sample covariance and correlation functions of moving averages. *Annals of Statistics*, 14, 533–558.
- de Truchis, G., Dumitrescu, E., Fries, S., and Thomas, A. (2024). Bet on a bubble asset ? An optimal portfolio allocation strategy. WP.

References III

- Dell, M., Jones, B. F., and Olken, B. A. (2014). What Do We Learn from the Weather? The New Climate-Economy Literature. *Journal of Economic Literature*, 52(3), 740–798.
- Dombry, C., Hashorva, E., and Soulier, P. (2017). Tail measure and tail spectral process of regularly varying time series. *arXiv* preprint arXiv:1710.08358.
- Erdős, P., and Stone, A. H. (1970). On the sum of two Borel sets. Proceedings of the American Mathematical Society, 25, 304–306.
- Fries, S., and Zakoian, J.-M. (2019). MIXED CAUSAL-NONCAUSAL AR PROCESSES AND THE MODELLING OF EXPLOSIVE BUBBLES. *Econometric Theory*, 35(6), 1234–1270.
- Fries, S. (2021). Conditional Moments of Noncausal Alpha-Stable Processes and the Prediction of Bubble Crash Odds. *Journal of Business and Economic Statistics*, 0(0), 1–21.

Friedrich, M., Fries, S., Pahle, M., and Edenhofer, O. (2020). Rules vs. Discretion in Cap-and-Trade Programs: Evidence from the EU Emission Trading System. *CESifo working paper*.

- Giancaterini, F., Hecq, A., and Morana, C. (2022). Is Climate Change Time-Reversible? Econometrics, 10(4).
- Gouriéroux, C., and Jasiak, J. (2016). Filtering, prediction and simulation methods for noncausal processes. *Journal of Time Series Analysis*, 37, 405–430.

References IV

Gouriéroux, C., and Jasiak, J. (2017). Noncausal vector autoregressive process: Representation, identification and semi-parametric estimation. *Journal of Econometrics*, 200, 118–134.

Gouriéroux, C., Jasiak, J., and Monfort, A. (2020). Stationary bubble equilibria in rational expectation models. *Journal of Econometrics*, 218(2), 714–735.

Gouriéroux, C., and Zakoian, J.-M. (2017). Local explosion modelling by non-causal process. *Journal of the Royal Statistical Society:* Series B (Statistical Methodology), 79, 737–756.

Gourieroux, C., and Jasiak, J. (2024). Nonlinear Fore(Back)casting and Innovation Filtering for Causal-Noncausal VAR Models *Working paper*. Retrevied at https://arxiv.org/abs/2205.09922

Halilbegovich, B., Meinguet, F., and Smeekes, S. (2018). Simulation evidence on hypotheses testing for heavy-tailed time series. *Computational Statistics & Data Analysis*, 128, 123–145.

Johansen, S., and Nielsen, M. Ø. (2010). Likelihood inference for a nonstationary fractional autoregressive model. *Journal of Econometrics*, 158, 51–66.

Johansen, S., Nielsen, M. Ø., Risager, M. (2014). Explosive co-integrated systems with autoregressive roots near unity. *Econometrics Journal*, 17, 1–31.

References V

Jones, B. F., Olken, B. A., and Dell, M. (2004). Climate Change and Economic Growth: Evidence from the Last Half Century. National Bureau of Economic Research Working Paper No. 10539.

- Lindner, A. M. (2011). Stationarity, mixing, and distributional properties of solutions of SDEs driven by Lévy noise. *Stochastic Processes and their Applications*, 121(3), 539–568.
- McCloskey, A., and Zakoian, J.-M. (2021). Modelling financial bubbles via thresholds and COGARCH processes. *Journal of Financial Econometrics*, 19(1), 64–95.

Mikosch, T., and Straumann, D. (2002). Whittle estimation in a heavy-tailed GARCH(1, 1) model. *Stochastic Processes and their Applications*, 100(1), 117–135.

Segers, J. (2007). Multivariate regular variation of heavy-tailed sequences and application to limit theory for functions of multivariate Markov chains. *Bernoulli*, 13, 1024–1038.

Lanne, M., and Saikkonen, P. (2011). Noncausal autoregressions for economic time series. Journal of Time Series Econometrics, 3.

- Hecq, A., Lieb, L., & Telg, S. M. (2016). Identification of mixed causal-noncausal models in finite samples. *Annals of Economics and Statistics*, 123/124, 307-331.
- Hecq, A., Telg, S., & Lieb, L. (2017). Do seasonal adjustments induce noncausal dynamics in inflation rates? Econometrics, 5, 48.

References VI

Hecq, A., Telg, S., & Lieb, L. (2017). Simulation, estimation and selection of mixed causal-noncausal autoregressive models: The MARX Package. SSRN. https://ssrn.com/abstract=3015797

Hecq, A., Issler, J. V., & Telg, S. (2020). Mixed causal–noncausal autoregressions with exogenous regressors. *Journal of Applied Econometrics*, 35(3), 328-343.

Hecq, A., & Voisin, E. (2021). Forecasting bubbles with mixed causal-noncausal autoregressive models. *Econometrics and Statistics*, 20, 29-45.

Hecq, A., Issler, J., & Voisin, E. (2023). An Early Warning Test for the Brazilian Inflation-Targeting Regime During the COVID-19 Pandemic. *Brazilian Review of Econometrics*.

Hecq, A., Issler, J., & Voisin, E. (2024). A short term credibility index for central banks under inflation targeting: an application to Brazil. *Journal of International Money and Finance*.

Lanne, M., & Luoto, J. (2013). Autoregression-based estimation of the new Keynesian Phillips curve. *Journal of Economic Dynamics* and Control, 37(3), 561-570.

Moussa, Z., & Thomas, A. (2023). Identifying oil supply news shocks and their effects on the global oil market. *Working Papers*, HAL, hal-04333455. Retrieved from https://ideas.repec.org/p/hal/wpaper/hal-04333455.html

References VII

- Lanne, M., & Saikkonen, P. (2013). Noncausal vector autoregression. Econometric Theory, 29, 447-481.
- de Truchis, G., Dumitrescu, E., Fries, S. & Thomas, A. (2024). Bet on a bubble asset ? An optimal portfolio allocation strategy. WP.
- Dumitrescu, & Thomas, A. (2024). Learning the predictive density of mixed-causal ARMA processes. Work in progress.
- - Fries, S. (2022). Conditional moments of noncausal alpha-stable processes and the prediction of bubble crash odds. Journal of Business & Economic Statistics, 40(4), 1596-1616.
- Fries, S., & Zakoian, J. M. (2019). Mixed causal-noncausal ar processes and the modelling of explosive bubbles. Econometric Theory, 35(6), 1234-1270..

Gourieroux, C., Hencic, A., and Jasiak, J. (2021a). Forecast performance and bubble analysis in noncausal MAR (1, 1) processes. lournal of Forecasting, 40(2), 301-326.

- Gourieroux, C., Iasiak, I., and Tong, M. (2021b). Convolution based filtering and forecasting: An application to WTI crude oil prices. lournal of Forecasting, 40(7), 1230-1244.

- Hecq. A., and Voisin, E. (2021). Forecasting bubbles with mixed causal-noncausal autoregressive models. Econometrics and Statistics, 20, 29-45.
- Lanne, M., anb Luoto, J. (2016). Noncausal bayesian vector autoregression. Journal of Applied Econometrics, 31(7), 1392-1406.

References VIII

Lanne, M., Luoto, J., and Saikkonen, P. (2012). Optimal forecasting of noncausal autoregressive time series. International Journal of Forecasting, 28(3), 623-631.

Nyberg, H., and Saikkonen, P. (2014). Forecasting with a noncausal VAR model. Computational statistics & data analysis, 76, 536-555.

Samorodnitsky, G., and M. S., Taqqu. 1994. Stable non-Gaussian random processes, Chapman & Hall, London, 516-536,

Blasques, F. and Koopman, S.J and Mingoli, G 2023. Observation-Driven filters for Time-Series with Stochastic Trends and Mixed Causal Non-Causal Dynamics *Working Papers*

Rosenblatt, M. (2000). Gaussian and Non-Gaussian Linear Time Series and Random Fields Working Papers

