
Forecasting extreme
trajectories using
semi-norm
representations
Séminaire FDD-FiME
Arthur THOMAS

Gilles DE TRUCHIS and Sébastien FRIES

October 3, 2024



Motivations
Placeholder

Extreme values and sharp reversals are at the heart of
prediction challenges

• Traditional time series often relies on “the best predictor”

X̂t+h := E(Xt+h|It), h > 0

with It the past information

• However, future realizations far from central values lead to

huge prediction errors !
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Xt is anticipative

Figure: Xt = ρXt+1 + εt, εt ∼
i.i.d. heavy-tailed

What do you choose? Xt is causal

Figure: Xt = ρXt−1 + εt, εt ∼
i.i.d. heavy-tailed

Just for fun causal and Gaussian Xt = ρXt−1 + εt, εt ∼ N(0, σ2), (ρ = 0.95)
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Xt = ρXt+1 + εt

⇒ The heavy elephant in the room:
Forecasting!
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• Econometrics/Statistics literature:
— Rosenblatt (2000), Lanne and Saikkonen (2011), Gouriéroux and Zakoian (2017)

— Theoretically mimics bubble data1

— Estimation is well covered2

• Applications:
— Economic: Macroeconometrics, Financial data, Bitcoins, Commodities prices, Portfolio

management3

— Climate variables: Global sea level, GHG emissions, global temperature, sea ice area, and
some natural oscillation indices4

— Physics, astronomy, engineering...

1Gouriéroux et al. (2020)
2Cavaliere et al. (2017), Fries and Zakoian (2019), Hecq et al. (2016), Hecq et al. (2017b), Hecq et al. (2020),

Andrews et al. (2009), Lanne and Saikkonen (2011), Lanne & Saikkonen (2013), Gourieroux & Jasiak (2023)
3Lanne and Saikkonen (2011), Lanne & Luoto (2013), Moussa & Thomas (2023), Hecq et al. (2023), Hecq et al. (2024),

Fries and Zakoian (2019), Fries (2021), Hencic & Gourieroux (2015), Hecq et al. (2017a), Hecq et al. (2017b),
Friedrich et al. (2020), Hecq & Voisin (2021), de Truchis et al. (2024)

4Blasques et al (2023), Giancaterini et al. (2022)
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Outline
Placeholder

• We use α-stable linear time series and discuss a new semi-norm representation

⇒ this naturally leads to the concept of past-representability

• We focus on extreme trajectories of past-representable processes and show that

⇒ to some extent, the stochastic nature of the trajectories vanishes

... to give way to deterministic features related to MA(∞) coefficients

• We suggest two forecasting procedures for asymptotically extreme trajectories

• We use aMonte-Carlo study to evaluate our results in a non-asymptotic framework

• We illustrate the empirical relevance of our results on climatic data5

5We develop a web app to replicate the results and play with other time series (emprical data and simulated one)
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Introduction to stable
moving-averages

Anticipative v.s. causal processes



Large shocks are non Gaussian
Placeholder

• Stable laws are natural candidates

εt ∼ S(α, β, σ, µ)
α ∈ (0, 2) : tail index

β ∈ [−1, 1] : asymmetry

σ > 0 : scale

µ ∈ R : location

• ε1 and ε2 are Stable random variables if aε1 + bε2 is Stable

• To simplify the slides we focus on β = 0 ⇒ εt ∼ SαS

• Unconditional moments exist up to the tail index α

E(|ε1|u) < ∞ ⇒ E(|Xt|u) < ∞, u < α
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Two-sided stable moving-averages
Placeholder

We consider linear strictly stationary processes driven by εt
iid∼ SαS

Figure: Xt is anticipative: k ∈ Z+

Xt =
+∞∑

k=−∞

dkεt+k (1)

Figure: Xt is causal: k ∈ Z−
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Causal v.s. anticipative processes
Placeholder

We remain agnostic while developing our theory even if

• the anticipative profile is visually more familiar

Xt = ρXt+1 + εt ⇒ dk = ρk, k ≥ 0, |ρ| < 1

However, on the empirical side,

• causal processes are massively more considered

Xt = ρXt−1 + εt ⇒ dk = ρk, k ≤ 0, |ρ| < 1 Figure: On financial markets k ∈ Z+ or k ∈ Z
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Some trajectories/processes are more predictable
than others
Placeholder

Xt = ρXt+1 + εt Yt = ρYt−1 + εt
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Forecasting stable-MA(∞) with conditional moments
Placeholder

• Backward conditional moments as well

E(|Xt|b|Xt+1) < ∞, b < α

• Forward conditional moments are more promising

Xt+1 = E(|Xt|f|Xt−1) < ∞, f < 2α+ 1

as the conditional expectation always exists
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Forecasting with α-stable vectors
Placeholder

• Fries (2022) suggests a new strategy based on

Xt = (Xt, Xt+h)
′,

that is an α-stable vector, as its characteristic function alway exists

E
[
ei⟨u,X⟩

]
= exp

{
−
∫
Sd
|〈u, s〉|α

(
1− i, sign(〈u, s〉)tg(πα/2)

)
Γ(ds)

}
(2)

and relies on a finite spectral measure Γ defined on the unit sphere Sd ∈ Rd

N.B. Any norm can be used to define the unit sphere: hereafter we retain the Euclidean one

Sd = {s ∈ Rd : ||s||e = 1}
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The spectral measure
Placeholder

• For d = 2, Sd is a circle and Γ acts as a compass

• Given a particular position on the map (the realization of Xt)

... Γ charges the mass where Xt+1 is likely to go

• xt close to central values: “magnetic” perturbations occur

⇒ Γ charges numerous mass points

• xt far from central values: some patterns emerge

⇒ Γ charges a small number of mass points
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Tail conditional distribution of the AR(1)
Placeholder

• Typically, for Xt = ρXt+1 + εt, with εt
iid∼ SαS, if xt → +∞

⇒ For Xt = (Xt, Xt+h)
′, Γ points to the “East” coordinates or

Xt
||Xt||e

=
(ρh, 1)√
1 + ρ2h

• Straightforward interpretation: conditionally to xt → +∞

— Either Xt+h crashes to central values with probability 1− ραh

— Or Xt+h continue to grow with probability ραh

⇒ when h is also large, the crash probability goes to 1

X

X

(1,0)

X   / ||X ||

t+h

t

t t

X   = (X  , X     )’t+htt

X   large, X     smallt t+h
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Baseline path of stable-MA(∞)
Placeholder

• Now consider the general case

Xt =
∑
k∈Z

dkεt+k, εt
iid∼ S(α, β, σ, 0)

• Set τ = t+ k such that

Xt =
∑
k∈Z

dkεt+k =
∑
τ∈Z

dτ−tετ

⇒ Xt is a linear combination of
deterministic baseline paths
scaled by ετ and shift in time

t 7−→ dτ−t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

kk+m k-h

kd    = d

ττ - m τ + h

τ-t

m = 10

τ = 20

d10

d2

d6

d4

d8

d-2

d-6

d-4

d-8

h = 8

t = m,...,τ,...,h

k = 0

Anticipative side Causal side

16



Spectral measure of stable-MA(∞) vectors
Placeholder

Define Xt an α-stable, m and h vector such that

Xt = (Xt−m, . . . , Xt︸ ︷︷ ︸
observed

, Xt+1, . . . , Xt+h︸ ︷︷ ︸
unobserved

)

Then Xt has the following spectral measure

Γ = σα
∑
ϑ∈S1

∑
k∈Z

wϑ‖dk‖αe δ ϑdk
‖dk‖e


, S1 = {−1,+1}

where dk = (dk+m, . . . , dk, dk−1, . . . , dk−h) and wϑ = (1 + ϑβ)/2.
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Tail conditional distribution of stable-MA(∞)
Placeholder

Theorem 1 is a direct application of Theorem 4.4.8 by Samorodnitsky and Taqqu (1994)

Theorem 1
For any Borel sets A, B of Sm+h+1,

P
(

Xt
‖Xt‖e

∈ A
∣∣∣∣‖Xt‖e > x,

Xt
‖Xt‖e

∈ B
)

−→
x→+∞

Γ(A ∩ B)
Γ(B)

Corollary 1
Let A ⊂ Sm+h+1, a Borel set that does not contain any point ± dk/‖dk‖e. Then,

P
(

Xt
‖Xt‖e

∈ A
∣∣∣∣‖Xt‖e > x

)
−→

x→+∞

Γ(A)
Γ(Sm+h+1)

= 0

⇒ During extreme events, Xt is necessarily colinear to some dk
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Conditioning set
Placeholder

In view of empirical applications, Theorem 1 is not very useful as

Xt
‖Xt‖e

, ‖Xt‖e = ‖(Xt−m, . . . , Xt︸ ︷︷ ︸
observed

, Xt+1, . . . , Xt+h︸ ︷︷ ︸
unobserved

)‖e

belongs to the conditioning set and Xt embeds future variables

• An a priori is needed regarding the behavior of Xt+1, . . . , Xt+h to choose B

• Ideally we would like to exclude the future from the conditioning set
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A simple solution with complex implications
Placeholder

A simple solution is to consider, for any sequence (Xt−m, . . . , Xt+h) ∈ Rm+h+1,

‖(Xt−m, . . . , Xt, Xt+1, . . . , Xt+h)‖ = ‖(Xt−m, . . . , Xt, 0, . . . , 0)‖

However, ‖ · ‖ is not positive definite and is actually a semi-norm

From a topological point of view, the unit-sphere homeomorphically comes down to

C∥·∥m+h+1 = {s ∈ Rd : ||s|| = 1},

a unit-cylinder

20



Two questions naturally arise
Placeholder

1. Can we obtain proper representation of α-stable vectors on the unit-cylinder ?

Yes but not for all processes you need to have at least one dk 6= 0, with k > 0

⇒ Causal processes are ruled out

2. Can we derive tail conditional distributions under this semi-norm representation?
yes

21



Two questions naturally arise
Placeholder

1. Can we obtain proper representation of α-stable vectors on the unit-cylinder ?
Yes but not for all processes you need to have at least one dk 6= 0, with k > 0

⇒ Causal processes are ruled out

2. Can we derive tail conditional distributions under this semi-norm representation?
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Two questions naturally arise
Placeholder

1. Can we obtain proper representation of α-stable vectors on the unit-cylinder ?
Yes but not for all processes you need to have at least one dk 6= 0, with k > 0

⇒ Causal processes are ruled out

2. Can we derive tail conditional distributions under this semi-norm representation?

yes

23



Two questions naturally arise
Placeholder

1. Can we obtain proper representation of α-stable vectors on the unit-cylinder ?
Yes but not for all processes you need to have at least one dk 6= 0, with k > 0

⇒ Causal processes are ruled out

2. Can we derive tail conditional distributions under this semi-norm representation?
yes
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Stable vectors on C‖·‖d

General theoretical results



Definition of stable vectors on C‖·‖d
Placeholder

Definition 1
Let X = (X1, . . . , Xd) be an α-stable random vector. For the SαS case, we say that X is representable
on C∥·∥d if there exists a Borel measure Γ∥·∥ on C∥·∥d satisfying for all u ∈ Rd∫

C∥·∥d

|〈u, s〉|αΓ∥·∥(ds) < +∞, (3)

such that the characteristic function of X can be written as in (2) with (Sd,Γ) replaced by

(C∥·∥d ,Γ∥·∥).

• As cylinders are unbounded sets, the integrability condition ensures the sanity of the def.

26



Representation of stable vectors on C‖·‖d
Placeholder

Theorem 2
Denote K∥·∥ = {x ∈ Sd : ‖x‖ = 0} and let X be a SαS on Rd with spectral measure Γ on Sd. Then,

X is representable on C∥·∥d ⇐⇒ Γ(K∥·∥) = 0.

Moreover, if X is representable on C∥·∥d , its spectral measure is then given by Γ∥·∥ where

Γ∥·∥(ds) = ‖s‖−α
e Γ ◦ T−1

∥·∥(ds)

with T∥·∥ : Sd \ K∥·∥ −→ C∥·∥d defined by T∥·∥(s) = s/‖s‖

• Unit cylinders do not span all directions of Rd and encode less information

• The representation exists if these directions are irrelevant to characterize the distribution
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Toward tail conditional distribution on C‖·‖d
Placeholder

Lemma 1
Let X = (X1, . . . , Xd) be an α-stable random vector and let ‖ · ‖ be a seminorm on Rd. If X is

representable on C∥·∥d , then for every Borel sets A, B ⊂ C∥·∥d with Γ∥·∥
(
∂(A ∩ B)

)
= Γ∥·∥(∂B) = 0,

and Γ∥·∥(B) > 0,

P∥·∥
x (X,A|B) := P

(
X

‖X‖
∈ A
∣∣∣∣‖X‖ > x,

X
‖X‖

∈ B
)

−→
x→+∞

Γ∥·∥(A ∩ B)
Γ∥·∥(B)

,

where ∂B (resp. ∂(A ∩ B)) denotes the boundary of B (resp. A ∩ B)

• Under our representation Theorem, the result of Taqqu (1994) can be recovered
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Semi-norm representation
of stable moving averages

Theoretical results for trajectories



Representation of stable moving averages on C‖·‖d
Placeholder

Lemma 2
Let Xt = (Xt−m, . . . , Xt+h) ∈ Rm+h+1 and ‖ · ‖ a semi-norm on Rm+h+1. In the SαS case, Xt is
representable on C∥·∥m+h+1 if and only if

∀k ∈ Z,
[
(dk+m, . . . , dk) = 0 =⇒ ∀ℓ ≤ k− 1, dℓ = 0

]
.

⇒ If a piece of the past trajectory of Xt is null, the whole future trajectory has to be

(dk+m, . . . , dk, . . . , dℓ) = 0

• At this stage, this results is quite intriguing and not necessarily clear-cut
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The past-representability property
Placeholder

The past-representability condition fails if for some m

(dk+m, . . . , dk) = 0

and for some ℓ ∈ Z we have dℓ 6= 0 such that

Xt+1 = dℓ︸︷︷︸
̸=0

εt+1+ℓ +
∑
k ̸=ℓ

dkεt+1+k,

thereby implying that εt+1+ℓ is independent of Xt−m, . . . , Xt

⇒ Observed path is uninformative about extreme events in Xt+1

⇒ Non-anticipative processes are ruled-out
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Application to anticipative stable-AR(2)
Placeholder

Figure: Unit cylinder and unit sphere representations of Xt = 0.7Xt+1 + 0.1Xt+2 + εt
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⇒ Γ∥·∥ successfully encodes all information contained in S2 sphere on C∥·∥2

⇒ This confirms that the directions of R3 not spanned by the unit-cylinder are irrelevant

⇒ Extreme realizations of Xt+1 never occur conditionally to small realisations of Xt−1 and Xt.
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Tail conditional distribution of stable MA(∞)
Placeholder

Proposition 1

Let Xt ∈ Rm+h+1 be a piece of trajectory of a past-representable stable MA(∞), then

P∥·∥
x

(
Xt,A

∣∣∣B(V)) −→
x→+∞

Γ∥·∥

({
ϑdk
‖dk‖

∈ A :
ϑf(dk)
‖dk‖

∈ V
})

Γ∥·∥

({
ϑdk
‖dk‖

∈ C∥·∥m+h+1 :
ϑf(dk)
‖dk‖

∈ V
}) ,

for any Borel sets A ⊂ C∥·∥m+h+1, V ⊆ S∥·∥m+1 such that
{

ϑdk
‖dk‖

∈ C∥·∥m+h+1 :
ϑf(dk)
‖dk‖

∈ V
}

6= ∅,

Γ∥·∥
(
∂(A ∩ B(V))

)
= Γ∥·∥(∂B(V)) = 0, where B(V) = V× Rh and f is a transformation function.
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Toward path prediction
Placeholder

Remark

Setting V = S∥·∥m+1 =⇒ B(V) = C∥·∥m+1 and A a small closed neighborhood of (ϑdk/‖dk‖)

lim
x→+∞

P
(
Xt/‖Xt‖ ∈ A

∣∣∣‖Xt‖ > x
)
= 1

⇒ Far from central values, the observed path

(Xt−m, . . . , Xt, Xt+1)/‖Xt‖

necessarily features patterns of the same shape as some finite piece

ϑ(dk+m, . . . , dk)/‖dk‖

• k points to which piece of the moving average’s coefficient it corresponds

• ϑ ∈ {−1,+1} indicates whether the pattern is flipped upside down if ετ < 0, τ > t
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Path prediction strategy
Placeholder

Forecasting procedure
• (ι) Carefully define the Borel sets A and B(V)
• (ιι) When (Xt−m, . . . , Xt−1, Xt) is large with respect to the semi-norm, use the fact that

(Xt−m, . . . , Xt−1, Xt)/‖Xt‖ = ϑ(dk+m, . . . , dk+1, dk)/‖dk‖

to identify to wich finite piece

ϑ0(dk0+m, . . . , dk0+1, dk0)/‖dk0‖

of the MA(∞) sequence, Xt corresponds
• (ιιι) Then, for V0 any small closed neighbourhood of ϑ0f(dk0)/‖dk0‖, compute

P∥·∥
x

(
Xt,A

∣∣∣B(V0))
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Path prediction and uncertainty
Placeholder

• In practice, only noisy observations are available and we can only achieve

(Xt−m, . . . , Xt−1, Xt)/‖Xt‖ ≈ ϑ(dk+m, . . . , dk+1, dk)/‖dk‖

on a realised trajectory

• Even if the observed path can be confidently identified with a particular pattern in

ϑdk/‖dk‖,

in general, uncertainty regarding the future trajectory remains

⇒ several patterns can coincide on their first m+ 1 components, but differ by the last h

• The tail conditional distribution is obtained as the semi-norm of Xt grows to∞

⇒ only an approximation of the true dynamics during extreme events
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Application to some
particular stable MA(∞)

Path prediction in particular cases



The tail conditional distribution of anticipative AR(1)
Placeholder

Proposition 2

Let Xt = ρXt+1 + εt. Then, the following hold when m ≥ 1 and if 0 ≤ k0 ≤ h

P∥·∥
x

(
Xt,Aϑ,k

∣∣∣B(V0)) −→
x→∞

 |ρ|αk(1− |ρ|α)δϑ0
(ϑ), 0 ≤ k ≤ h− 1,

|ρ|αhδϑ0
(ϑ), k = h.

with Aϑ,k a closed neighborhood of ϑdk
∥dk∥ which does not contain any other charged point of Γ∥·∥

• The crash date is not observed and can happen either in the next h− 1 periods, or after h

• The probability that the bubble will crash in k periods is |ρ|αk(1− |ρ|α)

• The probability that the bubble will last at least hmore periods is |ρ|αh
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The anticipative AR(2)
Placeholder

The anticipative AR(2) is the strictly stationary solution of

(1− λ1F)(1− λ2F)Xt = εt, εt
i.i.d.∼ S(α, β,σ, 0), XtFj = Xt+j

and admits the moving average representation Xt =
∑

k∈Z dkεt+k with

dk =

 λk+1
1 − λk+1

2

λ1 − λ2
1{k≥0}, if λ1 6= λ2,

(k+ 1)λk 1{k≥0}, if λ1 = λ2 = λ.

where 0 < |λi| < 1 for i = 1, 2
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The tail conditional distribution of anticipative AR(2)
Placeholder

Proposition 3
Let Xt an anticipative AR(2), m ≥ 1, h ≥ 1, and dk = (dk+m, . . . , dk, dk−1, . . . , dk−h). For some
ϑ0 ∈ S1, k0 ≥ −m, and B(V0) = V0 × Rh, then,

P∥·∥
x

(
Xt,A

∣∣∣B(V0)) −→
x→∞

 1, if
ϑ0dk0
‖dk0‖

∈ A,

0, otherwise,
(4)

for any closed neighbourhood A ⊂ C∥·∥m+h+1 such that

∂A ∩ {ϑdk/‖dk‖ : ϑ ∈ S1, k ≥ −m} = ∅.

• When Xt is anticipative enough, one can infer in advance the peak and crash dates with
very high confidence, in principle, with certainty !
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Monte Carlo study

Forecasting procedures in practice



Forecasting crash probabilities
Placeholder

We first investigate a crash-probability forecasting procedure

• We generate 1000 trajectories of

Xt = 0.7Xt+1 + 0.1Xt+2 = εt, εt
i.i.d.∼ S(1.5, 1, 0.5, 0), t = 1, . . . , 106

• We consider h = {1, 5, 10} and m = 1 such that Xt = (Xt−1, Xt, Xt+h) and

A = B(V0)× [−δ, δ] , B(V0) =
{
ϑ0dk0−1

‖dk0‖
± 0.1

}
×
{
ϑ0dk0
‖dk0‖

± 0.1

}
, δ = 0.3

• The semi-norm is defined as ‖Xt‖ =
√
X2t + X2t−1 and said large when ‖Xt‖ ≥ 2qα

• qα ∈ {0.9, 0.99, 0.999, 0.9999}, is a theoretical quantile of the marginal distribution of Xt
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Simulation results
Placeholder

• The “empirical” probability on the left-hand side of Proposition 4 is compute as

p̂q =

∑N−h
t=1 1

({
(Xt−1,Xt)

∥Xt∥ ∈ B(V0)
}
∩
{

Xt+h
∥Xt∥ ≤ δ

}
∩ {‖Xt‖ > 2q}

)
∑N−h

t=1 1
({

(Xt−1,Xt)
∥Xt∥ ∈ B(V0)

}
∩ {‖Xt‖ > 2q}

) (5)

and the “theoretical” one (right-hand side) similarly but using dk0+h

∥dk0∥
≤ δ instead of Xt+h

∥Xt∥ ≤ δ

Table: Comparison of theoretical and empirical crash probabilities of bubbles generated by the anticipative AR(2)

h = 1 h = 5 h = 10
p0.9\p̂0.9 84.09\22.75 (22.39-23.14) 93.00\39.70 (39.27-40.14) 98.45\46.76 (46.32-47.21)
p0.99\p̂0.99 91.56\89.11 (87.90-90.36) 95.55\94.63 (93.67-95.56) 95.71\96.85 (96.11-97.56)
p0.999\p̂0.999 99.50\98.75 (97.04-100) 99.40\99.40 (98.21-100) 99.72\99.67 (98.63-100)
p0.9999\p̂0.9999 99.96\99.86 (96.42-100) 99.91\99.92 (99.90-100) 99.97\99.98 (100-100)
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Forecasting crash dates
Placeholder

In this second numerical analysis, we study a crash-date forecasting procedure

• We generate 1000 trajectories of the following SαS AR(2)

Xt = 0.7Xt+1 + 0.1Xt+2εt, εt
i.i.d.∼ S(α, 0, 0.1, 0), t = 1, . . . ,N

• We identify a positive bubble peak as max(xt), consider m = {1, 3, 5, 7, 9, 11} and

... treat as unobserved all future values and dn× 0.01e periods preceding the bubble burst

k0 = {3, 5, 10}

⇒ This impacts to which quantile Xt is likely to belong to
N/α 0.9 1.2 1.5 1.8
250⇒ qXt Very High 0.99 0.99 0.99 0.94
500⇒ qXt High 0.98 0.98 0.94 0.89
1000⇒ qXt Moderately 0.97 0.96 0.91 0.78

• We compute the bias as the difference between the true crash date and the predicted one

44



Simulation results
Placeholder

Table: Bias for the crash date predictor

m = 1 m = 3

qXt /α 0.9 1.2 1.5 1.8 0.9 1.2 1.5 1.8
Very High -0.9785 -0.3985 0.0262 0.2199 -0.7320 -0.2420 -0.0073 0.2815
High 0.7174 1.3771 1.9292 2.2544 0.9421 1.6189 2.0938 2.2914
Moderately High 5.8112 6.6166 7.1317 7.4263 6.0680 6.8229 7.1698 7.3565

m = 5 m = 7

qXt /α 0.9 1.2 1.5 1.8 0.9 1.2 1.5 1.8
Very High -0.5457 -0.2076 0.0483 0.2300 -0.5043 -0.1256 0.1099 0.2715
High 1.2378 1.7442 2.1075 2.3412 1.2978 1.8118 2.0987 2.2571
Moderately High 6.2749 6.9284 7.2065 7.3582 6.3193 6.9760 7.2655 7.3763

m = 9 m = 11

qXt /α 0.9 1.2 1.5 1.8 0.9 1.2 1.5 1.8
Very High -0.4079 -0.0811 0.1556 0.2976 -0.4200 -0.0480 0.1891 0.3300
High 1.3407 1.8471 2.1537 2.2857 1.3633 1.8568 2.1417 2.3565
Moderately High 6.3805 7.0095 7.2599 7.4021 6.4407 7.0253 7.3097 7.4745
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Empirical illustration

Forecasting climate anomalies



Forecasting climate anomalies
Placeholder

• A growing literature highlights the impact of climate variables
on economic performance

• Weather shocks have an impact on growth, inflation, energy
and commodity agricultural returns

• A common proxy is the Southern Oscillation Index (SOI)

• Forecasting El Niño/La Niña anomalies is of primary interest
from extreme weather warnings to agricultural planning
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Data
Placeholder

• SOIt is a monthly variable based on air-pressure differentials in the South Pacific

• El Niño (resp. La Niña) anomalies: SOIt > 1 (resp. SOIt < −1) during at least the 3 periods

Figure: Southern Oscillation Index (SOI)

−4

−2

0

2

4

1960 1980 2000 2020

S
O

I

48



Estimation results
Placeholder

• We estimate a stable anticipative AR(2): Xt = φ1Xt+1 + φ2Xt+2 + εfor the SOIt over the
period 01/1951 - 12/1991

Table: AR(2) estimation for SOI

φ1 φ2 α β σ µ
0.44∗∗∗ 0.30∗∗∗ 1.88∗∗∗ -0.48∗ 0.46∗∗∗ 0.01∗

(1.50E-04) (1.00E-04) (0.06) (0.27) (3.00E-03) (0.02)
Notes: Standard deviations are in parentheses. Asterisks ∗, ∗∗, and ∗∗∗ indicate significance at
the 90%, 95% and 99% level, respectively.
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The anticipative AR(2)
Placeholder

The anticipative AR(2) is the strictly stationary solution of

(1− λ1F)(1− λ2F)Xt = εt, εt
i.i.d.∼ S(α, β,σ, 0), XtFj = Xt+j

and admits the moving average representation Xt =
∑

k∈Z dkεt+k with

dk =

 λk+1
1 − λk+1

2

λ1 − λ2
1{k≥0}, if λ1 6= λ2,

(k+ 1)λk 1{k≥0}, if λ1 = λ2 = λ.

where 0 < |λi| < 1 for i = 1, 2
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Forecast of the first out-of-sample La Niña reversal
Placeholder
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Forecast of the first out-of-sample La Niña reversal
Placeholder

Table: Forecasting out-of-sample El Niño and La Niña anomalies

Type of anomaly El Niño El Niño La Niña El Niño La Niña La Niña El Niño La Niña La Niña La Niña La Niña
Start date 12/1991 07/1994 11/2007 12/2009 07/2010 11/2010 07/2015 11/2021 02/2022 08/2022 11/2022
Peak date 01/1992 09/1994 02/2008 02/2010 09/2010 12/2010 10/2015 01/2021 03/2022 10/2022 12/2022
End date 04/1992 10/1994 03/2008 03/2010 11/2010 04/2011 11/2015 03/2021 05/2022 11/2022 02/2023
Forecasted Peak 01/1992 09/1994 02/2008 03/2010 08/2010 01/2011 09/2015 01/2021 04/2022 10/2022 01/2023
Forecasted End 02/1992 10/1994 03/2008 04/2010 09/2010 02/2011 10/2015 02/2021 05/2022 11/2022 02/2023
Peak forecast error 0 0 0 1 -1 1 -1 0 1 0 -1
End forecast error -2 0 0 1 -1 -2 -1 -1 0 0 0
k0 1 2 3 3 1 2 2 2 2 2 2
m 10 10 10 9 10 10 10 10 10 10 10

For the 14 El Niño/La Niña occurrences, our procedure leads to

• an average error of 0.42 months in finding the peak date

• an average error of 0.57 months in finding the end date
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Extensions



A step toward multivariate
Placeholder

A simple bi-dimensional process define (Xt) for all t ∈ Z as
Xt = (X1,t, X2,t)′,

X1,t = ρ1X1,t+1 + ε1,t,
X2,t = ρ2X2,t−1 + ε2,t,
εt = (ε1,t, ε2,t)

′

i.i.d. SαS with spectral measure Γ2 on S2 and zero shift vector
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A step toward multivariate
Placeholder
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A step toward multivariate
Placeholder
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Thank for your attention!
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