A pure dual approach for hedging Bermudan options

Aurélien Alfonsi

Joint work with Ahmed Kebaier and Jérôme Lelong FIME seminar, Nov 29, 2024

Ecole des Ponts, CERMICS

Nov 29, 2024

イロト イ押 トイヨ トイヨト

Outline

[Main results and algorithm](#page-9-0)

- [The financial framework](#page-19-0)
- [Numerical experiments](#page-23-0)

目

 299

メロトメ 伊 トメ ミトメ ミト

Computing Bermudan options prices

- A discrete time (discounted) payoff process $(Z_k)_{0\leq k\leq N}$ adapted to $(\mathcal{F}_k)_{0 \leq k \leq N}$. $\max_{0 \leq k \leq N} |Z_k| \in L^p$, $p \geq 1$.
- The (discounted) value of the Bermudan option is given by

$$
U_k = \operatorname{esssup}_{\tau \in \mathcal{T}_k} \mathbb{E}[Z_{\tau} | \mathcal{F}_k]
$$

where \mathcal{T}_k is the set of all $\mathcal{F}-$ stopping times with values in $\{k, k+1, \ldots, N\}$.

From the Snell enveloppe theory, we derive the standard dynamic programming algorithm

$$
\begin{cases} U_N = Z_N \\ U_k = \max\left(Z_k, \mathbb{E}[U_{k+1}|\mathcal{F}_k]\right) \end{cases}
$$
 (1)

K ロ ▶ K 個 ▶ K 경 ▶ K 경 ▶ X 경

Classical (primal) valuation methods

- \bullet Monte-Carlo Least square regression is used to approximate $\mathbb{E}[U_{k+1}|\mathcal{F}_{k}]$ on a regression basis.
- \bullet [\[Tsitsiklis and Van Roy\(1997\)\]](#page-40-1) use then directly [\(1\)](#page-2-0) to approximate the value.
- [\[Longstaff and Schwartz\(2001\)\]](#page-39-0) instead approximate the optimal stopping rule τ^* and then approximate the value. This gives a lower bound.

イロト イ押 トイヨ トイヨト

Classical (primal) valuation methods

- \bullet Monte-Carlo Least square regression is used to approximate $\mathbb{E}[U_{k+1}|\mathcal{F}_{k}]$ on a regression basis.
- \bullet [\[Tsitsiklis and Van Roy\(1997\)\]](#page-40-1) use then directly [\(1\)](#page-2-0) to approximate the value.
- [\[Longstaff and Schwartz\(2001\)\]](#page-39-0) instead approximate the optimal stopping rule τ^* and then approximate the value. This gives a lower bound.
- However, the option price should be for the option seller the value of the hedging portfolio.
- These prices are pointless if we do not know how to build the corresponding hedging portfolio.

K ロ ▶ K 伺 ▶ K ヨ ▶ K ヨ ▶

Some existing (primal) methods for hedging

- Several papers such as [\[Wang and Caflisch\(2010\)\]](#page-40-2) or [\[Belomestny, Milstein, and Schoenmakers\(2010\)\]](#page-38-0) have proposed algorithms to compute the sensitivies (Greeks) for Bermudan options.
- However, when there are many underlyings, it may be not straightforward to find/select a portfolio with given financial instruments that matches these sensitivities.

K ロ ⊁ K 御 ⊁ K 君 ⊁ K 君 ⊁ …

The dual formulation of the price

• Dual representation ([\[Rogers\(2002\),](#page-39-1) [Rogers\(2010\),](#page-39-2) [Haugh and Kogan\(2004\)\]](#page-39-3))

$$
U_n = \inf_{M \in \mathbb{H}^p} \mathbb{E}\left[\max_{n \le j \le N} \{Z_j - (M_j - M_n)\} \bigg| \mathcal{F}_n\right] \tag{2}
$$

where \mathbb{H}^p is the set of $\mathcal{F}\text{-martingales that are } L^p$ integrable.

• From the Doob-Meyer decomposition

$$
U_n = U_0 + M_n^{\star} - A_n^{\star}, \tag{3}
$$

where $M^\star \in \mathbb{H}^p$ vanishes at 0 and A^\star is a predictable, nondecreasing and L^p -integrable process. Then, M^{\star} solves [\(2\)](#page-6-0) and

$$
U_n = \max_{n \le j \le N} \{ Z_j - (M_j^* - M_n^*) \}
$$

(almost surely optimal martingales).

イロト イ押 トイヨ トイヨト

The dual formulation as an hedging portfolio

- Let $M \in \mathbb{H}^p$ be a martingale such that $M_0 = 0$. Then, $V_0 = \mathbb{E}[\max_{0 \le n \le N} \{Z_n - M_n\}] > U_0.$
- \bullet $V_0 + M_n$ can be interpreted as the value at time n of a self-financing portfolio.
- We can prove for $p = 2$ that $\mathbb{E}[|Z_{\tau^*} - (V_0 + M_{\tau^*})|^2]^{1/2} \leq 3 \mathbb{E}[|M_N^* - M_N|^2]^{1/2}.$
- As noticed by Rogers, if M^* is tradable, it is a perfect hedge.
- The dual problem is convex but may admit many solutions. See [\[Schoenmakers, Zhang, and Huang\(2013\)\]](#page-40-3) for the characterization of almost surely optimal martingales.
- How to approximate M^* ? \Rightarrow Find a new dual representation.

D.

イロト イ団 トイ ミト イヨト

Existing algorithms based on the dual formulation

- The dual formula has mostly been used to give a price upper bound. [\[Andersen and Broadie\(2004\)\]](#page-38-1) proposes indeed to approximate M^* with the LS algorithm and then to use the dual formula [\(2\)](#page-6-0).
- [\[Rogers\(2002\)\]](#page-39-1) presents an algorithm minimizing for a given martingale M^0 :

$$
\min_{\lambda \in \mathbb{R}} \mathbb{E} \left[\max_{0 \le j \le N} \{ Z_j - \lambda M_j^0 \} \right].
$$

Works well if M^0 is "close to M^{\star} ".

- [\[Rogers\(2010\)\]](#page-39-2) advocates for a "pure dual" algorithm (i.e. only based on the dual formula) and proposes a formal algorithm.
- [\[Desai, Farias, and Moallemi\(2012\)\]](#page-38-2) propose to solve [\(2\)](#page-6-0) in a Markovian setting $(Z_i = \Psi(X_i))$ with linear programming:

$$
\mathop{\mathrm{minimize}}\limits_{Q}\frac{1}{Q}\sum_{q=1}^{Q}u_q\,\,\text{s.t.}\,\,u_q\geq \Psi(X_j)-\sum_{r=1}^{R}\alpha_r\mathbb{E}[\Phi_r(X_N)|X_j=x_j^q],\,\,0\leq j\leq N, 1\leq q\leq Q.
$$

イロト イ団 トイ ミト イヨト

² [Main results and algorithm](#page-9-0)

[The financial framework](#page-19-0)

[Numerical experiments](#page-23-0)

目

メロトメ 伊 トメ ミトメ ミト

The excess reward representation I

With
$$
\Delta M_n = M_n - M_{n-1}
$$
,
\n
$$
\max_{0 \le j \le N} \{Z_j - (M_j - M_0)\}
$$
\n
$$
= Z_N - (M_N - M_0) + \sum_{n=0}^{N-1} \max_{n \le j \le N} \{Z_j - M_j\} - \max_{n+1 \le j \le N} \{Z_j - M_j\}
$$
\n
$$
= Z_N - (M_N - M_0) + \sum_{n=0}^{N-1} \max_{n \le j \le N} \{Z_j - (M_j - M_n)\} - \max_{n+1 \le j \le N} \{Z_j - (M_j - M_n)\}
$$
\n
$$
= Z_N - (M_N - M_0) + \sum_{n=0}^{N-1} \left(Z_n + \Delta M_{n+1} - \max_{n+1 \le j \le N} \left\{Z_j - \sum_{i=n+2}^j \Delta M_i\right\}\right)_+.
$$

A. Alfonsi (Ecole des Ponts, CERMICS) [A pure dual approach for hedging Bermudan options](#page-0-0) Nov 29, 2024 10/38

メロメメ 御 メメ きょくきょう

重

The excess reward representation II

By taking expectation,

$$
\mathbb{E}\left[\max_{0\leq j\leq N}\left\{Z_j-(M_j-M_0)\right\}\right]
$$

=
$$
\mathbb{E}[Z_N] + \sum_{n=0}^{N-1}\mathbb{E}\left[\left(Z_n+\Delta M_{n+1}-\max_{n+1\leq j\leq N}\left\{Z_j-\sum_{i=n+2}^j\Delta M_i\right\}\right)_+\right].
$$

For $M = M^*$, the red terms are equal to

$$
\mathbb{E}[(Z_n - \mathbb{E}[U_{n+1}|\mathcal{F}_n])_+]
$$

and represents the values of having the right to exercise the option at time $n \in \{0, ..., N - 1\}$.

イロト イ押 トイヨ トイヨト

重

A sequence of optimization problems I

Introduce the space of mg increments between $n-1$ and n :

 $\mathcal{H}^p_n = \{Y \in \mathbb{L}^p(\Omega) \, : \, Y \text{ is real valued, } \mathcal{F}_n \text{ -- measurable and } \mathbb{E}[Y|\mathcal{F}_{n-1}] = 0\}.$

It is tempting to solve backward from $n = N - 1$ to $n = 0$

$$
\inf_{\Delta M_{n+1} \in \mathcal{H}_{n+1}^p} \mathbb{E}\left[\left(Z_n + \Delta M_{n+1} - \max_{n+1 \leq j \leq N} \left\{Z_j - \sum_{i=n+2}^j \Delta M_i\right\}\right)\right] \, .
$$

However, the non strict convexity of the positive part raises some issues in the back propagation of the minimisation problems.

KOD KAP KED KED E VAA

A sequence of optimization problems II

Theorem

Let $\varphi : \mathbb{R} \to \mathbb{R}$ be a convex function such that $|\varphi(x)| \leq C(1+|x|^p)$. Then,

$$
\mathbb{E}[Z_N] + \sum_{n=0}^{N-1} \mathbb{E}\left[\varphi\left(Z_n + \Delta M_{n+1} - \max_{n+1 \leq j \leq N} \left\{Z_j - \sum_{i=n+2}^j \Delta M_i\right\}\right)\right]
$$

\n
$$
\geq \mathbb{E}[Z_N] + \sum_{n=0}^{N-1} \mathbb{E}\left[\varphi\left(Z_n + \Delta M_{n+1}^\star - \max_{n+1 \leq j \leq N} \left\{Z_j - \sum_{i=n+2}^j \Delta M_i^\star\right\}\right)\right],
$$

and M^* is a solution of the following problems for $n = N - 1, \ldots, 0$

$$
\inf_{\Delta M_{n+1} \in \mathcal{H}_{n+1}^p} \mathbb{E}\left[\varphi\left(Z_n + \Delta M_{n+1} - \max_{n+1 \leq j \leq N} \left\{Z_j - \sum_{i=n+2}^j \Delta M_i\right\}\right)\right].
$$
 (4)

When φ is strictly convex, M^* is the unique solution of [\(4\)](#page-13-0).

K ロ ト K 何 ト K ヨ ト K

A sequence of optimization problems III

Proof by backward induction. By Jensen's inequality, we have

$$
\mathbb{E}\left[\varphi\left(Z_n + \Delta M_{n+1} - \max_{n+1 \leq j \leq N} \left\{Z_j - \sum_{i=n+2}^j \Delta M_i\right\}\right)\middle|\mathcal{F}_n\right]
$$

$$
\geq \varphi\left(\mathbb{E}\left[Z_n + \Delta M_{n+1} - \max_{n+1 \leq j \leq N} \left\{Z_j - \sum_{i=n+2}^j \Delta M_i\right\}\middle|\mathcal{F}_n\right]\right),
$$

with equality if

$$
Z_n + \Delta M_{n+1} - \max_{n+1 \le j \le N} \left\{ Z_j - \sum_{i=n+2}^j \Delta M_i \right\} \in \mathcal{F}_n,
$$

which is satisfied by M_n^\star (this quantity then equals $Z_n - \mathbb{E}[U_{n+1}|\mathcal{F}_n]).$

イロト イ団 トイ ミト イヨト

重

Our theoretical algorithm

$$
• \quad \text{Take } p = 2, \ \phi(x) = x^2
$$

- $\bullet\,$ For each $n\in\{1,\ldots,N\}$, choose a finite dimensional linear subspace \mathcal{H}^{pr}_{n} of \mathcal{H}^2_n .
- **3** For $n = N 1$ to $n = 0$, use an optimisation algorithm to minimise

$$
\inf_{\Delta M_{n+1} \in \mathcal{H}_{n+1}^{pr}} \mathbb{E}\left[\left(Z_n + \Delta M_{n+1} - \max_{n+1 \leq j \leq N} \left\{Z_j - \sum_{i=n+2}^j \Delta M_i\right\}\right)^2\right].
$$

 ΔM_{n+1} solves a classical least square problem.

Two approximations are needed:

- $\textbf{\textbullet{}}$ Use a finite dimensional subspace of \mathcal{H}_n^{pr}
- **2** Approximate E by Monte-Carlo.

Finite dimensional subspace approximation

We assume that the subspaces $\mathcal{H}_n, \ 1 \leq n \leq N$, are spanned by $L \in \mathbb{N}^*$ martingale increments $\Delta X_{n,\ell} \in \mathcal{H}^2_n$, $1 \leq \ell \leq L$:

$$
\mathcal{H}_n^{pr} = \left\{ \alpha \cdot \Delta X_n \; : \; \alpha \in \mathbb{R}^L \right\}.
$$

The minimisation problem becomes

$$
\inf_{\alpha \in \mathbb{R}^L} \mathbb{E}\left[\left(Z_n + \alpha \cdot \Delta X_{n+1} - \max_{n+1 \le j \le N} \left\{ Z_j - \sum_{i=n+2}^j \Delta M_i \right\} \right)^2\right].
$$

If $\mathbb{E}[\Delta X_{n+1} \Delta X_{n+1}^T]$ is invertible, the minimum is given by

$$
\alpha_{n+1} = \left(\mathbb{E}[\Delta X_{n+1} \Delta X_{n+1}^T]\right)^{-1} \mathbb{E}\left[\left(\max_{n+1 \leq j \leq N} \left\{Z_j - \sum_{i=n+2}^j \Delta M_i\right\}\right) \Delta X_{n+1}\right].
$$

 Ω

K ロ ▶ K 個 ▶ K 경 ▶ K 경 ▶ X 경

Monte Carlo approximation

Let $Q > 0$. For $1 \le q \le Q$, $(Z_n^q)_{1 \le n \le N}$ and $(\Delta X_n^q)_{1 \le n \le N}$ be independent sample paths of the underlying process Z and martingale increments ΔX . Solve backward in time, the sequence of optimisation problems

$$
\inf_{\alpha \in \mathbb{R}^L} \frac{1}{Q} \sum_{q=1}^Q \left(Z_n^q + \alpha \cdot \Delta X_{n+1}^q - \max_{n+1 \le j \le N} \left\{ Z_j^q - \sum_{i=n+2}^j \alpha_i^Q \cdot \Delta X_i^q \right\} \right)^2.
$$

If $\sum_{q=1}^Q \Delta X^q_{n+1}(\Delta X^q_{n+1})^T$ is positive definite, it has a unique solution α^Q_{n+1} :

$$
\left(\sum_{q=1}^{Q} \Delta X_{n+1}^{q} (\Delta X_{n+1}^{q})^{T}\right) \alpha_{n+1}^{Q} = \sum_{q=1}^{Q} \max_{n+1 \leq j \leq N} \left\{Z_{j}^{q} - \sum_{i=n+2}^{j} \alpha_{i}^{Q} \cdot \Delta X_{i}^{q}\right\} \Delta X_{n+1}^{q}.
$$

 QQQ

K ロ ▶ K @ ▶ K 경 ▶ K 경 ▶ 《 경 》

Convergence results

Proposition

Assume that for $1\leq n\leq N$, the matrix $\mathbb{E}[\Delta X_n\Delta X_n^T]$ is invertible. Then,

• For all
$$
n \in \{1, ..., N\}
$$
, $\alpha_n^Q \to \alpha_n$ when $Q \to \infty$ a.s.
\n• $U_0^Q = \frac{1}{Q} \sum_{q=1}^Q \max_{0 \le j \le N} \left\{ Z_j^q - \sum_{i=1}^j \alpha_i^Q \cdot \Delta X_i^q \right\} \to$
\n $\mathbb{E} \left[\max_{0 \le j \le N} \left\{ Z_j - \sum_{i=1}^j \alpha_i \cdot \Delta X_i \right\} \right]$ a.s.

If we assume moreover that ΔX_i and Z_i have finite moments of order 4, then If we assume moreover the $(\sqrt{Q}(\alpha_n^Q - \alpha_n))_{Q \geq 1}$ and $\left(\sqrt{Q}\left(U_0^Q - \mathbb{E}\left[\max_{0 \leq j \leq N} \left\{Z_j - \sum_{i=1}^j \alpha_i \cdot \Delta X_i\right\}\right]\right)\right)$ are tight.

∢ ロ ▶ ④ ━ ▶ ④ ≡ ▶ ④ ≡ ▶ │

[Main results and algorithm](#page-9-0)

 299

メロトメ 伊 トメ ミトメ ミト

The financial framework I

- A market with d assets $(S^k_t,t\geq 0),\, k\in\{1,\ldots,d\}$ and $(\mathcal{G}_t,t\geq 0)$ their usual filtration.
- For simplicity the interest rate r is deterministic
- Assume that the discounted assets $(\tilde{S}^k_t,t\geq 0)$ with $\tilde{S}^k_t = e^{-rt}S^k_t$ are square integrable G_t -martingales.
- \bullet Consider a time horizon $T>0$ and a Bermudan option with regular exercising dates

$$
T_i = \frac{iT}{N}, \ i = 0, \dots, N.
$$

イロト イ押 トイヨ トイヨト

G.

The financial framework II

Since perfect hedging holds (or may hold) with a continuous time martingale representation theorem, we further split each interval $[T_i, T_{i+1}]$ for $0 \leq i \leq N-1$ into \bar{N} regular sub-intervals, and we set

$$
t_{i,j} = T_i + \frac{j}{\bar{N}} \frac{T}{N}, \text{ for } 0 \le j \le \bar{N}.
$$
 (5)

Consider a family of functions $u_p:\mathbb{R}^d\to\mathbb{R}$ for $p\in\{1,\ldots,\bar{P}\}$ and a family of discounted assets $(\mathcal{A}^k)_{1\leq k\leq \bar{d}}.$ Then, we define the following elementary martingale increments:

$$
X_{t_{i,j}}^{p,k} - X_{t_{i,j-1}}^{p,k} = u_{i,j-1}^p (S_{t_{i,j-1}}) (\mathcal{A}_{t_{i,j}}^k - \mathcal{A}_{t_{i,j-1}}^k),
$$
\n
$$
\tag{6}
$$

for $1 \le p \le \bar{P}$ and $1 \le k \le \bar{d}$. Thus, $L = \bar{N} \times \bar{P} \times \bar{d}$ is the number of martingale increments between two exercising dates that span \mathcal{H}^{pr}_{i} .

 QQ

K ロ ▶ K @ ▶ K 경 ▶ K 경 ▶ X 경 ...

The financial framework III

Decompose the martingale increments ΔM_{i+1} , $0 \le i \le N-1$ as follows

$$
\Delta M_{i+1} = \sum_{j=1}^{\bar{N}} \sum_{p,k} \alpha_{i,j}^{p,k} (X_{t_{i,j}}^{p,k} - X_{t_{i,j-1}}^{p,k}). \tag{7}
$$

There are $L = \bar{N} \times \bar{P} \times \bar{d}$ coefficients to estimate Between two exercising dates, the option is European and using the martingale property we can easily show that the coefficients on every sub-intervals can be computed independently.

The use of subticks induces a linear computational cost: instead of solving a linear system of size $L = \bar{N} \times \bar{P} \times \bar{d}$, we solve \bar{N} linear systems of size $\bar{P} \times \bar{d}$.

Typical choice for u^p : local functions $(u^p = 1_{A_p}$ for disjoint sets A_p) or polynomial functions.

KOD KOD KED KED B YOUR

[Introduction](#page-1-0)

[Main results and algorithm](#page-9-0)

[The financial framework](#page-19-0)

 299

メロトメ 伊 トメ ミトメ ミト

Numerical experiments

Numerical tests presented in the Black-Scholes model. Let

$$
U^Q_0 = \frac{1}{Q}\sum^Q_{q=1}\max_{0\leq j\leq N}\left\{Z^q_j-\sum^j_{i=1}\alpha^Q_i\cdot \Delta X^q_i\right\}.
$$

Because of overfitting, U_{0}^{Q} can significantly underestimate $\mathbb{E}\left[\max_{0\leq j\leq N}\left\{Z_j-\sum_{i=1}^j\alpha_i\cdot\Delta X_i\right\}\right]$ when Q is not sufficiently large, compared to the number of parameters to estimate.

$$
\hat{U}_0^Q = \frac{1}{Q} \sum_{q=1}^Q \max_{0 \le j \le N} \left\{ \hat{Z}_j^q - \sum_{i=1}^j \alpha_i^Q \cdot \Delta \hat{X}_i^q \right\},\,
$$

where $(\hat{Z}^q, \Delta \hat{X}^q)_{1 \leq q \leq Q}$ is independent from the sample $(Z^q, \Delta X^q)_{1 \leq q \leq Q}$ used to compute $\alpha^Q.$

 $\hat U_0^Q$ has a nonnegative biais. The difference $\hat U_0^Q - U_0^Q$ is a measure of the accuracy. K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ ① 할 → ① Q @

Comparison with Rogers' approach

For the Bermudan Put option, [\[Rogers\(2002\)\]](#page-39-1) directly solves

$$
U_0 = \inf_{\lambda \in \mathbb{R}} \mathbb{E} \left[\max_{0 \le j \le N} \{ Z_j - \lambda (M_j - M_0) \} \right]
$$

with $M_j = \tilde{P}(t_j, S_{t_j}),$ where \tilde{P} is the discounted European Put option price.

Rogers uses the continuous time European hedge.

K ロ X K @ X K 할 X K 할 X (할

 2990

The 1-dimensional put option

Consider a 1-dimensional put options in the Black Scholes models

Table: Prices for a put option using a basis of P local functions with $K = S_0 = 100$, $T = 0.5$, $r = 0.06$, $\sigma = 0.4$ and $N = 10$ exercising dates. LS price with a polynomial approximation of order 6: 9.90. [\[Rogers\(2002\)\]](#page-39-1) price: 9.94.

イロト イ団 トイ ミト イヨト

The 1d put option: P&L

Figure: P&L histograms of the hedging strategy for the Bermudan Put option for the stock only strategy (left, $\bar{N}=5,~ P=50,~ Q=10^5)$ and the strategy using European options (right, $\bar{N} = 1, P = 50, Q = 10^5$).

 Ω

≮ロト ⊀何ト ⊀ミト

[Numerical experiments](#page-23-0)

The 1d put option: P&L (Delta Hedging)

Figure: P&L histograms of the delta hedging strategy for the Bermudan Put option calculated with the CRR approximation (left) and Wang and Caflisch method (right). Parameters: $\bar{N} = 5, P = 50, Q = 10^5$.

≮ロト ⊀何ト ⊀ミト

A Bermudan butterfly option

$$
\Psi(S) = 2\left(\frac{K_1 + K_2}{2} - S\right)_+ - (K_1 - S)_+ - (K_2 - S)_+.
$$

Using the European butterfly to hedge the Bermudan options gives a price way too high with [\[Rogers\(2002\)\]](#page-39-1): 6.49 vs 5.65 (Longstaff Schwartz price)

Table: Prices for a butterfly option with parameters using a basis of P local functions. Parameters: $Q = 10^6$, $S_0 = 95$, $K_1 = 90$, $K_2 = 110$, $T = 0.5$, $r = 0.06$, $\sigma = 0.4$ and $N = 10$, The Longstaff-Schwartz algorithm with order 5 polynomials gives a price of 5.65.

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

[Numerical experiments](#page-23-0)

The butterfly option

Figure: P&L histograms of the hedging strategy for the Bermudan Butterfly option obtained with $\bar{N}=20,~P=50,~Q=5\times 10^5$ for the stock only strategy (left) and the strategy using extra European options (right).

∢ ロ ▶ - ∢ 何 ▶ - ∢ ヨ

A max-call option on 2 assets

Payoff: $\left(\max(S^1, S^2) - K\right)_+.$ Hedging instruments: 2 assets, 2 ATM Vanilla options.

Table: Prices for a call option on the maximum of 2 assets using a basis of $P \times P$ local functions and parameters $S_0 = (90, 90)$, $\sigma = (0.2, 0.2)$, $\rho = 0$, $\delta = (0.1, 0.1)$, $T = 3$, $r = 0.05$, $K = 100$, $N = 9$. The Longstaff-Schwartz algorithm give a price of 8.1.

 299

K ロ ▶ K 伺 ▶ K ヨ ▶ K ヨ ▶

A max-call option on 2 assets: P&L

Figure: P&L histograms of the hedging strategy for the Bermudan max-call option of Table [3](#page-31-0) obtained with $\bar{N} = 5$, $P = 10$, $Q = 2 \times 10^6$ for the stock only strategy (left) and the strategy using extra European options (center).

[Numerical experiments](#page-23-0)

A max-call option on 2 assets: P&L (Delta hedging)

Figure: P&L histograms of the hedging strategy for the Bermudan max-call option of Table [3](#page-31-0) with the delta hedging strategy calculated with [\[Wang and Caflisch\(2010\)\]](#page-40-2).

(□) (_□) (

A basket option on 3 assets

Payoff: $\left(K - \frac{1}{3} \sum_{\ell=1}^3 S^{\ell}\right)$ + . Hedging instruments: 3 assets, 3 ATM Vanilla options. Regression on the signed payoff (we replace in [\(6\)](#page-21-0) $u_{i,j-1}^p(S_{t_{i,j-1}})$ by $\tilde{u}_{i,j-1}^p(K - \frac{1}{3}\sum_{\ell=1}^3 S_{t_{i,j-1}}^{\ell})$

Table: Prices for a put option on 3-dimensional basket using a basis of local functions of the signed payoff with $K = S_0 = 100, \ T = 1, \ r = 0.05, \ \sigma^i = 0.2, \ \rho = 0.3$ and 10 exercising dates. LS price with a polynomial approximati[on](#page-33-0) o[f o](#page-35-0)[r](#page-33-0)[der](#page-34-0) $3: 4.03$ $3: 4.03$ $3: 4.03$ $3: 4.03$ $3: 4.03$ $3: 4.03$ [.](#page-23-0) 2990

Conclusion

The key ingredients are

- The reward excess representation: a new dual formula.
- **•** Strictly convexifying the optimisation problem.

This gives a pure dual algorithm that boils down to a sequence of least-square minimisation problems.

э

K ロメ K 御 メ K 君 メ K 君 メ …

Conclusion

The key ingredients are

- The reward excess representation: a new dual formula.
- **•** Strictly convexifying the optimisation problem.

This gives a pure dual algorithm that boils down to a sequence of least-square minimisation problems.

The main advantages of the algorithm are:

- It gives directly the hedging portfolio and the corresponding price.
- It allows to quantify the value of monitoring frequently the hedging portfolio.
- \bullet It allows to quantify the value of adding/removing a financial instrument in the hedging portfolio.

Conclusion

The key ingredients are

- The reward excess representation: a new dual formula.
- **•** Strictly convexifying the optimisation problem.

This gives a pure dual algorithm that boils down to a sequence of least-square minimisation problems.

The main advantages of the algorithm are:

- It gives directly the hedging portfolio and the corresponding price.
- It allows to quantify the value of monitoring frequently the hedging portfolio.
- \bullet It allows to quantify the value of adding/removing a financial instrument in the hedging portfolio.

Thank you for your attention!

Bibliography I

Leif Andersen and Mark Broadie.

Primal-dual simulation algorithm for pricing multidimensional American options. Management Science, 50(9):1222–1234, 2004. doi: 10.1287/mnsc.1040.0258.

Denis Belomestny, G. N. Milstein, and John Schoenmakers. Sensitivities for Bermudan options by regression methods. Decis. Econ. Finance, 33(2):117–138, 2010. ISSN 1593-8883,1129-6569. doi: 10.1007/s10203-009-0101-z. URL <https://doi.org/10.1007/s10203-009-0101-z>.

Vijay V. Desai, Vivek F. Farias, and Ciamac C. Moallemi. Pathwise optimization for optimal stopping problems.

Management Science, 58(12):2292–2308, 2012. doi: 10.1287/mnsc.1120.1551.

 $\left\{ \begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \end{array} \right.$

Bibliography II

Martin B. Haugh and Leonid Kogan.

Pricing American options: a duality approach.

Oper. Res., 52(2):258–270, 2004. ISSN 0030-364X,1526-5463. doi: 10.1287/opre.1030.0070. URL <https://doi.org/10.1287/opre.1030.0070>.

Francis A. Longstaff and Eduardo S. Schwartz. Valuing American options by simulation: a simple least-squares approach. The Review of Financial Studies, 14(1):113–147, 2001.

L. C. G. Rogers.

Monte Carlo valuation of American options. Math. Finance, 12(3):271–286, 2002.

L. C. G. Rogers.

Dual valuation and hedging of Bermudan options.

SIAM J. Financial Math., 1:604–608, 2010.

イロト イ押 トイヨ トイヨト

Bibliography III

J. Schoenmakers, J. Zhang, and J. Huang.

Optimal dual martingales, their analysis, and application to new algorithms for Bermudan products.

SIAM Journal on Financial Mathematics, 4(1):86–116, 2013.

J.N. Tsitsiklis and B. Van Roy.

An analysis of temporal-difference learning with function approximation. IEEE Transactions on Automatic Control, 42(5):674–690, 1997. doi: 10.1109/9.580874.

Yang Wang and Russel Caflisch.

Pricing and hedging American-style options: a simple simulation-based approach.

J. Comput. Finance, 13(4):95–125, 2010. ISSN 1460-1559,1755-2850. doi: 10.21314/JCF.2010.220. URL <https://doi.org/10.21314/JCF.2010.220>.

K ロ ▶ K 伺 ▶ K ヨ ▶ K ヨ ▶