
PRINCIPAL-AGENT PROBLEMS WITH VOLATILITY CONTROL

A NEW APPROACH

Emma HUBERT1

Joint work with Alessandro CHIUSOLO1

Séminaire FDD-FiME-MiRTE – December 13, 2024

1Department of Operations Research and Financial Engineering (ORFE), Princeton University.
Research partially supported by the NSF grant DMS-2307736



CONTENT

1. Introduction

2. Towards a new approach

Short detour via the ‘first-best’

A first illustrative example

3. The new approach: general framework

The alternative ‘first-best’ problem

Reaching the ‘first-best’ value

4. Conclusion & work in progress

Partial conclusion

Towards multi-agent problems

1



Introduction



PRINCIPAL-AGENT PROBLEMS

▶ Analyse interactions between economic agents, in particular with asym-
metric information (moral hazard).

The principal (she) initiates a contract for a period [0, T], represented by
a terminal payment ξ.
The agent (he) accepts or not the contract proposed by the principal.

The principal must suggest an optimal contract: maximises her utility, and
that the agent will accept (reservation utility RA).

▶ Holmström and Milgrom [6] (1987): first model in continuous time;
▶ Sannikov [9] (2008): general method for continuous-time principal-agent

problems;
▶ Cvitanić, Possamaï, and Touzi [4] (2018): extension to volatility control.

(i) identify a ‘nice’ class of contracts;
(ii) prove that this restriction is without loss of generality (using 2BSDE);
(iii) solve the principal’s problem, which is now standard.
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MORAL HAZARD IN CONTINUOUS-TIME

▶ The agent controls both the drift and the volatility of a (one-dimensional)
output process X through an adapted control ν ∈ U :

Xt = X0 +
∫ t

0
σ(s, Xs, νs)

(
λ(s, Xs, νs)ds+ dWν

s
)
, t ∈ [0, T], Pν-a.s.,

where Wν is a d-dimensional Pν-Brownian Motion.

Moral Hazard: the agent’s effort ν during the contracting period is not observ-
able by the principal. Here, the principal only observes X in continuous-time.

▶ Given a terminal payment ξ, indexed on X, the agent solves:

VA(ξ) := sup
ν∈U

JA(ξ, ν), with JA(ξ, ν) := EPν
[
UA

(
ξ −

∫ T

0
c(t, Xt, νt)dt

)]
.

▶ Optimal response to a contract ξ: U⋆(ξ) := {ν⋆ ∈ U : VA(ξ) = JA(ξ, ν⋆)}.

▶ The goal of the principal is to find the optimal contract, i.e.

VP := sup
ξ∈Ξ

sup
ν⋆∈U⋆(ξ)

EPν
⋆ [

UP
(
XT − ξ

)]
, Ξ :=

{
ξ FT-measurable, VA(ξ) ≥ RA

}
.
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EXISTING APPROACHES

▶ Drift control case: if the volatility is uncontrolled (i.e. σ(s, Xs)), the agent’s
dynamic value function (Yt)t∈[0,T] is related to the first component of the so-
lution to a BSDE, with terminal condition YT := UA(ξ).

The optimal form of contracts for the agent is ξ = U−1
A (YZT) where

YZt = y0 −
∫ t

0
sup
u∈U

{
σ(s, Xs)λ(s, Xs,u)Zs − c(s, Xs,u)

}
ds+

∫ t

0
ZsdXs,

where y0 ∈ R and the process Z have to be optimally chosen by the principal.

▶ Volatility control case: restrict the study to contracts ξ = U−1
A (YZ,ΓT ) where

YZ,Γt = y0 −
∫ t

0
HA

(
s, Xs, Zs, Γs

)
ds+

∫ t

0
ZsdXs +

1
2

∫ t

0
Γsd⟨X⟩s,

with HA(t, x, z, γ) := sup
u∈U

{
[σλ](t, x,u)z+ 1

2
[
σσ⊤](t, x,u)γ − c(t, x,u)

}
,

where y0 ∈ R and Z, Γ optimally chosen by the principal.

▶ The proof that the previous form of contracts is without loss of generality
relies on 2BSDE.
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APPLICATIONS, EXTENSIONS, LIMITATIONS

▶ Applications:

▶ Finance: Cvitanić, Possamaï, and Touzi [3] (2017), ...
▶ Energy-related: Aïd, Possamaï, and Touzi [1] (2022), Élie, Hubert, Mastrolia,

and Possamaï [5] (2021), Aïd, Kemper, and Touzi [2] (2023), ...

▶ Extensions:

▶ Multi-agent problems: Hubert [7] (2023), Aïd, Kemper, and Touzi [2] (2023)
⇒ Multidimensional 2BSDEs;

▶ Continuum of agents: Élie, Hubert, Mastrolia, and Possamaï [5] (2021), ...
⇒ Mean-field 2BSDEs;

▶ Output process with jumps? ⇒ 2BSDEs with jumps.
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Towards a new approach



SHORT DETOUR VIA THE ‘FIRST-BEST’

▶ Principal-agent problems with moral hazard (‘second-best’) are usually
compared to their ‘first-best’ counterpart.

▶ In the first-best case, the principal directly chooses the agent’s controls:

V◦
P := sup

ξ∈Ξ
sup
ν∈U

EPν [UP
(
XT − ξ

)]
.

▶ If the principal can observe the agent’s controls, then SB = FB if one can
find a ‘penalisation/forcing contract’, i.e. a contract offered by the principal
which allows her to achieve her value in the first-best case.

▶ Main idea: if the principal observes the agent’s controls, she can strongly
penalise him whenever he deviates from a ‘recommended effort’.

▶ Usually the case if there are no ‘strong’ assumptions on the set of admis-
sible contracts (may not work in a framework with limited liability).
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A FIRST ILLUSTRATIVE EXAMPLE

▶ One-dimensional output process with one-dimensional noise and volatility
control only:

dXt = νt(λdt+ dWt), λ > 0, t ∈ [0, T].

▶ The principal observes X in continuous-time, and can therefore deduce its
quadratic variation ⟨X⟩t, t ∈ [0, T].

▶ Two possible approaches:

(i) Apply the results from [4], by considering contracts indexed on ⟨X⟩ through
the parameter Γ.

(ii) Notice that since the principal observes ⟨X⟩, she can (almost) deduce the
agent’s effort νt = ±

√
⟨X⟩t, t ∈ [0, T] ⇒ FB!

▶ New approach! Since the principal always observes ⟨X⟩, we could look at a
‘first-best’ reformulation of the problem, in which the principal controls ⟨X⟩.

▶ In the following, we will take for γA, γP > 0,

JA(ξ, ν) := EPν [− exp(−γAξ)
]
, JP(ξ, ν) := EPν [− exp

(
− γP(XT − ξ)

)]
.
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A ‘FIRST-BEST’ ALTERNATIVE PROBLEM

▶ Step 1. We consider a slightly different problem: the principal chooses a
contract ξ and controls the quadratic variation of X through a process Σ:

d⟨X⟩t = Σtdt, t ∈ [0, T].

▶ The agent still control X, but is constrained to choose νt such that the
quadratic variation chosen by the principal is achieved. In this example, the
constraint is ν2

t = Σt, t ∈ [0, T].

▶ The original Hamiltonian can be decomposed as follows:

HA(t, x, z, γ) = sup
u∈R

{
uλz+ 1

2γu
2
}

= sup
S∈R+

{
sup

u∈R: u2=S

{
uλz

}
+

1
2γS

}
▶ For fixed Σ, we shall consider the ‘constrained’ Hamiltonian:

H◦
A(t, x, z, S) = sup

u∈R : u2=S

{
uλz

}
⇒ u◦(z, S) := sgn(z)

√
S, S ∈ R+.
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A ‘FIRST-BEST’ ALTERNATIVE PROBLEM: SOLUTION

▶ Step 2. Using BSDEs, one can show that the optimal form of contracts is:

ξ = ξ0 −
∫ T

0
sup

u∈R : u2=Σt

{
uλZt

}
dt+

∫ T

0
ZtdXt +

γA
2

∫ T

0
Z2tΣtdt.

▶ The corresponding agent’s best-response is νt := sgn(Zt)
√
Σt.

▶ The principal’s problem becomes:

V◦
P = sup

Z,Σ
E
[
− exp

(
− γP(XT − ξ)

)]
with dXt = sgn(Zt)

√
Σt(λdt+ dWt),

and dξt =
1
2γAZ

2
tΣtdt+ Ztsgn(Zt)

√
ΣtdWt.

▶ It is clear that the ‘first-best’ value V◦
P is higher than the value VP of the

original problem... We want to show equality!
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▶ The corresponding agent’s best-response is νt := sgn(Zt)
√
Σt.

▶ The principal’s problem becomes:

V◦
P = sup

Z,Σ
E
[
− exp

(
− γP(XT − ξ)

)]
with dXt = sgn(Zt)

√
Σt(λdt+ dWt),

and dξt =
1
2γAZ

2
tΣtdt+ Ztsgn(Zt)

√
ΣtdWt.

▶ It is clear that the ‘first-best’ value V◦
P is higher than the value VP of the

original problem... We want to show equality!
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A ‘FIRST-BEST’ ALTERNATIVE PROBLEM: FORCING CONTRACTS

▶ Step 3. We consider the contract’s form in [4]:

ξ = ξ0 −
∫ T

0
sup
u∈R

{
uλZt +

1
2Γtu2

}
dt+

∫ T

0
ZtdXt +

1
2

∫ T

0

(
Γt + γAZ2t

)
d⟨X⟩t.

▶ The corresponding agent’s best-response is νt := −λ
Zt
Γt

for Γt < 0.

▶ By restricting the study to contracts of the previous form, we get

VP ≥ sup
Z,Γ

E
[
− exp

(
− γP(XT − ξ)

)]
with dXt = −λ

Zt
Γt
(λdt+ dWt),

and dξt =
1
2γAλ

2 Z4t
Γ2
t
dt− λ

Z2t
Γt

dWt.

▶ Proving the equality above requires 2BSDEs...
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A ‘FIRST-BEST’ ALTERNATIVE PROBLEM: CONCLUSION

▶ ‘First-best’ solution:

VP ≤ V◦
P = sup

Z,Σ
E
[
− exp

(
− γP(XT − ξ)

)]
with dXt = sgn(Zt)

√
Σt(λdt+ dWt),

and dξt =
1
2γAZ

2
tΣtdt+ Ztsgn(Zt)

√
ΣtdWt.

▶ Using forcing contracts:

VP ≥ sup
Z,Γ

E
[
− exp

(
− γP(XT − ξ)

)]
with dXt = −λ

Zt
Γt
(λdt+ dWt),

and dξt =
1
2γAλ

2 Z4t
Γ2
t
dt− λ

Z2t
Γt

dWt.

▶ The two problems are the same, and there is a one-to-one correspondence
between the processes Σ and Γ:

d⟨X⟩t = Σtdt ⇒ Σt = λ2 Z2t
Γ2
t
, or equivalently Γt = −λ

Zt√
Σt

.
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The new approach: general
framework



THE GENERAL FRAMEWORK

▶ The agent controls both the drift and the volatility of a one-dimensional
output process X through an adapted control ν ∈ U :

Xt = X0 +
∫ t

0
σ(s, Xs, νs)

(
λ(s, Xs, νs)ds+ dWs

)
, t ∈ [0, T], Pν-a.s.,

where W is a d-dimensional Pν-Brownian Motion.

Problem 1 (Original problem)

VP := sup
ξ∈Ξ

sup
ν⋆∈U⋆(ξ)

EPν
⋆ [

UP
(
XT − ξ

)]
,

where

Ξ :=
{
ξ FT-measurable, VA(ξ) ≥ RA

}
,

U⋆(ξ) := {ν⋆ ∈ U : VA(ξ) = JA(ξ, ν⋆)} ̸= ∅ for ξ ∈ Ξ.

VA(ξ) := sup
ν∈U

JA(ξ, ν), with JA(ξ, ν) := EPν
[
UA

(
ξ −

∫ T

0
c(t, Xt, νt)dt

)]
.
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OBSERVING THE QUADRATIC VARIATION...

▶ The principal observes X in continuous-time, and can therefore deduce
its quadratic variation ⟨X⟩ (defined pathwise by Karandikar [8] (1995)), with
density Σ with respect to the Lebesgue measure:

d⟨X⟩t = Σtdt, t ∈ [0, T].

▶ Idea in [4]: the contract can be indexed on ⟨X⟩ through a parameter Γ.

▶ Alternative idea: the principal could directly control the process Σ, and
force the agent to choose ν ∈ U such that [σσ⊤](t, Xt, νt) = Σt, t ∈ [0, T].

▶ Sort of ‘first-best’ on the quadratic variation!

▶ Step 1. Write an alternative problem:

(i) the principal chooses both a contract ξ and a process Σ ∈ S ,
(ii) the agent computes his best response ν ∈ U◦(Σ), with

U◦(Σ) :=
{
ν ∈ U : νt ∈ U◦

t (Xt,Σt), t ≥ 0},
U◦
t (x, S) :=

{
u ∈ U : [σσ⊤](t, x,u) = S

}
.
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STEP 1. THE ALTERNATIVE ‘FIRST-BEST’ PROBLEM

▶ Define

S :=
{
Σ F–progressively measurable process, Σt ∈ St(Xt)},

St(x) :=
{
S ∈ R+ : S = [σσ⊤](t, x,u) for some u ∈ U

}
.

▶ Given ξ ∈ Ξ and Σ ∈ S , the agent solves:

V◦
A(ξ,Σ) := sup

ν∈U◦(Σ)

JA(ξ, ν).

▶ Alternative (still non-standard) stochastic control problem for the principal:

Problem 2 (‘First-best’ reformulation of the original problem)

V◦
P := sup

(ξ,Σ)∈Ξ×S
sup

ν∈U◦,⋆(ξ,Σ)

EPν [UP(XT − ξ)
]
, (1)

where U◦,⋆(ξ,Σ) := {ν ∈ U◦(Σ) : V◦
A(ξ,Σ) = JA(ξ, ν)} ̸= ∅.

▶ Lemma 1. V◦
P ≥ VP.
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STEP 2. RESOLUTION, VIA BSDE

▶ Step 2. For fixed Σ ∈ S , the agent’s continuation value can be represented
by the following BSDE, with terminal value YT = UA(ξ):

YZt = y0 −
∫ t

0
H◦

A
(
s, Xs, Zs,Σs

)
ds+

∫ t

0
Zs · dXs, (2)

with H◦
A(t, x, z, S) = sup

u∈U◦
t (x,S)

{
[σλ](t, x,u)z− c(t, x,u)

}
.

Theorem 2

Let Σ ∈ S and ξ ∈ Ξ. Then there exists Z ∈ V◦(Σ) and y0 ≥ U−1
A (RA) such

that ξ = U−1
A (YZT), where the process YZ is defined by (2). Moreover:

(i) The agent’s optimal response ν◦ is a maximiser of the Hamiltonian H◦
A;

(ii) V◦
A(ξ,Σ) = y0 ≥ RA;

(iii) V◦
P = Ṽ◦

P (defined on the next slide).
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BACK TO A STANDARD STOCHASTIC CONTROL PROBLEM

Problem 3 (Restriction to contracts of the form (2))

Ṽ◦
P := sup

y0≥U−1
A (RA)

sup
Σ∈S

sup
Z∈V◦(Σ)

sup
ν◦∈U◦,⋆(YT,Σ)

EPν
◦ [

UP(XT − ξ)
]
.

where the state variables X and Y are solution to the following system of
SDEs:

dXt = σ
(
t, X, ν◦

t
)(

λ
(
t, X, ν◦

t
)
dt+ dWt

)
, t ∈ [0, T], (3a)

dYt = c
(
t, X, ν◦

t
)
dt+ Zt σ

(
t, X, ν◦

t
)
dWt, t ∈ [0, T], (3b)

coupled through the agent’s optimal effort ν◦
t := u◦(t, X, Zt,Σt), where the

function u◦ is defined as a maximiser of the (constraint) Hamiltonian H◦
A.

▶ One can write the HJB equation associated to this problem and solve it
(explicitly or numerically).
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Ṽ◦
P := sup

y0≥U−1
A (RA)

sup
Σ∈S

sup
Z∈V◦(Σ)

sup
ν◦∈U◦,⋆(YT,Σ)

EPν
◦ [

UP(XT − ξ)
]
.

where the state variables X and Y are solution to the following system of
SDEs:

dXt = σ
(
t, X, ν◦

t
)(

λ
(
t, X, ν◦

t
)
dt+ dWt

)
, t ∈ [0, T], (3a)

dYt = c
(
t, X, ν◦

t
)
dt+ Zt σ

(
t, X, ν◦

t
)
dWt, t ∈ [0, T], (3b)

coupled through the agent’s optimal effort ν◦
t := u◦(t, X, Zt,Σt), where the

function u◦ is defined as a maximiser of the (constraint) Hamiltonian H◦
A.

▶ One can write the HJB equation associated to this problem and solve it
(explicitly or numerically).

16



STEP 3. ‘FORCING’ CONTRACTS

▶ For now, we have VP ≤ V◦
P = Ṽ◦

P .

▶ Step 3. Show that VP ≥ V◦
P , by introducing ‘forcing’ contracts.

▶ Idea: Use the contract form in [4], namely ξ = U−1
A (YZ,ΓT ) where

YZ,Γt = y0 −
∫ t

0
HA

(
s, Xs, Zs, Γs

)
ds+

∫ t

0
ZsdXs +

1
2

∫ t

0
Γsd⟨X⟩s, (4)

with HA(t, x, z, γ) := sup
u∈U

{
[σλ](t, x,u)z+ 1

2
[
σσ⊤](t, x,u)γ − c(t, x,u)

}
,

where y0 ∈ R and (Z, Γ) ∈ V have to be optimally chosen by the principal.

▶ By [4], we know this form of contracts is ‘optimal’ (by 2BSDEs). Here, we just
want to prove that this form allow to achieve the ‘first-best’ utility V◦

P (which
will imply optimality of the contract form).

▶ Given a contract of the form (4), the agent’s optimal response is given by
the maximiser of his hamiltonian: ν⋆

t := u⋆(t, Xt, Zt, Γt) with

u⋆(t, x, z, γ) ∈ argmax
u∈U

{
[σλ](t, x,u)z+ 1

2
[
σσ⊤](t, x,u)γ − c(t, x,u)

}
.
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MAIN RESULT IN CVITANIĆ, POSSAMAÏ, AND TOUZI [4] (2018)

▶ Lemma 3. VP ≥ ṼP.

Problem 4 (Restriction to contracts of the form (4))

ṼP := sup
y0≥RA

sup
(Z,Γ)∈V

sup
ν⋆∈U⋆(YZ,ΓT )

EPν
⋆ [

UP

(
XT − U−1

A
(
YZ,ΓT

))]
,

where the state variable (X, Y) is solution to the following system of SDEs:

dXt = σ
(
t, Xt, ν⋆

t
)(

λ
(
t, Xt, ν⋆

t
)
dt+ dWt

)
, t ∈ [0, T], X0 = x0 (5a)

dYt = c
(
t, Xt, ν⋆

t
)
dt+ Zt σ

(
t, Xt, ν⋆

t
)
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EQUIVALENCE OF ALL PROBLEMS

▶ In terms of value for the principal:

VP ≥ ṼP and Ṽ◦
P = V◦

P ≥ VP.

▶ One can already remark that Problem 3 is very similar to Problem 4,

but

▶ In Problem 3, the principal controls (Z,Σ) instead of (Z, Γ) in Problem 4;
▶ The agent’s optimal response might be different:

ν◦
t := u◦(t, Xt, Zt,Σt)

?⇐⇒ ν⋆
t := u⋆(t, Xt, Zt, Γt)

▶ Lemma 4. For any fixed y0, there exists a one-to-one correspondence be-
tween (Σ, Z) ∈ S × V◦(Σ) in Problem 3 and (Z, Γ) ∈ V in Problem 4, so that
ṼP = Ṽ◦

P.

Theorem 5 (Final result)

Solving Problem 2 is equivalent to solving Problem 1, as

VP ≥ ṼP = Ṽ◦
P = V◦

P ≥ VP ⇒ VP = V◦
P = Ṽ◦

P.

In particular, we deduce VP = ṼP as in [4] (but without using 2BSDEs).
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P = V◦

P ≥ VP.

▶ One can already remark that Problem 3 is very similar to Problem 4, but

▶ In Problem 3, the principal controls (Z,Σ) instead of (Z, Γ) in Problem 4;
▶ The agent’s optimal response might be different:

ν◦
t := u◦(t, Xt, Zt,Σt)

?⇐⇒ ν⋆
t := u⋆(t, Xt, Zt, Γt)

▶ Lemma 4. For any fixed y0, there exists a one-to-one correspondence be-
tween (Σ, Z) ∈ S × V◦(Σ) in Problem 3 and (Z, Γ) ∈ V in Problem 4, so that
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P.

Theorem 5 (Final result)

Solving Problem 2 is equivalent to solving Problem 1, as

VP ≥ ṼP = Ṽ◦
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‘PROOF’ OF LEMMA 4

▶ Use the following link between the hamiltonians HA and H◦
A:

HA(t, x, z, γ) = sup
u∈U

{
[σλ](t, x,u)z+ 1

2
[
σσ⊤](t, x,u)γ − c(t, x,u)

}
= sup

S∈St(x)

{
sup

u∈U◦
t (x,S)

{
[σλ](t, x,u)z+ 1

2
[
σσ⊤](t, x,u)γ − c(t, x,u)

}}
= sup

S∈St(x)

{
H◦

A(t, x, z, S) +
1
2Sγ

}
.

▶ Let γ⋆ ∈ R, the corresponding S⋆ is:

S⋆ ∈ argmax
S∈St(x)

{
H◦

A(t, x, z, S) +
1
2Sγ

⋆
}
.

▶ Similarly, let S⋆ ∈ St(x), the corresponding γ⋆ is such that

S⋆ ∈ argmax
S∈St(x)

{
H◦

A(t, x, z, S) +
1
2Sγ

⋆
}

⇔ γ⋆ ∈ argmin
γ∈R

{
HA(t, x, z, γ)−

1
2S

⋆γ
}
.
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Conclusion & work in progress



(PARTIAL) CONCLUSION & WORK IN PROGRESS

▶ Study an alternative ‘first-best’ problem (Problem 2), which can be solved
relying on BSDEs (only), and show that the value corresponding to this
‘first-best’ problem can be achieved using contracts of the form (4) in the
original problem (Problem 1).

Problem 1

Problem 4

Problem 2

Problem 3

Lemma 3, or [4]

Lemma 1

Theorem 2By 2BSDEs in [4]

Lemma 4

Figure 1: The circle is complete!

▶ No need to use 2BSDE to show that contracts of the form (4) are optimal.

▶ Should help to tackle extensions to multi/mean-field agents frameworks,
non-continuous output processes...
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A PRINCIPAL CONTRACTING WITH TWO AGENTS

▶ Consider now that the output process is controlled by agent A through α

and by agent B through β:

dXt = (αt + βt)(λdt+ dWt), t ∈ [0, T].

▶ The principal observes X and ⟨X⟩, but cannot deduce individual efforts.

▶ Given ξ := (ξA, ξB) and ν := (α, β), consider

JA(ξ, ν) := EPν [− exp(−γAξ
A)
]
, γA > 0

JB(ξ, ν) := EPν [− exp(−γBξ
B)
]
, γB > 0

JP(ξ, ν) := EPν [− exp
(
− γP(XT − ξA − ξB)

)]
, γP > 0.

▶ Two ‘possible’ approaches:

(i) Extend the results from [4], as done in [7]⇒ Requires ‘multidimensional’
2BSDEs...

(ii) New approach: look at a ‘first-best’ reformulation of the problem, in
which the principal controls ⟨X⟩.
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NEW APPROACH (STEP 1)

▶ Step 1. Formulate the ‘first-best’ associated problem:

(i) The principal chooses ξ := (ξA, ξB) as well as the quadratic variation of X
through its density Σ.

(ii) The agents play a Nash ν⋆ := (α⋆, β⋆) such that (α⋆
t +β⋆

t )
2 = Σt, t ∈ [0, T].

▶ The (usual) Hamiltonian for agent A can be decomposed as follows:

HA(t, x, z, γ,b) = sup
a∈R

{
(a+ b)λz+ 1

2γ(a+ b)2
}

= sup
S∈R+

{
sup

a∈R:(a+b)2=S

{
(a+ b)λz

}
+

1
2γS

}
▶ For fixed Σ, we shall consider the ‘constrained’ Hamiltonian:

H◦
A(t, x, z, S,b) = sup

a∈R:(a+b)2=S

{
(a+ b)λz

}
⇒ a◦(z, S,b) := sgn(z)

√
S− b.

▶ For fixed Σ and Z := (ZA, ZB) s.t. sgn(ZA) = sgn(ZB), the set of Nash is:

N (Σ, Z) :=
{
ν◦ := (α◦, β◦) s.t. (α◦

t + β◦
t )

2 = Σt, t ∈ [0, T]
}
.
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NEW APPROACH (STEP 2)

▶ Step 2. Using BSDEs, one can show that the optimal form of contracts is:

ξA = ξA0 −
∫ T

0
H̃◦(ZAt ,Σt)dt+

∫ T

0
ZAt dXt +

γA
2

∫ T

0
|ZAt |2Σtdt,

ξB = ξB0 −
∫ T

0
H̃◦(ZBt ,Σt)dt+

∫ T

0
ZBt dXt +

γB
2

∫ T

0
|ZBt |2Σtdt,

where H̃◦ is the ‘constrained’ Hamiltonian at the Nash, namely

H̃◦(z, S) := sgn(z)
√
S.

▶ The principal’s problem becomes:

VP ≤ V◦
P = sup

ZA,ZB,Σ
E
[
− exp

(
− γP(XT − ξA − ξB)

)]
with dXt = sgn(ZAt )

√
Σt(λdt+ dWt),

dξAt =
1
2γA|Z

A
t |2Σtdt+ ZAt sgn(ZAt )

√
ΣtdWt,

and dξBt =
1
2γB|Z

B
t |2Σtdt+ ZBt sgn(ZBt )

√
ΣtdWt.

24



NEW APPROACH (STEP 2)

▶ Step 2. Using BSDEs, one can show that the optimal form of contracts is:

ξA = ξA0 −
∫ T

0
H̃◦(ZAt ,Σt)dt+

∫ T

0
ZAt dXt +

γA
2

∫ T

0
|ZAt |2Σtdt,

ξB = ξB0 −
∫ T

0
H̃◦(ZBt ,Σt)dt+

∫ T

0
ZBt dXt +

γB
2

∫ T

0
|ZBt |2Σtdt,

where H̃◦ is the ‘constrained’ Hamiltonian at the Nash, namely

H̃◦(z, S) := sgn(z)
√
S.

▶ The principal’s problem becomes:

VP ≤ V◦
P = sup

ZA,ZB,Σ
E
[
− exp

(
− γP(XT − ξA − ξB)

)]
with dXt = sgn(ZAt )

√
Σt(λdt+ dWt),

dξAt =
1
2γA|Z

A
t |2Σtdt+ ZAt sgn(ZAt )

√
ΣtdWt,

and dξBt =
1
2γB|Z

B
t |2Σtdt+ ZBt sgn(ZBt )

√
ΣtdWt.

24



NEW APPROACH (STEP 3)

▶ Step 3. Inspired by [4], we consider the following contracts:

ξA = ξA0 −
∫ T

0
H̃(ZAt , ΓA

t )dt+
∫ T

0
ZAt dXt +

1
2

∫ T

0

(
ΓA
t + γA|ZAt |2

)
d⟨X⟩t,

ξB = ξB0 −
∫ T

0
H̃(ZBt , ΓB

t )dt+
∫ T

0
ZBt dXt +

1
2

∫ T

0

(
ΓB
t + γB|ZBt |2

)
d⟨X⟩t,

where H̃ is the (usual) Hamiltonian at the Nash.

▶ Here, we have:

HA(t, x, z, γ,b) = sup
a∈R

{
(a+ b)λz+ 1

2γ(a+ b)2
}

⇒ αt = −λ
ZAt
ΓA
t
− βt.

▶ To ensure existence of a Nash, we may restrict to contracts (ξA, ξB) s.t.

−λ
ZAt
ΓA
t
= −λ

ZBt
ΓB
t
=: Z̃t.

▶ The Hamiltonian at any Nash is

H̃(z, γ) = − 1
2λ

2 z2
γ
.
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ZBt dXt +

1
2

∫ T

0

(
ΓB
t + γB|ZBt |2

)
d⟨X⟩t,

where H̃ is the (usual) Hamiltonian at the Nash.

▶ Here, we have:

HA(t, x, z, γ,b) = sup
a∈R

{
(a+ b)λz+ 1

2γ(a+ b)2
}

⇒ αt = −λ
ZAt
ΓA
t
− βt.

▶ To ensure existence of a Nash, we may restrict to contracts (ξA, ξB) s.t.

−λ
ZAt
ΓA
t
= −λ

ZBt
ΓB
t
=: Z̃t.

▶ The Hamiltonian at any Nash is

H̃(z, γ) = − 1
2λ

2 z2
γ
.
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NEW APPROACH (STEP 3)
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NEW APPROACH: CONCLUSION

▶ ‘First-best’ solution:

VP ≤ V◦
P = sup

ZA,ZB,Σ
E
[
− exp

(
− γP(XT − ξA − ξB)

)]
with dXt = sgn(ZAt )

√
Σt(λdt+ dWt),

dξAt =
1
2γA|Z

A
t |2Σtdt+ ZAt sgn(ZAt )

√
ΣtdWt,

and dξBt =
1
2γB|Z

B
t |2Σtdt+ ZBt sgn(ZBt )

√
ΣtdWt.

▶ Using forcing contracts:

VP ≥ sup
ZA,ZB ,̃Z

E
[
− exp

(
− γP(XT − ξA − ξB)

)]
with dXt = Z̃t(λdt+ dWt),

dξAt =
1
2γA|Z

A
t |2Z̃2tdt+ ZAt Z̃tdWt,

and dξBt =
1
2γB|Z

B
t |2Z̃2tdt+ ZBt Z̃tdWt.

▶ The two problems are the same!
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IN PROGRESS: GENERAL MULTI-AGENT FRAMEWORK

▶ Multidimensional and non-Markovian output process X:

Xt = X0 +
∫ t

0
σ(s, X·∧s, νs)

(
λ(s, X·∧s, νs)ds+ dWν

s
)
, t ∈ [0, T], Pν-a.s.,

controlled by N agents: ν := (ν1, . . . , νN).

▶ Given ξ := (ξ1, . . . , ξN), general reward function for each agent:

Ji
(
ξ, ν−i, ν i) := EPν

[
Kν

i (T)Ui(X, ξi)−
∫ T

0
Kν

i (t)ci(t, X·∧t, νt)dt
]
,

with Kν
i (t) := exp

(
−

∫ t

0
ki(s, X·∧s, νs)

)
, t ∈ [0, T].

▶ General reward function for the principal:

JP(ξ, ν) := EPν
[
KP(T)UP

(
XT, ξ

)]
,

with KP(T) := exp

(
−

∫ T

0
kP(s, X·∧s)ds

)
.
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IN PROGRESS: GENERAL MULTI-AGENT FRAMEWORK

▶ Step 1. Formulate the ‘first-best’ alternative problem:

(i) The principal chooses the contracts ξ and Σ;
(ii) The agent play a Nash ν⋆ s.t. [σσ⊤](t, X, ν⋆

t ) = Σt for all t ∈ [0, T].

▶ Step 2. Use BSDE theory to characterise the optimal form of contracts:
ξi = U−1

i (X, YiT) where

YiT = yi0 −
∫ T

0
H̃◦

i (Zt,Σt)dt+
∫ T

0
ZitdXt,

where H̃◦
i is the ‘constrained’ Hamiltonian at a Nash.

▶ Step 3. Use ‘forcing’ contracts of the form ξi = U−1
i (X, YiT) where

YiT = yi0 −
∫ T

0
H̃i(Zt, Γt)dt+

∫ T

0
ZitdXt +

1
2

∫ T

0
Γi
td⟨X⟩t

where H̃i is the ‘usual’ Hamiltonian at a Nash.

▶ To be continued...
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THANK YOU!

Thank you all for your attention!

Thanks to FDD-FiME-MiRTE for the invitation!

Thanks to Mathieu for asking me during my PhD defence in Dec. 2020:

‘Do you really need 2BSDEs to solve the volatility control case?’

Thanks to René for his impatience with the N-agents problem!
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