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Introduction



PRINCIPAL-AGENT PROBLEMS

» Analyse interactions between economic agents, in particular with asym-
metric information (moral hazard).

The principal (she) initiates a contract for a period [0, T], represented by
a terminal payment €.

The agent (he) accepts or not the contract proposed by the principal.

The principal must suggest an optimal contract: maximises her utility, and
that the agent will accept (reservation utility Rp).
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» Analyse interactions between economic agents, in particular with asym-
metric information (moral hazard).

The principal (she) initiates a contract for a period [0, T], represented by
a terminal payment €.
The agent (he) accepts or not the contract proposed by the principal.
The principal must suggest an optimal contract: maximises her utility, and
that the agent will accept (reservation utility Rp).
» Holmstrom and Milgrom [6] (1987): first model in continuous time;

» Sannikov [9] (2008): general method for continuous-time principal-agent
problems;

» Cvitani¢, Possamai, and Touzi [4] (2018): extension to volatility control.
(i) identify a ‘nice’ class of contracts;

(ii) prove that this restriction is without loss of generality (using 2BSDE);
(iii) solve the principal’'s problem, which is now standard.



MORAL HAZARD IN CONTINUOUS-TIME

» The agent controls both the drift and the volatility of a (one-dimensional)
output process X through an adapted control v € U:

t
X = Xo +/ 0 (5, X, 1) (A(5, X, vs)ds + W), t € [0,T], P*-as.,
0
where W” is a d-dimensional P¥-Brownian Motion.

Moral Hazard: the agent’s effort v during the contracting period is not observ-
able by the principal. Here, the principal only observes X in continuous-time.
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» The agent controls both the drift and the volatility of a (one-dimensional)
output process X through an adapted control v € U:

t
X = Xo +/ 0 (5, X, 1) (A(5, X, vs)ds + W), t € [0,T], P*-as.,
0
where W” is a d-dimensional P¥-Brownian Motion.

Moral Hazard: the agent’s effort v during the contracting period is not observ-
able by the principal. Here, the principal only observes X in continuous-time.

» Given a terminal payment &, indexed on X, the agent solves:

Va(€) :=sup Ja(€,v), with Jo(€,v) :=E" {UA<§—/OTc(t,Xt7Vt)dt>].

veu
» Optimal response to a contract & U*(&) == {v* e U : Va(§) =)a(§,v™)}
» The goal of the principal is to find the optimal contract, i.e.

Vp :=sup sup B [Up (Xr —&)], = := {€ Fr-measurable, VA(£) > Ra}.
EEZvFreU*(§)



EXISTING APPROACHES

» Drift control case: if the volatility is uncontrolled (i.e. o(s,Xs)), the agent’s
dynamic value function (Yi)icpo,j is related to the first component of the so-
lution to a BSDE, with terminal condition Yt := Ua ().
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EXISTING APPROACHES

» Drift control case: if the volatility is uncontrolled (i.e. o(s,Xs)), the agent’s
dynamic value function (Yi)icpo,j is related to the first component of the so-
lution to a BSDE, with terminal condition Yt := Ua ().

The optimal form of contracts for the agent is ¢ = U'(Y7) where
t t
Y{ =vyo — / sup { (S, Xs)A(S, Xs, U)Zs — (s, Xs, u) }ds +/ ZsdXs,
0 ueu 0
where y, € R and the process Z have to be optimally chosen by the principal.

» Volatility control case: restrict the study to contracts € = U3 '(Y") where
t t 1 t
VAT gy / Ha (5, X, Zo, To)ds + / 2% + 5 / Fod(X)s,
0 0 0
With Ha(t,,2,7) = sup { [#A](tx, 0)z + %[aﬂ (tx, )y -t xw},
ueu

where yo € R and Z, T optimally chosen by the principal.

» The proof that the previous form of contracts is without loss of generality
relies on 2BSDE.
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» Applications:

» Finance: Cvitanic, Possamai, and Touzi [3] (2017), ...

» Energy-related: Aid, Possama, and Touzi [1] (2022), Elie, Hubert, Mastrolia,
and Possamai [5] (2021), Aid, Kemper, and Touzi [2] (2023), ...

» Extensions:
» Multi-agent problems: Hubert [7] (2023), Aid, Kemper, and Touzi [2] (2023)
= Multidimensional 2BSDEs;

» Continuum of agents: Elie, Hubert, Mastrolia, and Possamai [5] (2021), ...
= Mean-field 2BSDEs;

» Output process with jumps? = 2BSDEs with jumps.
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» Main idea: if the principal observes the agent’s controls, she can strongly
penalise him whenever he deviates from a ‘recommended effort’.
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» In the first-best case, the principal directly chooses the agent's controls:

Vi i=sup sup E” [Up (Xr — €)].
(€= veld
» If the principal can observe the agent’s controls, then SB = FB if one can
find a ‘penalisation/forcing contract’, i.e. a contract offered by the principal
which allows her to achieve her value in the first-best case.

» Main idea: if the principal observes the agent’s controls, she can strongly
penalise him whenever he deviates from a ‘recommended effort’.

» Usually the case if there are no ‘strong’ assumptions on the set of admis-
sible contracts (may not work in a framework with limited liability).
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» One-dimensional output process with one-dimensional noise and volatility
control only:

dXe = (At +dW,), A >0, t € [0, T].
» The principal observes X in continuous-time, and can therefore deduce its
quadratic variation (X);, t € [0, T].
» Two possible approaches:

(i) Applythe results from [4], by considering contracts indexed on (X) through
the parameter .

(ii) Notice that since the principal observes (X), she can (almost) deduce the
agent's effort 1 = +/(X)y, t € [0,T] = FB!

» New approach! Since the principal always observes (X), we could look at a
‘first-best’ reformulation of the problem, in which the principal controls (X).

» In the following, we will take for ya,ve > 0,
Ja(6v) =E" [ = exp(—m€)], Jp(&v) :=E" [—exp (= (X —€))].



A ‘FIRST-BEST’ ALTERNATIVE PROBLEM

» Step 1. We consider a slightly different problem: the principal chooses a
contract £ and controls the quadratic variation of X through a process X:

d(X); = Ldt, t € [0,T].
» The agent still control X, but is constrained to choose v such that the

quadratic variation chosen by the principal is achieved. In this example, the
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d(X); = Ldt, t € [0,T].
» The agent still control X, but is constrained to choose v such that the
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» The original Hamiltonian can be decomposed as follows:

1
Ha(t,x,z,7y) = sup {U)\Z + ffyuz}
uer 2

= sup { sup {UAZ} + 178}
SeRy | ueR: u2=s 2

» For fixed X, we shall consider the ‘constrained’” Hamiltonian:

Ha(t,x,z,S) = sup {urz} = u°(zS) :=sgn(2)VSs, S€R..

UER : u2=S
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» Step 2. Using BSDEs, one can show that the optimal form of contracts is:

T T T
=6 — / sup {u)\Zt}dt+/ ZdXe + 2 | Zx.dt.
0 Uu€R : u?=% 0 2 0

» The corresponding agent's best-response is v := sgn(Zi)v/X.

» The principal's problem becomes:

Ve =sup E[ —exp (— vo(Xr — €))]

7,5
with dX; = sgn(Zt)\/ Zt(/\dt + th),
and d& = %’yAZthdt + Ztsgn(Zt)\/ > dWs.

» It is clear that the ‘first-best’ value Vp is higher than the value Vp of the
original problem... We want to show equality!
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» Step 3. We consider the contract’s form in [4]:

T 1 T 1 T
§=2¢& —/ sup {U)\Zt + irtuz}dt‘f'/ ZidXe + 5/ (Tt + 7Z7)d(X).
0 0 0

UER

» The corresponding agent's best-response is vy := —/\% fory < 0.
t

» By restricting the study to contracts of the previous form, we get

Ve > sup B[ —exp (=70 (Xr — €))]

with dx, —Aé(Adt—i— dAwy),

Z2

! dWs.
t

2 2
and d& = ’yA)\ rzdt )\r

» Proving the equality above requires 2BSDEs...
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A ‘FIRST-BEST’ ALTERNATIVE PROBLEM: CONCLUSION

» ‘First-best’ solution:
Vp < Vp = sup E[ — exp ( — (X1 — E))}
7%

with dX; = sgn(Zt)\/ Zt(/\dt =+ dV\/t),

and dft 'yAZt >dt + thgn(Zt v ZidWh.
» Using forcing contracts:

Vp > sup E[ —exp (— (X1 — €))]
zZ,r
with  dX; = —)\é()\dt + th),

2
and d& = W\A tdt—)\z—tdwt.
2 I

» The two problems are the same, and there is a one-to-one correspondence
between the processes ¥ and I':

2 43 . Zy
dX)y =dt = X=X 2 or equivalently Ft:—)\\/—i.
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» The agent controls both the drift and the volatility of a one-dimensional
output process X through an adapted control v € U:

t
Xt = Xo +/ o (s, Xs, vs) (A(S, Xs, vs)ds + dWs), t € [0,T], P”-ass.,
0

where W is a d-dimensional P¥-Brownian Motion.

Problem 1 (Original problem)

Ve :=sup sup E° [Up(Xr—¢)],
EEZvreU*(§)

where

= := {¢ Fr-measurable, Va(§) > Ra},
U (&) ={v el :Va(&) =Jalg,v")} £ o forg e =

Va(€) := sup Ja(€,v), with Ja(€,v) :=E" {UA<§—/OTc(t,Xt7Vt)dt>].

veu



OBSERVING THE QUADRATIC VARIATION...

» The principal observes X in continuous-time, and can therefore deduce
its quadratic variation (X) (defined pathwise by Karandikar [8] (1995)), with
density X with respect to the Lebesgue measure:

d(X); = Tudt, te]o,T].

» Idea in [4]: the contract can be indexed on (X) through a parameter .
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» The principal observes X in continuous-time, and can therefore deduce
its quadratic variation (X) (defined pathwise by Karandikar [8] (1995)), with
density X with respect to the Lebesgue measure:

d(X); = Tudt, te]o,T].

» Idea in [4]: the contract can be indexed on (X) through a parameter .

» Alternative idea: the principal could directly control the process ¥, and
force the agent to choose v € U such that [oo "](t, X, 1) = X, t € [0, T].

» Sort of ‘first-best’ on the quadratic variation!

» Step 1. Write an alternative problem:
(i) the principal chooses both a contract € and a process X € S,
(ii) the agent computes his best response v € U°(X), with
UO(Z) = {l/ ceU : e Uf(Xt,Zt), t> O},
US(x,S) :=={ueU : [oo](t,x,u) =S}.
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» Define
S = {): F-progressively measurable process, i € Si(Xi)},
Si(x) == {S€Ry : S=[oo](t,x,u) for some u € U}.
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» Define
S = {)Z F-progressively measurable process, i € Si(Xi)},
Si(x) == {S€Ry : S=[oo](t,x,u) for some u € U}.
» Given ¢ € Zand X € S, the agent solves:

VOA(§7 z) = Esz,ljop(z) JA(£7 V)'

» Alternative (still non-standard) stochastic control problem for the principal:

Problem 2 (‘First-best’ reformulation of the original problem)

Vp = sup sup EY [Up(Xr —€)], (1)
(6,Z)E=XS vEUC *(£,X)

where U°*(€,E) i= {v € U°(E) : VA(6,T) = Jal&. 1)} # 2.

» Lemma 1. Vp > Vp.



STEP 2. RESOLUTION, VIA BSDE

» Step 2. For fixed X € S, the agent’s continuation value can be represented
by the following BSDE, with terminal value Y1 = Ua(&):

it ot
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0 0
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STEP 2. RESOLUTION, VIA BSDE

» Step 2. For fixed X € S, the agent’s continuation value can be represented
by the following BSDE, with terminal value Y1 = Ua(&):

it ot
Vi =yo— / HA (S, Xs, Zs, Xs)ds +/ Zs - dXs, (2)
0 0

with H(L,x,2,5) = sup {[a)\](t,x,u)z—c(t,x,u)}.
ueug (x,S)

Let ¥ € S and ¢ € =. Then there exists Z € V°(X) and yo > U, '(Ra) such
that ¢ = U, "(Y%), where the process Y is defined by (2). Moreover:

(i) The agent's optimal response v° is @ maximiser of the Hamiltonian H3;
(i)) VA(E,E) = Yo > Ra;
(iii) V& = V3 (defined on the next slide).



BACK TO A STANDARD STOCHASTIC CONTROL PROBLEM

Problem 3 (Restriction to contracts of the form (2))

o

Ve := sup sup sup sup EY [Up(Xr — €)].
Jo2U7 (Ry) TES ZEVO(E) v €U *(1r,5)

where the state variables X and Y are solution to the following system of
SDEs:

X = o (t,%,17) (AL, X 26)dt + W), t e [0,T], (3a)
Yy = c(t, X, p9)dt + Ze o (6, X, 10)dWs,  t € [0,T], (3b)

coupled through the agent's optimal effort v := u®(t, X, Z, ), where the
function u® is defined as a maximiser of the (constraint) Hamiltonian H%.



BACK TO A STANDARD STOCHASTIC CONTROL PROBLEM

Problem 3 (Restriction to contracts of the form (2))

o

Ve := sup sup sup sup EY [Up(Xr — €)].
Jo2U7 (Ry) TES ZEVO(E) v €U *(1r,5)

where the state variables X and Y are solution to the following system of
SDEs:

X = o (t,%,17) (AL, X 26)dt + W), t e [0,T], (3a)
Yy = c(t, X, p9)dt + Ze o (6, X, 10)dWs,  t € [0,T], (3b)

coupled through the agent's optimal effort v := u®(t, X, Z, ), where the
function u® is defined as a maximiser of the (constraint) Hamiltonian H%.

» One can write the HJB equation associated to this problem and solve it
(explicitly or numerically).
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» For now, we have Vp < Vg = V5.
» Step 3. Show that Vp > Vg, by introducing forcing’ contracts.

» Idea: Use the contract form in [4], namely € = U'(Y7") where

t t 1 t
VT yo— [ Halkza)ds+ [ zdkr s [ Tas @
0 0 0

With Ha(t,%,2,7) := sup { [oA](t 0}z + 2 o0 7] (6%, U}y — c(tx,u) b,
ueu 2
where yo € Rand (Z,I) € V have to be optimally chosen by the principal.

» By [4], we know this form of contracts is ‘optimal’ (by 2BSDEs). Here, we just
want to prove that this form allow to achieve the ‘first-best’ utility V§ (which
will imply optimality of the contract form).

» Given a contract of the form (%), the agent’s optimal response is given by
the maximiser of his hamiltonian: v := u*(t, X, Zy, I't) with

* 1
u”(t,x,z,7v) € arg max {[a/\](t, X, U)z+ = [UUT] (t,x, u)y — c(t, x, u)}.
ueu 2



MAIN RESULT IN [4]1(2018)

» Lemma3. Vp > Vp.

Problem 4 (Restriction to contracts of the form (4))

Vp := sup  sup sup E” [UP<XT - U:(Y?r))]’
Yo2Ra (ZNEV pxeyx(v2T)

where the state variable (X, Y) is solution to the following system of SDEs:
X = o (t, X, 1) (,\(t, Xe, v )dt + th), te0,7, Xo=xo  (5a)
dYe = c(t, X, 1) dt + Ze o (t, Xe, 147 ) AWy, t€[0,T], Yo =vo, (5b)

coupled through the agent’s optimal effort v := u™(t, X, Z, I't), where the
function u* is defined as a maximiser of the Hamiltonian Ha.
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» Lemma3. Vp > Vp.

Problem 4 (Restriction to contracts of the form (4))

Vp := sup  sup sup E” [UP<XT - U:(Y?r))]’
Yo2Ra (ZNEV pxeyx(v2T)

where the state variable (X, Y) is solution to the following system of SDEs:
X = o (t, X, 1) (,\(t, Xe, v )dt + th), te[0,7, Xo=xo  (5a)
dYe = c(t, X, 1) dt + Ze o (t, Xe, 147 ) AWy, t€[0,T], Yo =vo, (5b)

coupled through the agent’s optimal effort vy := u™(t, X, Z, I't), where the
function u* is defined as a maximiser of the Hamiltonian Ha.

To prove that Vp = Vp, one need to rely on (because of volatility
control)...
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EQUIVALENCE OF ALL PROBLEMS

» In terms of value for the principal:
Vp > VP and

VS = V2 > Vp.

» One can already remark that Problem 3 is very similar to Problem 4, but
In Problem 3, the principal controls (Z,X) instead of (Z,T) in Problem 4;

The agent's optimal response might be different:
to = Uo(t, Xt,Zt,Zt) é I/T_* = U*(t7 Xt, Zt, Ft)

» Lemma 4. For any fixed yo, there exists a one-to-one correspondence be-
tween (¥,2) € S x V°(X) in Problem 3 and (Z,I') € V in Problem 4, so that

Vp = V2.
Theorem 5 (Final result)

Solving Problem 2 is equivalent to solving Problem 1, as
Ve>Vp=Vp=Vp >Ve = Vp=Vp=Vp.

In particular, we deduce Vp = Vp as in [4] (but without using 2BSDES).



‘PROOF’ OF LEMMA 4

» Use the following link between the hamiltonians Ha and H3:

Ha(tx,2,7) = sup {[a/\](t, X, U)Z + % [oo "] (t, %, u)y — c(t, X, u)}

1
= sup { sup  §[oA](t,x,u)z+ = [UJT} (t,x,u)y —c(t, x, u)}}
ses) L ueu? (x,9) 2

sup s Ha(t,x,2,S) + 1S'y}.
s€si(x) 2
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‘PROOF’ OF LEMMA 4

» Use the following link between the hamiltonians Ha and H3:

Ha(tx,2,7) = sup {[a/\](t, X, U)Z + % [oo "] (t, %, u)y — c(t, X, u)}

sup { sup 1 [oA](t, x, u)z + %[UJT}(L X, u)y — c(t, X7u)}}

SeSi(x) Lueug(x,5)

sup s Ha(t,x,2,S) + 1S'y}.
s€si(x) 2

» Let v* € R, the corresponding S* is

S* e argmax{’HA(t X,Z,S) + Sfy }
SESt(x)

» Similarly, let S* € Si(x), the corresponding v* is such that

S*e argmax{?—lA(t X,Z,S) + S’y }
SESt(x)

Tex
& y" € argmin {HA(LX,Z,'y) - =S 'y}.
~ER 2
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» Study an alternative ‘first-best’ problem (Problem 2), which can be solved
relying on BSDEs (only), and show that the value corresponding to this
‘first-best’ problem can be achieved using contracts of the form (4) in the
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» Study an alternative ‘first-best’ problem (Problem 2), which can be solved
relying on BSDEs (only), and show that the value corresponding to this
‘first-best’ problem can be achieved using contracts of the form (4) in the
original problem (Problem 1).

Lemma 1

Problem 1 Problem 2
. ’l
By 2BSDEs in [4]! Lemma 3, or [4] Theorem 2
Problem 4 Problem 3
Lemma &

Figure 1: The circle is complete!

» No need to use 2BSDE to show that contracts of the form (4) are optimal.

» Should help to tackle extensions to multi/mean-field agents frameworks,
non-continuous output processes...



A PRINCIPAL CONTRACTING WITH TWO AGENTS

» Consider now that the output process is controlled by agent A through «
and by agent B through £:

dX; = (th + 3t)()\dt —+ th), te [O7 T]

» The principal observes X and (X), but cannot deduce individual efforts.
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A PRINCIPAL CONTRACTING WITH TWO AGENTS

» Consider now that the output process is controlled by agent A through «
and by agent B through £:

dX; = (th + 3t)()\dt —+ th), te [O7 T]

» The principal observes X and (X), but cannot deduce individual efforts.
> Given ¢ := (&%, €%) and v := (o, B), consider

Ja€v) =E [~ exp(—m&")], 1 > 0

(& v) =E" [ - exp(—78€®)], 76 > 0

Jp(6,v) =B [ —exp (—ye(Xr — & = €%)], % > 0.

» Two ‘possible’ approaches:

(i) Extend the results from [4], as done in [7] = Requires ‘multidimensional’
2BSDEs...

(i) New approach: look at a ‘first-best’ reformulation of the problem, in
which the principal controls (X).

22



NEW APPROACH (STEP 1)

» Step 1. Formulate the ‘first-best’ associated problem:

(i) The principal chooses ¢ := (&%, £") as well as the quadratic variation of X
through its density X.
(ii) The agents play a Nash v* := (a*, 8*) such that (af +3¢)? = £, t € [0, T].
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Ha(t,x,z,7,b) = sup {(a + b))z + %w(a + b)2}

aeR

= sup { sup  {(a+b)az} + %’yS}

SeR+ \ aeR:(a+b)2=S
» For fixed X, we shall consider the ‘constrained’” Hamiltonian:

Ha(t,x,z,S,b)= sup {(a+b)rz} = a°(z,S,b) :=sgn(z)VS—b.
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NEW APPROACH (STEP 1)

» Step 1. Formulate the ‘first-best’ associated problem:

(i) The principal chooses ¢ := (&%, £") as well as the quadratic variation of X
through its density X.
(ii) The agents play a Nash v* := (a*, 8*) such that (af +3¢)? = £, t € [0, T].

» The (usual) Hamiltonian for agent A can be decomposed as follows:

Ha(t,x,z,7,b) = sup {(a + b))z + %w(a + b)2}

aeR

= sup { sup  {(a+b)az} + 175}
SER+ \ aeR:(a+b)?=S 2

» For fixed X, we shall consider the ‘constrained’” Hamiltonian:

Ha(t,x,z,S,b)= sup {(a+b)rz} = a°(z,S,b) :=sgn(z)VS—b.

a€R:(a+b)?=S

» For fixed X and Z := (2", 7%) st. sgn(Z") = sgn(Z®), the set of Nash is:
N(Z,2) = {v° = (a®,B°) st (of + B7)" = Xy, t€[0,T]}.

23



NEW APPROACH (STEP 2)

» Step 2. Using BSDEs, one can show that the optimal form of contracts is:
T T T
¢=6- [ wames [ oD [ i
0 0 0
T T v T
@=- [ [ Zaes 2 [zrEa
0 0 0

where H° is the ‘constrained’ Hamiltonian at the Nash, namely

H°(z,S) := sgn(2)V/S.
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NEW APPROACH (STEP 2)

» Step 2. Using BSDEs, one can show that the optimal form of contracts is:
T T T
¢=6- [ wames [ oD [ i
0 0 0
T T v T
@=- [ [ Zaes 2 [zrEa
0 0 0
where H° is the ‘constrained’ Hamiltonian at the Nash, namely
H°(z,5) = sgn(z)V/S.

» The principal’s problem becomes:

Ve <Vp = sup E[—exp(—w(Xr—¢& —¢°))]
ZA 7B %
with dX: = sgn(Z8)v/Ze(Adt + dWy),
1
g = E'VA‘ZtAlzztdt + Z¢'sgn(Z) v/ TidW,

]
and d¢f = E’VB‘ZtB‘Ztht+ ZPsgn(Z8) v/ ZedWs.

24



NEW APPROACH (STEP 3)

» Step 3. Inspired by [4], we consider the following contracts:

T T T
~ 1
¢ = [ A [ Zane s [t mzP)am.,
0 0 0

T T 17 /7
58255—/ H(Z?I?)dt—&-/ zdet+§/ (FF + sl Z2) d(X)e,
JO JO 0

where A is the (usual) Hamiltonian at the Nash.
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NEW APPROACH (STEP 3)

» Step 3. Inspired by [4], we consider the following contracts:
T T T
~ 1
= _/ H(Zt, r@)dt+/ ZpdXs + E/ (T2 + 3|Z8 ) d (X,
0 0 0

T T 17 /7
58255—/ H(Z?I?)dt—&-/ zdet+§/ (FF + sl Z2) d(X)e,
JO JO 0

where A is the (usual) Hamiltonian at the Nash.

» Here, we have:

A

Ha(t,x,2,7,b) =supd (@ +b)Az+ 1@+ b)Y} = ar= AL g
sup 2 R

» To ensure existence of a Nash, we may restrict to contracts (¢*,¢") sit.

z z_ s
A= = A= =1 7
r re
» The Hamiltonian at any Nash is
~ 1,72
) = —= A
H(z,7) = —5 5

25



NEW APPROACH: CONCLUSION

» ‘First-best’ solution:

Vp <Vp = sup E[—exp(—w(Xr—& —¢%)]
7078

with dX; = sgn(Z0)v/Ze(Adt + dW,),

1
del = ifyA\ZﬂZtht + Z8sgn(Z4)/ZedWr,
1
and def = ivg\ZtB\ztht—&- 78sgn(Z8)\/ZedW,.

» Using forcing contracts:

Vp > sup E[—exp(—o(Xr — e - fB))}
A 787
with  dX; = Zi(Adt + dW,),
1 ~ -
def = S|Ze I Zidt + ZEZidWs,

1 . ~
and d¢f = §WB|ZE\ZZfdt+ Z8Z:dW.
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NEW APPROACH: CONCLUSION

» ‘First-best’ solution:

Vp <Vp = sup E[—exp(—w(Xr—& —¢%)]
7078

with dX; = sgn(Z0)v/Ze(Adt + dW,),

1
del = ifyA\ZﬂZtht + Z8sgn(Z4)/ZedWr,
1
and def = ivg\ZtB\ztht—&- 78sgn(Z8)\/ZedW,.

» Using forcing contracts:
Vp > sup E[—exp(—o(Xr — e - fB))}
A 787

with  dX; = Zi(Adt + dW,),

1 ~ -~
def = S|Ze I Zidt + ZEZidWs,

1 ~ ~
and d¢f = §WB|ZE\ZZfdt+ Z8Z:dW.

» The two problems are the same!
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IN PROGRESS: GENERAL MULTI-AGENT FRAMEWORK

» Multidimensional and non-Markovian output process X:
t
Xt = XO +/ U(S,XJ\S,VS)()\(S,X4/\5,Z/5)dS + dVV’S'), t € [O,T], ]P’V-a.s.,
0

controlled by N agents: v := (v/',...,2").
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IN PROGRESS: GENERAL MULTI-AGENT FRAMEWORK

» Multidimensional and non-Markovian output process X:
t
Xt = XO +/ U(S,XJ\S,VS)()\(S,X4/\5,Z/5)dS + dVV’S'), t € [O,T], ]P’V-a.s.,
0

controlled by N agents: v := (v/',...,2").

> Given € := (¢',...,€"), general reward function for each agent:
N . v . T
(v V) = {KV(T)U‘(X,E')—/ Kiu(t)cl(tvx/\hm)dt}’
0
't
with K (t) := exp (—/ k.(s.,X.As,us)), te[0,T].
0

» General reward function for the principal:
Je(€.v) = B [Ke(N)Up (%r.€)

with Ks(T) = exp ( - /O ' |<p(s,x.As)ds).



IN PROGRESS: GENERAL MULTI-AGENT FRAMEWORK

» Step 1. Formulate the ‘first-best’ alternative problem:

(i) The principal chooses the contracts £ and X;
(ii) The agent play a Nash v* st. [oo "](t, X, 1) = X for all t € [0, T].
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» Step 2. Use BSDE theory to characterise the optimal form of contracts:
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where H? is the ‘constrained’ Hamiltonian at a Nash.
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» Step 1. Formulate the ‘first-best’ alternative problem:

(i) The principal chooses the contracts £ and X;
(ii) The agent play a Nash v* st. [oo "](t, X, 1) = X for all t € [0, T].

» Step 2. Use BSDE theory to characterise the optimal form of contracts:
€ =U""(X,Y}) where

Y‘T = ylo — / H-‘O(Zt, zt)dt + / Z'tht,
0 0

where H? is the ‘constrained’ Hamiltonian at a Nash.

» Step 3. Use ‘forcing’ contracts of the form &' = U.‘*W(X, Y‘T) where
. . T —~ T . '] T .
=vo- [ A rds [ e+ [ ra.
0 0 0

where ﬁi is the ‘usual’ Hamiltonian at a Nash.
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» Step 1. Formulate the ‘first-best’ alternative problem:

(i) The principal chooses the contracts £ and X;
(ii) The agent play a Nash v* st. [oo "](t, X, 1) = X for all t € [0, T].

» Step 2. Use BSDE theory to characterise the optimal form of contracts:
€ =U""(X,Y}) where

Y‘T = ylo — / H-‘O(Zt, zt)dt + / Z'tht,
0 0

where H? is the ‘constrained’ Hamiltonian at a Nash.

» Step 3. Use ‘forcing’ contracts of the form &' = U.‘*W(X, Y‘T) where
. . T —~ T . '] T .
=vo- [ A rds [ e+ [ ra.
0 0 0

where ﬁi is the ‘usual’ Hamiltonian at a Nash.

» To be continued...
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Thank you all for your attention!
Thanks to FDD-FIME-MIRTE for the invitation!

Thanks to Mathieu for asking me during my PhD defence in Dec. 2020:

‘Do you really need 2BSDEs to solve the volatility control case?’

Thanks to René for his impatience with the N-agents problem!
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