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Fun with randomized policies is all with Ana Bušić!

Going back a dozen years, beggining with intelligent swimming pools (!)
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And this old survey, electricity rates for the zero marginal cost grid , [9]
The electricity industry is rapidly changing: costs are increasingly dominated by capital and technology is turning loads into
resources. This is similar to the early days of the Internet. Building on rate-structures used in the communications industry,
utilities of the future should offer customers a portfolio of service contract options that provide a signal to the utility regarding
the type and amount of infrastructure that should be deployed.
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Setting the mood

Mathematical Economics today is in the state of Control Theory when I
was a graduate student. In those days, “important men ”would declare
that one approach is pristine and the others tainted—fights among the
three flavors in vogue: robust, optimal, and adaptive. It wasn’t always
explicit in public, but I remember some passionate conversations. I moved
away from my advisor’s doctoral topic precisely because one of his
colleagues (a compelling “great man”) declared that adaptive control was
nonsense.

They could fight like this, claiming superiority via their theorems, only
because there was no unbiased umpire to pick a winner. When computers
became practical for realistic simulations we had the judge we needed so
we could test theory against the closest thing to practice. We now know
there is no winner, but lots of great alternatives for controlling complex
systems. We need to test lots of alternatives because our mathematical
models are always flawed.
Mathematical Economics cannot survive in its current echo chamber.
The field needs to find its own umpire.

2 / 20



Setting the mood

Mathematical Economics today is in the state of Control Theory when I
was a graduate student. In those days, “important men ”would declare
that one approach is pristine and the others tainted—fights among the
three flavors in vogue: robust, optimal, and adaptive. It wasn’t always
explicit in public, but I remember some passionate conversations. I moved
away from my advisor’s doctoral topic precisely because one of his
colleagues (a compelling “great man”) declared that adaptive control was
nonsense.
They could fight like this, claiming superiority via their theorems, only
because there was no unbiased umpire to pick a winner. When computers
became practical for realistic simulations we had the judge we needed so
we could test theory against the closest thing to practice. We now know
there is no winner, but lots of great alternatives for controlling complex
systems. We need to test lots of alternatives because our mathematical
models are always flawed.

Mathematical Economics cannot survive in its current echo chamber.
The field needs to find its own umpire.

2 / 20



Setting the mood

Mathematical Economics today is in the state of Control Theory when I
was a graduate student. In those days, “important men ”would declare
that one approach is pristine and the others tainted—fights among the
three flavors in vogue: robust, optimal, and adaptive. It wasn’t always
explicit in public, but I remember some passionate conversations. I moved
away from my advisor’s doctoral topic precisely because one of his
colleagues (a compelling “great man”) declared that adaptive control was
nonsense.
They could fight like this, claiming superiority via their theorems, only
because there was no unbiased umpire to pick a winner. When computers
became practical for realistic simulations we had the judge we needed so
we could test theory against the closest thing to practice. We now know
there is no winner, but lots of great alternatives for controlling complex
systems. We need to test lots of alternatives because our mathematical
models are always flawed.
Mathematical Economics cannot survive in its current echo chamber.
The field needs to find its own umpire.

2 / 20



Distributed Electric Load Management Outline

1 Load Control ... Blah Blah Blah

2 Distributed Control

3 Controlling the Fleet

4 Conclusions

5 References
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Load Control ... Blah Blah Blah

Demand Dispatch IS the Answer

That’s what everyone has been saying the past 100 years

Look around the room, or consider your home.
Most energy consumption is flexible

Image from IHP 2018:

Comfort for me and my owner

• Ramping
• Peak-shaving
• Valley-�lling

• Balancing reserves

Services for my GRID

Example: water heaters are
inherently energy storage devices

We (engineers) can harness this flexibility to supply grid services.
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Load Control ... Blah Blah Blah

Demand Dispatch

Services from deferrable loads are free [aside from one-time fixed costs]

With appropriate control architecture, they provide grid services
surpassing utility scale storage

Example: water heaters are inherently energy storage devices
What was your preference for water temperature in your shower this
morning?
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Demand Dispatch

Services from deferrable loads are free [aside from one-time fixed costs]

With appropriate control architecture, they provide grid services
surpassing utility scale storage [20, 18]

Example: water heaters are inherently energy storage devices
What was your preference for water temperature in your shower this
morning?
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Load Control ... Blah Blah Blah

Demand Dispatch

Services from deferrable loads are free [aside from one-time fixed costs]

With appropriate control architecture, they provide grid services
surpassing utility scale storage

Example: water heaters are inherently energy storage devices
What was your preference for water temperature in your shower this
morning?

Comfort for me and my owner

• Ramping
• Peak-shaving
• Valley-�lling

• Balancing reserves

Services for my GRID

Arguments apply to other deferrable loads,
such as fans in commercial buildings, irrigation, ...
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Tracking for a refrigerator model from four different initial conditions, with two different
values of κ. The aggregate power consumption nearly coincides after about three hours

with κ = 150, and coupling occurs much faster when κ is increased to 1,500.
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Distributed Control Feedforward control

Energy Challenge In California Today

How do we make use of forecasts of weather and usage?
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Generation at CAISO March 4, 2018

March 4: nearly 50% of demand was served by solar at 1pm
March 5: record solar production, over 10GW at 10am

yk = ⟨νk,U⟩
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Distributed Control Feedforward control

Energy Challenge In California Today

How do we make use of forecasts of weather and usage?

Solution: MPC
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Distributed Control Feedforward control

Energy Challenge In California Today

How do we make use of forecasts of weather and usage?

Solution: MPC
KLQ objective

J∗(νt0) = min
p

{
D(p∥p0) + κ

2

t0+T∑

k=t0+1

(
yk − rk

)2}

subject to given initial marginal νt0

{rk} reference to be tracked (estimate at time t0 based on system conditions)

{νk} marginals of p

yk = ⟨νk,U⟩ mean power consumption (or deviation) at time k

Nominal is Markov: p0(x) = ν0(x0)P0(x0, x1) · · ·PT−1(xT−1, xT )
(model based estimates at time t0)

WLOG t0 = 0

yk = ⟨νk,U⟩
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Distributed Control Feedforward control

KLQ solution J∗(ν0) = min
p

{
D(p∥p0) +

κ

2

T∑
k=1

(
yk − rk

)2}
WLOG t0 = 0

Solution: p̌(x0, . . . , xT ) = p0(x0, . . . , xT ) exp
( T∑

k=1

β∗
kU(xk)− Λβ∗(x0)

)

Λβ∗ normalizing constant

β∗ =

φ∗(β) = − 1

2κ
∥β∥2 − ⟨ν0,Λβ⟩+ βTr (strictly concave and smooth )

β∗
k = κek, ek = rk − y∗k = rk − ⟨ν∗k ,U⟩

Solution is Markovian =⇒ randomized policy at each load
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Distributed Control Feedback

General Architecture

Approach:

Construct a family of transition matrices {Pζ : ζ ∈ R}
ζk is broadcast to all loads of a given class at time k

A load in state x transitions to state x′ with probability Pζk(x, x
′).

A particular construction led to these amazing results:

80

100

120

140

80

100

120

140

0M
W

M
W

-10

0

10

Tracking Typical Load Response

te
m

p 
(F

)
te

m
p 

(F
)

r t
≡

0
N

o 
re

g:
|r t

|≤
10

 M
W

Lo
ad

 O
n

Lo
ad

 O
n

BPA Reference:
Power Deviation

rt

Construction: Essentially
equivalent to infinite-horizon
KLQ with rk ≡ ζ.
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https://energyathaas.wordpress.com/2019/08/19/priing-for-the-short-run/

Pop= MC*

Pp
*

Qop
* Qp = K*

λ p

Doff-peak

Dpeak
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Pavg

Poff-peak

Off-peak
Demand

Peak
Demand

Price of Electricity

Quantity of
Electricity

resource
loss

Q Q*Q peak Q*peak

Supply

Bene�ts of demand response in electricity markets 
and recommendations for achieving them  DoE report, 2006.
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Keynote Speaker
Frank Wolak, Stanford EconomicsVI
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 Time-varying retail electricity prices: Theory and practice
S. Borenstein  2005

Hogan, 2019
3.2. Smart Technology 
 ... technology that automatically monitors 
and adjusts consumption based on price 
signals, without active intervention by the 
consumer. Even intelligent technolo-
gies are less likely to encourage 
smart charging if they are not cou-
pled with dynamic pricing schemes.  

Controlling the Fleet



Controlling the Fleet Virtual energy storage

A single residential water heater

d

dt
Θ(t) = −λ(Θ(t)−Θa) + γM(t)Pm , Θ− ≤ Θ(t) ≤ Θ+

Θ(t): tank water
temperature

M(t): power mode (1 or 0)

Θa: ambient temperature

Pm: power consumption
(5kW typical)
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Controlling the Fleet Virtual energy storage

Virtual Battery Model
N water heaters d

dt
Θi(t) = −λ(Θi(t)−Θa) + γM i(t)Pm P0 = λ

γ
(Θ0 −Θa)

Virtual battery model of Hao et. al. [21] is based on an ODE for deviation.
Normalized deviations from baseline (homogeneous population):

xi(t) =
1

γ
[Θi(t)−Θ0] , zi(t) = −[M i(t)Pm − P0]

A bit of algebra:
d

dt
xi(t) = −λxi(t)− zi(t)

7 / 20



Controlling the Fleet Virtual energy storage

Virtual Battery Model
N water heaters d

dt
Θi(t) = −λ(Θi(t)−Θa) + γM i(t)Pm P0 = λ

γ
(Θ0 −Θa)

Virtual battery model of Hao et. al. [21] is based on an ODE for deviation.
Normalized deviations from baseline (homogeneous population):

xi(t) =
1

γ
[Θi(t)−Θ0] , zi(t) = −[M i(t)Pm − P0]

A bit of algebra:
d

dt
xi(t) = −λxi(t)− zi(t)

7 / 20



Controlling the Fleet Virtual energy storage

Virtual Battery Model
N water heaters d

dt
Θi(t) = −λ(Θi(t)−Θa) + γM i(t)Pm P0 = λ

γ
(Θ0 −Θa)

Definitions for the aggregate:

State of charge (SoC) : x(t) =
N∑

i=1

xi(t)

Power discharge : z(t) =
N∑

i=1

zi(t) d
dtx(t) = −λx(t)− z(t)

Bounds on SoC :
N

γ
[Θ− −Θ0] ≤ x(t) ≤ N

γ
[Θ+ −Θ0]

E0 =
N
γ [Θ+ −Θ−] (thermal) energy capacity for N loads
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Controlling the Fleet Virtual energy storage

Virtual Battery Model
N water heaters d

dt
Θi(t) = −λ(Θi(t)−Θa) + γM i(t)Pm P0 = λ

γ
(Θ0 −Θa)

Definitions for the aggregate:

State of charge (SoC) : x(t) =
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xi(t)

Power discharge : z(t) =
N∑
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dtx(t) = −λx(t)− z(t)

Bounds on SoC :
N

γ
[Θ− −Θ0] ≤ x(t) ≤ N

γ
[Θ+ −Θ0]

E0 =
N
γ [Θ+ −Θ−] (thermal) energy capacity for N loads

Similar model for irrigation/pool cleaning in [14, 15]
Distributed control of batteries in [20]
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Controlling the Fleet Cheap control

Cheap control

Consider M assets (real or virtual batteries) with SoC {xi(t) : 1 ≤ i ≤ M}

Convex formulation over time-period [0, T ]:

minimize
g, x

∫ T

0

[
cg(g(t)) + cd(g

′(t)) + cX(x(t))
]
dt cX(x)

def
=

∑

i

ci(xi)

subject to
d

dt
xi(t) = −αixi(t)− zi(t),

d

dt
zi(t) = ui(t), i ∈ {1, ...,M}

Cost on
∑

ui =⇒ Singular optimal control problem [27, 28]
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subject to g(t) = ℓ(t)−
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∑

i

ui(t) model cost of ramping,

d

dt
xi(t) = −αixi(t)− zi(t),

d

dt
zi(t) = ui(t), i ∈ {1, ...,M}

Cost on
∑

ui =⇒ Singular optimal control problem [27, 28]
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Controlling the Fleet Cheap control

Consequences

1 Power consumption is not a continuous function of price
There is no meaningful price for power deviation,
or energy deviation over an interval ∆

2 State space collapse

3 Fragility

Consider consumer preference for hot water
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Controlling the Fleet Cheap control and markets

Blowing Up The Grid

https://energyathaas.wordpress.com/2019/08/19/priing-for-the-short-run/

Pop= MC*

Pp
*

Qop
* Qp = K*

λ p

Doff-peak

Dpeak

Ppeak

Pavg

Poff-peak

Off-peak
Demand

Peak
Demand

Price of Electricity

Quantity of
Electricity

resource
loss

Q Q*Q peak Q*peak

Supply

Bene�ts of demand response in electricity markets 
and recommendations for achieving them  DoE report, 2006.

QpeakQoff-peak
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Supply

peak
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Keynote Speaker
Frank Wolak, Stanford EconomicsVI
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https://en.wikipedia.org/wiki/Demand_response

 Time-varying retail electricity prices: Theory and practice
S. Borenstein  2005

Axiom I of power economics:   Demand is a continuous function of price

Hogan, 2019
3.2. Smart Technology 
 ... technology that automatically monitors 
and adjusts consumption based on price 
signals, without active intervention by the 
consumer. Even intelligent technolo-
gies are less likely to encourage 
smart charging if they are not cou-
pled with dynamic pricing schemes.  
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Controlling the Fleet Cheap control and markets

Blowing Up The Grid
Aggregator-consumer model
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Controlling the Fleet Cheap control and collapse

Evolution of Marginal Cost Optimal Solution

Consideration of dual functional: (relaxing supply/demand constraint)

ϕ∗(ϱ) = inf
g,u

∫ T

0

{
cg(g(t)) + cd(g

′(t)) + cX(x(t))

+ ϱ(t)[ℓ(t)− g(t)− zσ(t)]
}
dt

Assume maximizer ϱ∗ exists
ϕ∗(ϱ∗) ≥ ϕ∗(ϱ) for all ϱ,

and ϱ∗ is smooth

State space collapse:

c′i (x
∗
i (t)) = −αiϱ

∗(t) +
d

dt
ϱ∗(t)

Marginal costs evolve on a two-dimensional subspace
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Controlling the Fleet Cheap control and collapse

Optimal Solution to Economist’s Problem
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ϱ∗ is the Lagrange multiplier for supply/demand balance

Please believe me, it is not really a price signal!
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Controlling the Fleet Fragility

Fragility

This is what collapse looks like:
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Power trajectories of each class have sharp ramps

“Spaghetti” phenomenon is a concern
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What is possible today
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What is possible in 2050
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There are many loads that are deferrable
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Conclusions

Conclusions

The power of distributed control is remarkable.

Recent work introduces approaches to address fragility:

Convex Q-Learning in Continuous Time with Application to Dispatch of
Distributed Energy Resources Paper WeB15.4 IEEE CDC, 2023
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Please stop talking about price signals!

See Spence [10, 11] for another take on Näıve energy markets.
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