The equilibrium price of bubble assets

Charles Bertucci, CNRS, CEREMADE, Université Paris-Dauphine, PSL.

17/10/2025, FiME seminar. Joint work with J.-M. Lasry and P.-L. Lions

 Even if taken for granted most of the time, the fact that money has a value is by no means an obvious statement.

- Even if taken for granted most of the time, the fact that money has a value is by no means an obvious statement.
- Holding money yields no benefit in itself. Only advantage is to be able to spend it.

- Even if taken for granted most of the time, the fact that money has a value is by no means an obvious statement.
- Holding money yields no benefit in itself. Only advantage is to be able to spend it.
- Such assets are called bubble assets.

- Even if taken for granted most of the time, the fact that money has a value is by no means an obvious statement.
- Holding money yields no benefit in itself. Only advantage is to be able to spend it.
- Such assets are called bubble assets.
- Hence, a value on money requires a form of consensus, that is of equilibrium.

- Even if taken for granted most of the time, the fact that money has a value is by no means an obvious statement.
- Holding money yields no benefit in itself. Only advantage is to be able to spend it.
- Such assets are called bubble assets.
- Hence, a value on money requires a form of consensus, that is of equilibrium.
- Can we propose mathematical models for such equilibria?

 Not all bubbles are crazy speculative games which will eventually blow up

- Not all bubbles are crazy speculative games which will eventually blow up
- Money is an extremely stable example of a bubble : not all national currencies collapse (even they might sometimes, namely because of inflation)

- Not all bubbles are crazy speculative games which will eventually blow up
- Money is an extremely stable example of a bubble : not all national currencies collapse (even they might sometimes, namely because of inflation)
- The housing price in Paris is typically a bubble, especially in neighborhoods like where we are.

- Not all bubbles are crazy speculative games which will eventually blow up
- Money is an extremely stable example of a bubble : not all national currencies collapse (even they might sometimes, namely because of inflation)
- The housing price in Paris is typically a bubble, especially in neighborhoods like where we are.
- Recently, cryptocurrencies have proven to be also quite stable, despite being purely bubble assets.

Why a model?

- The surprising (or not) stability of some bubbles hints that maybe a strong phenomenon maintains bubbles.
- This stability is also a good sign for a mathematical model.

Bibliography

- Pioneering work of Samuelson on the value/need of money
- Several works have followed this overlapping generations model: Scheinkman, Tirole,...
- Recent work and survey of A. Toda
- Our modeling is inspired from Biais, Rochet and Villeneuve.

Model and derivation of the main equation

2 Mathematical analysis of the equation

3 Economic interpretation of our results

Model and derivation of the main equation Mathematical analysis of the equation Economic interpretation of our results

Model and derivation of the main equation

Model setup

• There are only two goods in the economy : a bubble one and the numeraire.

Model setup

- There are only two goods in the economy: a bubble one and the numeraire.
- The state of the world is describe by $x \in [0, 1]$, which we shall think of as how much the government is screwing up...
- The state of the world evolves according to the SDE

$$dX_t = b(X_t)dt + \sigma dW_t.$$

Model setup

- There are only two goods in the economy: a bubble one and the numeraire.
- The state of the world is describe by $x \in [0, 1]$, which we shall think of as how much the government is screwing up...
- The state of the world evolves according to the SDE

$$dX_t = b(X_t)dt + \sigma dW_t.$$

• The two goods have some returns $r_0(x)$ and $r_1(x)$. That is, if I hold a quantity λ_t of the bubble good at time t, that I do not buy or sell, then

$$d\lambda_t = (1 + r_1(X_t))\lambda_t dt.$$

• $r_0, r_1 : [0,1] \to \mathbb{R}$, not necessary non-negative.

The agents

- There are a lot of small agents.
- They all have the same utility function U(q), which depends on the value of their portfolio in numeraire.

The agents

- There are a lot of small agents.
- They all have the same utility function U(q), which depends on the value of their portfolio in numeraire.
- They can buy or sell the good at will on a market at a price $p_t = u(X_t)$ to protect themselves from the volatility of X_t .

The agents

- There are a lot of small agents.
- They all have the same utility function U(q), which depends on the value of their portfolio in numeraire.
- They can buy or sell the good at will on a market at a price $p_t = u(X_t)$ to protect themselves from the volatility of X_t .

Proposition

The maximization problem of the growth rate of the portfolio of an agent with wealth q, when the economy is in state $x \in (0,1)$, is

$$\max_{\theta \in \mathbb{R}} \quad \left\{ qU'(q) \left(+ \theta(u(x))^{-1} (u'(x) \cdot b(x) + \frac{\sigma^2}{2} u''(x)) + r_0(x)(1 - \theta) + r_1(x)\theta + \frac{U''(q)q}{U'(q)} \frac{\theta^2 \sigma^2}{2u^2(x)} |u'(x)|^2 \right) \right\}.$$

Proof of the problem of the agent

• Consider the wealth of an agent who choose θ as its repartition of wealth at time, evaluated at time s

$$Y_{t,s} = q(1-\theta)e^{\int_t^s r_0(X_{t'})dt'} + \frac{\theta q}{\rho_t} p_s e^{\int_t^s r_1(X_{t'})dt'}.$$

Proof of the problem of the agent

ullet Consider the wealth of an agent who choose heta as its repartition of wealth at time, evaluated at time s

$$Y_{t,s} = q(1-\theta)e^{\int_t^s r_0(X_{t'})dt'} + \frac{\theta q}{\rho_t} p_s e^{\int_t^s r_1(X_{t'})dt'}.$$

By using Ito's Lemma 3 times, we arrive at

$$\begin{split} &\mathbb{E}[U(Y_{t,t+h})|X_{t}] = U(q) + \\ &\mathbb{E}\left[\int_{t}^{t+h} U'(Y_{t,s}) q\left(r_{0}(X_{s})(1-\theta)e^{\int_{t}^{s} r_{0}(X_{t'})dt'} + r_{1}(X_{s})\theta \frac{u(X_{s})}{u(X_{t})}e^{\int_{t}^{s} r_{1}(X_{t'})dt'} + \right. \\ &+ \frac{\theta}{u(X_{t})}e^{\int_{t}^{s} r_{1}(X_{t'})dt'}(u'(X_{s}) \cdot b(X_{s}) + \frac{\sigma^{2}}{2}u''(X_{s})) \\ &+ \frac{U''(Y_{t,s})q}{U'(Y_{t,s})}\frac{\theta^{2}\sigma^{2}}{2u^{2}(X_{t})}e^{2\int_{t}^{s} r_{1}(X_{t'})dt'} |u'(X_{s})|^{2}\right)ds|X_{t} \bigg]. \end{split}$$

Demand of the agents and market clearing

• Choose $U(q) = q^{1-\gamma}$. Hence, the demand of the agents is expressed as

$$\theta^* = u(X_t) \frac{u(X_t)(r_1(X_t) - r_0(X_t)) + u'(X_t) \cdot b(X_t) + \frac{\sigma^2}{2} u''(X_t)}{\gamma \sigma^2 |u'(X_t)|^2}.$$

Demand of the agents and market clearing

• Choose $U(q)=q^{1-\gamma}$. Hence, the demand of the agents is expressed as

$$\theta^* = u(X_t) \frac{u(X_t)(r_1(X_t) - r_0(X_t)) + u'(X_t) \cdot b(X_t) + \frac{\sigma^2}{2} u''(X_t)}{\gamma \sigma^2 |u'(X_t)|^2}.$$

• Denote Q_t the total wealth (in numéraire) and K_t the total supply (in bubble asset). Demand = Supply implies

$$\left(u(X_t)(r_1(X_t)-r_0(X_t))+u'(X_t)\cdot b(X_t)+\frac{\sigma^2}{2}u''(X_t)\right)Q_t=K_t\gamma\sigma^2|u'(X_t)|^2.$$

Demand of the agents and market clearing

• Choose $U(q) = q^{1-\gamma}$. Hence, the demand of the agents is expressed as

$$\theta^* = u(X_t) \frac{u(X_t)(r_1(X_t) - r_0(X_t)) + u'(X_t) \cdot b(X_t) + \frac{\sigma^2}{2} u''(X_t)}{\gamma \sigma^2 |u'(X_t)|^2}.$$

• Denote Q_t the total wealth (in numéraire) and K_t the total supply (in bubble asset). Demand = Supply implies

$$\left(u(X_t)(r_1(X_t)-r_0(X_t))+u'(X_t)\cdot b(X_t)+\frac{\sigma^2}{2}u''(X_t)\right)Q_t=K_t\gamma\sigma^2|u'(X_t)|^2.$$

• If we assume that Q_t and K_t are constant, we find

$$u(x)(r_1(x)-r_0(x))+u'(x)\cdot b(x)+\frac{\sigma^2}{2}u''(x)=\frac{\gamma K\sigma^2}{Q}|u'(x)|^2 \text{ in } (0,1).$$

• We end with an equation to characterize the price $p_t = u(X_t)$ of the bubble good (expressed in numéraire).

- We end with an equation to characterize the price $p_t = u(X_t)$ of the bubble good (expressed in numéraire).
- This equation is

$$-u'(x) \cdot b(x) - \frac{\sigma^2}{2}u''(x) + \frac{\gamma K \sigma^2}{Q} |u'(x)|^2 + u(x)(r_0(x) - r_1(x)) = 0$$
in $(0, 1)$.

- We end with an equation to characterize the price $p_t = u(X_t)$ of the bubble good (expressed in numéraire).
- This equation is

$$-u'(x) \cdot b(x) - \frac{\sigma^2}{2}u''(x) + \frac{\gamma K \sigma^2}{Q} |u'(x)|^2 + u(x)(r_0(x) - r_1(x)) = 0$$
in (0,1).

• The bubble yields nothing, u = 0 is solution, thank you for coming

- We end with an equation to characterize the price $p_t = u(X_t)$ of the bubble good (expressed in numéraire).
- If $U(q) = 1 e^{-cq}$

$$-u'(x) \cdot b(x) - \frac{\sigma^2}{2}u''(x) + \frac{cK\sigma^2}{N}|u'(x)|^2 + u(x)(r_0(x) - r_1(x)) = 0$$

in (0,1).

Same sort of computations

Model and derivation of the main equation Mathematical analysis of the equation Economic interpretation of our results

Mathematical analysis of the equation

Statement of the problem

Understand existence and uniqueness of the equation

$$-\nu\Delta u + \frac{1}{2}|\nabla_x u|^2 = a(x)u \text{ in } \Omega,$$
$$u(x) > 0 \text{ in } \Omega,$$
$$\partial_n u = 0 \text{ on } \partial\Omega.$$

- Ω is a smooth domain, ν a constant.
- The assumptions are on a.

Main result

• The operator $\phi \to -\nu \Delta \phi - a(x) \phi$ is a well defined self-adjoint operator with compact inverse.

Main result

- The operator $\phi \to -\nu \Delta \phi a(x) \phi$ is a well defined self-adjoint operator with compact inverse.
- We note $\lambda_1(-\nu\Delta a)$ its smallest eigenvalue.

Main result

- The operator $\phi \to -\nu \Delta \phi a(x) \phi$ is a well defined self-adjoint operator with compact inverse.
- We note $\lambda_1(-\nu\Delta a)$ its smallest eigenvalue.

Theorem

Assume that

- $\lambda_1(-\nu\Delta-a)<0$,
- $\min_{\Omega} a < 0$.

Then, there exists a unique smooth solution.

Existence

Lemma

Assume that the function a takes both positive and negative values. Then, there exists a constant C>0 depending only on the function a and Ω such that, for any smooth non-negative function u satisfying

$$-\nu\Delta u + \frac{1}{2}|\nabla_x u|^2 \le a(x)u \text{ in } \Omega,$$
$$\partial_n u = 0 \text{ on } \partial\Omega,$$

we have $u \leq C$.

Existence

Lemma

Assume that the function a takes both positive and negative values. Then, there exists a constant C>0 depending only on the function a and Ω such that, for any smooth non-negative function u satisfying

$$-\nu\Delta u + \frac{1}{2}|\nabla_x u|^2 \le a(x)u \text{ in } \Omega,$$
$$\partial_n u = 0 \text{ on } \partial\Omega,$$

we have u < C.

Proof is simply that we have

$$\int_{\Omega} |\nabla u|^2 \le 2 \max_{\Omega} a \int_{\Omega} u + \text{ standard stuff.}$$

Uniqueness

Lemma

Assume that the function a takes both positive and negative values. Consider u>>0 and v>>0 two smooth functions on Ω . Assume that

$$-\nu\Delta u + \frac{1}{2}|\nabla_x u|^2 \le a(x)u \text{ in } \Omega,$$

$$-\nu\Delta v + \frac{1}{2}|\nabla_x v|^2 \ge a(x)v \text{ in } \Omega.$$

Then, $u \le v$ and either u = v or u < v.

• The argument follows from Laetsch (1975).

$$\theta = \max\{\tilde{\theta} \in [0, 1], \forall x \in \Omega, \tilde{\theta}u(x) \leq v(x)\}.$$

The argument follows from Laetsch (1975).

$$\theta = \max\{\tilde{\theta} \in [0, 1], \forall x \in \Omega, \tilde{\theta}u(x) \leq v(x)\}.$$

• $u_{\theta} := \theta u$ is a solution of

$$-\nu\Delta u_{\theta}+\frac{1}{2}|\nabla_{x}u_{\theta}|^{2}+\left(\frac{1}{2\theta}-\frac{1}{2}\right)|\nabla_{x}u_{\theta}|^{2}\leq \mathsf{a}(x)u_{\theta}\ \text{in}\ \Omega.$$

The argument follows from Laetsch (1975).

$$\theta = \max\{\tilde{\theta} \in [0, 1], \forall x \in \Omega, \tilde{\theta}u(x) \leq v(x)\}.$$

• $u_{\theta} := \theta u$ is a solution of

$$-\nu\Delta u_{\theta}+\frac{1}{2}|\nabla_{x}u_{\theta}|^{2}+\left(\frac{1}{2\theta}-\frac{1}{2}\right)|\nabla_{x}u_{\theta}|^{2}\leq a(x)u_{\theta} \text{ in } \Omega.$$

• $w = v - u_{\theta}$ is a solution of

$$-
u\Delta w + rac{1}{2}\left(|
abla_x v|^2 - |
abla_x u_ heta|^2\right) \geq a(x)w ext{ in } \Omega.$$

The argument follows from Laetsch (1975).

$$\theta = \max\{\tilde{\theta} \in [0, 1], \forall x \in \Omega, \tilde{\theta}u(x) \leq v(x)\}.$$

• $u_{\theta} := \theta u$ is a solution of

$$-\nu\Delta u_{\theta} + \frac{1}{2}|\nabla_{x}u_{\theta}|^{2} + \left(\frac{1}{2\theta} - \frac{1}{2}\right)|\nabla_{x}u_{\theta}|^{2} \leq a(x)u_{\theta} \text{ in } \Omega.$$

• $w = v - u_{\theta}$ is a solution of

$$-
u\Delta w + rac{1}{2}\left(|
abla_x v|^2 - |
abla_x u_ heta|^2\right) \geq a(x)w ext{ in } \Omega.$$

• Both w > 0 and for some B

$$-\nu\Delta w + B \cdot \nabla_x w > a(x)w$$
 in Ω .

The argument follows from Laetsch (1975).

$$\theta = \max\{\tilde{\theta} \in [0,1], \forall x \in \Omega, \tilde{\theta} u(x) \leq v(x)\}.$$

• $u_{\theta} := \theta u$ is a solution of

$$-\nu\Delta u_{\theta}+\frac{1}{2}|\nabla_{x}u_{\theta}|^{2}+\left(\frac{1}{2\theta}-\frac{1}{2}\right)|\nabla_{x}u_{\theta}|^{2}\leq \mathsf{a}(x)u_{\theta}\text{ in }\Omega.$$

• $w = v - u_{\theta}$ is a solution of

$$-
u\Delta w + rac{1}{2}\left(|
abla_x v|^2 - |
abla_x u_{ heta}|^2\right) \geq a(x)w \text{ in } \Omega.$$

• Both $w \ge 0$ and for some B

$$-\nu\Delta w + B \cdot \nabla_x w \ge a(x)w$$
 in Ω .

• This implies that either w > 0 or w = 0.

The case of a source term

$$-\nu\Delta u + \frac{1}{2}|\nabla_x u|^2 = a(x)u + f \text{ in } \Omega,$$

$$u >> 0,$$

$$\partial_n u = 0 \text{ on } \partial\Omega,$$
(1)

with the same assumption as above, but now $f \ge 0$ is a smooth function. We have the following result.

The case of a source term

$$-\nu\Delta u + \frac{1}{2}|\nabla_x u|^2 = a(x)u + f \text{ in } \Omega,$$

$$u >> 0,$$

$$\partial_n u = 0 \text{ on } \partial\Omega,$$
(1)

with the same assumption as above, but now $f \ge 0$ is a smooth function. We have the following result.

$\mathsf{Theorem}$

Under the assumptions of the first theorem, there exists a unique smooth solution of (1).

Corollary

If we denote by u(f) the solution of (1) for a smooth $f \ge 0$, then u is increasing with respect to f.

• We have an HJB equation. Why not look at the associated optimal control problem?

- We have an HJB equation. Why not look at the associated optimal control problem?
- It is given by

$$\inf_{(\alpha_t)_{t\geq 0}} \frac{1}{2} \mathbb{E} \left[\int_0^{+\infty} e^{\int_0^t a(X_s^{x,\alpha}) ds} |\alpha_t|^2 dt \right].$$

- We have an HJB equation. Why not look at the associated optimal control problem?
- It is given by

$$\inf_{(\alpha_t)_{t\geq 0}} \frac{1}{2} \mathbb{E} \left[\int_0^{+\infty} e^{\int_0^t a(X_s^{\mathsf{x},\alpha}) ds} |\alpha_t|^2 dt \right].$$

Previous is ill-defined so we look at

$$v_{\epsilon}(x) := \inf_{(\alpha_t)_{t \geq 0}} \mathbb{E}\left[\int_0^{+\infty} e^{\int_0^t a(X_s^{x,\alpha})ds} \left(\frac{1}{2}|\alpha_t|^2 + \epsilon\right) dt\right],$$

- We have an HJB equation. Why not look at the associated optimal control problem?
- It is given by

$$\inf_{(\alpha_t)_{t\geq 0}} \frac{1}{2} \mathbb{E} \left[\int_0^{+\infty} e^{\int_0^t a(X_s^{x,\alpha}) ds} |\alpha_t|^2 dt \right].$$

Previous is ill-defined so we look at

$$v_{\epsilon}(x) := \inf_{(\alpha_t)_{t \geq 0}} \mathbb{E}\left[\int_0^{+\infty} e^{\int_0^t a(X_s^{x,\alpha})ds} \left(\frac{1}{2}|\alpha_t|^2 + \epsilon\right) dt\right],$$

Proposition

$$\lim_{\epsilon \to 0^+} \|v_{\epsilon} - u\|_{\infty} = 0.$$

Other properties of the solution

Proposition (Stability)

Let (a_n) be a sequence converging to a such that the assumptions of the main Theorem are uniformly satisfied. Then $\|u_n - u\| \to 0$ as $n \to \infty$.

Other properties of the solution

Proposition (Stability)

Let (a_n) be a sequence converging to a such that the assumptions of the main Theorem are uniformly satisfied. Then $||u_n - u|| \to 0$ as $n \to \infty$.

Proposition

Let u_{ϵ} be the solution of

$$\begin{split} -\nu\Delta u_{\epsilon} + \epsilon |\nabla_{x}u_{\epsilon}|^{2} &= \mathsf{a}(x)u_{\epsilon} \text{ in } \Omega, \\ u_{\epsilon}(x) &> 0 \text{ in } \Omega, \\ \partial_{n}u_{\epsilon} &= 0 \text{ on } \partial\Omega. \end{split}$$

Then $\epsilon \to u_{\epsilon}$ is decreasing.

Model and derivation of the main equation Mathematical analysis of the equation Economic interpretation of our results

Economic interpretation of our results

• $x \in (0,1)$ is the proportion of the government to generate inflation.

- $x \in (0,1)$ is the proportion of the government to generate inflation.
- ullet The return of crypto is supposed negative and constant in x.

- $x \in (0,1)$ is the proportion of the government to generate inflation.
- The return of crypto is supposed negative and constant in x.
- The return of numeraire is positive near 0, decreasing, and negative near 1.

- $x \in (0,1)$ is the proportion of the government to generate inflation.
- ullet The return of crypto is supposed negative and constant in x.
- The return of numeraire is positive near 0, decreasing, and negative near 1.
- Agents have CARA utility with parameter c, K the total mass of crypto, N the number of agents, $\nu = \sigma^2/2$. Note $\epsilon = c2K\nu/N$.

$$-\nu u'' + \epsilon(u')^2 = (r_1 - r_0)(x)u \quad \text{in } (0,1),$$

$$u' = 0 \text{ at } 0 \text{ and } 1,$$

$$u \ge 0.$$

Stylized fact (number 1)

If the government can be bad enough, then a C-value u exists.

Indeed, we have $r_0(0) \ge 0$. For ant $\delta > 0$, there exists $\kappa > 0$ such that the assumptions are satisfied if $r_0(x) \le -\kappa$ for $x > 1 - \delta$.

Stylized fact (number 1)

If the government can be bad enough, then a C-value u exists.

Indeed, we have $r_0(0) \ge 0$. For ant $\delta > 0$, there exists $\kappa > 0$ such that the assumptions are satisfied if $r_0(x) \le -\kappa$ for $x > 1 - \delta$.

Stylized fact (number 2)

If it exists, the C-value u increases with x.

We assumed that r_0 is non-increasing, so $r_1 - r_0$ is non-decreasing, and thus so is u.

Stylized fact (number 3)

If it exists, the C-value u increases with the number of agents willing to buy.

This is the monotonicity of u with respect to the parameter ϵ .

Stylized fact (number 3)

If it exists, the C-value u increases with the number of agents willing to buy.

This is the monotonicity of u with respect to the parameter ϵ .

Stylized fact (number 4)

The C-value u can collapse with change of r_0 or r_1 but not of N.

The only threshold in the assumptions are in terms of ν or r_0 and r_1 . So the value of N does not change the fact that they are satisfied. This means that even with very few actors, it is reasonable to form a consensus on the bubble.

Real estate model

- $x \in (0,1)$ is the proportion of the government to generate inflation.
- The return of real estate is supposed negative, some works have to be made.
- The return of numeraire is positive near 0, decreasing, and negative near 1.
- Agents have CARA utility with parameter c, K the mass of real estate, N the number of agents, $\nu = \sigma^2/2$. Note $\epsilon = c2K\nu/N$.

Real estate model

- $x \in (0,1)$ is the proportion of the government to generate inflation.
- The return of real estate is supposed negative, some works have to be made.
- The return of numeraire is positive near 0, decreasing, and negative near 1.
- Agents have CARA utility with parameter c, K the mass of real estate, N the number of agents, $\nu = \sigma^2/2$. Note $\epsilon = c2K\nu/N$.
- The price of rent is given by f.

Real estate model

- $x \in (0,1)$ is the proportion of the government to generate inflation.
- The return of real estate is supposed negative, some works have to be made.
- The return of numeraire is positive near 0, decreasing, and negative near 1.
- Agents have CARA utility with parameter c, K the mass of real estate, N the number of agents, $\nu = \sigma^2/2$. Note $\epsilon = c2K\nu/N$.
- The price of rent is given by f.

$$-\nu u'' + \epsilon (u')^2 = (r_1 - r_0)(x)u + f \quad \text{in } (0,1),$$

$$u' = 0 \text{ at } 0 \text{ and } 1,$$

$$u > 0.$$

Stylized fact

Even with a strong limit on the rent, the price of real estate can still be rationally arbitrary large in certain prestigious locations, i.e. it can contain a C-value component which can be arbitrary large compared to f.

See picture.

Link with no-arbitrage

- What happens when arbitrageurs are present?
- They will be similar agents, but with no risk aversion, or a smaller one.
- ullet Hence, they lower the value of ϵ in

$$-\nu u'' + \epsilon(u')^2 = (r_1 - r_0)(x)u \quad \text{in } (0,1),$$

$$u' = 0 \text{ at } 0 \text{ and } 1,$$

$$u \ge 0.$$

• In the limit $\epsilon \to 0$, u explodes, but in the limit case $\epsilon = 0$, generically only 0 is the solution.

Final comment

- Have bubbles disappeared?
- No!
- We were only interested in prices of the form $p_t = u(X_t)$.
- Explosive bubbles are typically not of this form...

Thank you for your coming Thank you for your attention