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Motivation: Microgrids
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Motivation: Blackouts
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Motivation: Price gaps
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Big Picture

Goal: design a simple, decentralized pricing mechanism for peer-to-peer (P2P) energy
sharing that:

respects grid prices (no-arbitrage / autonomy),
is fair and anonymous (order-agnostic, coalition-proof),
induces peak shaving and remains budget-balanced.

Approach: adapt AMM logic (à la Uniswap) to energy trading with concentrated liquidity
and batch clearing.

Result: an AMM that quotes a local price around the arithmetic or geometric mean of grid
bid/ask, adjusted for imbalances.
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Contributions

1. Axiomatic theory for local energy pricing (anonymity, coalition-proofness, budget-balance,
etc.).

2. AMM construction satisfying the axioms, using batch clearing, concentrated liquidity,
and re-anchored bonding curves.

3. Characterization and Computation of a Markov Perfect Equilibrium (MPE) for
prosumer community using a Mean-Field Game (MFG) framework.

4. Numerical experiments using data from the Paris metropolitan area (IDF).
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Roadmap

1 Related Work

2 Design Axioms

3 AMM Construction

4 Prosumer Participation and Equilibrium

5 Quantitative Experiments
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Optimization and Equilibrium of Power Systems

Unlike standard ADMM, axioms impose rationality even away from convergence Boyd et al.
(2011); Erseghe (2014); F. Moret and Pinson (2024).
Battery aggregation and optimization Prat et al. (2024); Berger and Kassoul (2025).
From bilevel/MPEC models to routing/congestion games (Decentralized coordination)
Rosenthal (1973); Monderer and Shapley (1996).

Blockchain & DeFi

Principles of CFMMs (Angeris et al., 2020, 2023; Schlegel et al., 2023; Fabi and Prat, 2025)
applied to DePIN (Decentralized Physical Infrastructure Networks) Milionis et al. (2025).

P2P Prosumer Communities

Advances on P2P energy sharing Sousa et al. (2019); Crowley et al. (2025); Pinson et al.
(2020) sharing by full axiomatic formulation.

Mean Field Games (MFG)

Equilibrium via Discrete MFGs Doncel et al. (2019); Lasry and Lions (2007); Guéant et al.
(2011).
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Roadmap

1 Related Work

2 Design Axioms

3 AMM Construction

4 Prosumer Participation and Equilibrium

5 Quantitative Experiments
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Microgrid and Power Flows

Network Nodes:
N prosumers;
aggregator (node A);
main grid (node 0).

A Grid

n1

n2

n3

n4

Network structure: prosumers ↔ aggregator ↔ grid.

Prosumer Power Flows at time t:
Each prosumer posts a net flow xnt ∈ R:

xnt = snt − dnt , snt = max{xnt , 0}, dnt = max{−xnt , 0}.

Aggregate supply and demand: st =
∑

n snt , d =
∑

n dnt .

Community surplus or deficit: sAt = max{st − dt , 0}, dAt = max{dt − st , 0}.
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Market & Payments

Grid prices at time t: λt (sell to grid), λt (buy from grid), with λt > λt .

We design a market within the prosumer community for a given time-step t (e.g., in a
15-minute time interval).

Market Definition: A market is (x,P(x)), where x = (x1, . . . , xN) and P : RN → RN .

Payment function: Pn = Rn − Cn (revenues for selling, costs for buying).

Marginal prices:
r(s, d) ≜ ∂Rn/∂sn, c(s, d) ≜ ∂Cn/∂dn.
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Axioms

1. Anonymity / Fairness: order-agnostic; identical actions ⇒ identical terms.

2. Coalition-proofness: no group gains by pooling/splitting; ⇒ linear in own sn, dn.

3. Individual-rationality: internal trades happen within [λ, λ] ⇒ concentrated liquidity.

4. Budget-balance:
∑

C ≥
∑

R (optionally exact).

5. No-arbitrage: r(s, d) ≤ c(s, d) for all (s, d).

6. Monotonicity & Responsiveness: prices move in the “right” directions (peak shaving).

7. Homogeneity: price is scale-invariant; depends on s/d ratio.
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Anonymity ⇒ batch clearing

Definition (Anonymity). For any permutation π of other agents:

Pn(xn, x−n) = Pn
(
xn, π(x−n)

)
.

Implications

Order books / bilateral matching violate anonymity.

AMM with pooled state and session-level batching satisfies it.

Aggregation-based pricing satisfies anonymity: Pn = Ψ(xn, s, d).

Transfer depends only on (xn, s, d).
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Coalition-proofness ⇔ Linear individual terms

Claim. Coalition-proofness holds iff

Pn(x) = sn r(s, d) − dn c(s, d),

i.e., linear in sn, dn with common r , c that depend only on aggregates.

Intuition:
Linear sharing rules are neutral with respect to grouping/splitting.

Nonlinear per-agent terms create incentives to merge/split.
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Individual Rationality ⇒ Concentrated Liquidity

Within-spread trading

s < d : r(s, d) > λ, s ≥ d : r(s, d) ≤ λ,

s ≤ d : c(s, d) ≥ λ, s > d : c(s, d) < λ.

Consequence: AMM must only quote prices inside [λ, λ] ⇒ concentrated liquidity interval.
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Budget balance, No-arbitrage, Responsiveness & Homogeneity

Budget balance:
∑

C ≥
∑

R (fees optional).

No-arbitrage: r(s, d) ≤ c(s, d).

Responsiveness (peak-shaving):

∂c
∂s < 0, ∂c

∂d > 0, ∂r
∂d > 0, ∂r

∂s ≤ 0.

Homogeneity (scale-invariance): r(αs, αd) = r(s, d), c(αs, αd) = c(s, d) for all α > 0.

⇐⇒ r(s/d) ≡ r(s, d), c(s/d) ≡ c(s, d)
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Axiom-Compliant Price Functions: Summary

Let the Supply-to-Demand ratio (SDR) be

y ≜ s/d .

These conditions are necessary and sufficient for an axiom-compliant AMM:

1. Grid price bounds.
λ ≤ r(y) ≤ c(y) ≤ λ.

2. Local price bounds.
c(y) ≥ y r(y).

3. Decreasing in y .
r ′(y) < 0 and c ′(y) < 0.
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From invariant to price: re-anchored CFMM

Trading function (session t): ψt(E ,M) = Kt , with state (E ,M) = (energy, money).

Price of locally-traded power:

ρt(E ,M) =
∣∣∣∣ ∂Eψt
∂Mψt

∣∣∣∣ .
Re-anchoring: choose Kt so initial point (E ,M) = (st , 0) sits on ψt = Kt , and π ∈ [λt , λt ].

Batch session:
1. Pool is “charged” with supply st .
2. All internal trades clear on ψt (order-agnostic).
3. Residual imbalances st − dt settled with grid at λt/λt .
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AMM Workflow (session t)

Supply posted
st

Re-anchor curve
ψt(E, V ) = Kt

Batch clear
internal dt

Grid settle
residual at λt/λt
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Payments: three imbalance regimes

Let Mt(s, d) be the pool’s monetary value after internal trades.

Proportional repartition ensures exact budget-balance and coalition-proofness:

Case I: d = s (balanced)

c = r = Mt(s, s)
s .

Case II: d < s (excess supply)

c = Mt(s, d)
d ,

r = Mt(s, d) + λt(s − d)
s .

Case III: d > s (excess demand)

c = Mt(s, s) + λt(d − s)
d ,

r = Mt(s, s)
s .
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AMM geometry I

Bonding curve supported only between the lower/upper price bounds λt and λ̄t .
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AMM geometry II

(Left) pool re-anchoring with initial supply; (Right) depletion of capacity in exchange for money
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AMM geometry III

Managing Surpluses (Left) and Deficits (Right) via Tangent-Line Shifts
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Bonding curves

Linear ψt(M,E ) = M + λtE

Kt = λtst , Mt(E ,∆E ) = λt ∆E .

Induced prices (with bounds):

ct(s, d) = λt + (λt − λt) (1 − s/d)+, rt(s, d) = λt − (λt − λt) (1 − d/s)+.

Anchors for λt :
Mid Market Rate (MMR): λarith

t = (λt + λt)/2, Geometric Market Rate (GMR): λgeom
t =

√
λt λt .

Hyperbolic (Uniswap-style, re-anchored)

ψt(M,E ) =
(
M + κt

√
λt

)(
E + κt/

√
λt

)
= κ 2

t . κt := st

√
λt λt√

λt −
√
λt
,
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Axiom Compliance via Geometric Construction

Proposition
Let the AMM use batch execution and proportional payments, with liquidity concentrated strictly
within the grid bounds, ρt(E ,M) ∈ (λt , λt). IF the trading function ψ(E ,M) is:

(i) strictly increasing in E and M, (ii) homothetic, (iii) quasi-concave,

THEN, the induced market satisfies all the desired axioms.

Intuition (design ⇒ axioms).
Batch + proportional payments ⇒ Anonymity, Coalition-Proofness.
Concentrated liquidity (within bounds) + re-anchoring ⇒ IR, No-Arbitrage, Budget-Balance (internal trades
strictly better than grid).
ψ quasi-concave ⇒ convex iso-value curves ⇒ Responsiveness (peak-shaving).
ψ homothetic ⇒ prices depend on reserve ratios ⇒ Homogeneity.
ψ strictly increasing ⇒ positive marginal values ⇒ Monotonicity.

Standard properties for DeFi AMMs (Angeris et al, Milionis et al, Fabi and Prat etc.) gives desired behavior of energy
AMM
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Prosumer model

How shall a prosumer interact with the AMM?
We consider a single prosumer n with batteries and local generation technologies (solar
panels, wind turbines).

Time: Epochs e = 1, 2, . . . ; each epoch has T steps of length ∆
(∆ = 0.25 if sessions last 15min and prices are quoted in kWh).

Prices (price-taking): (r̄t , c̄t) with λt ≤ r̄t ≤ c̄t ≤ λt .

State at start: bn0(e) ∈ [0,Bn]: battery State of Charge (SoC).

Control variables:
snt : sell energy,
dnt : buy energy,
knt : charge(+)/dischage(-) battery,
pnt : consume energy.
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Best-Response Linear Program (LP)

The optimization problem of a prosumer can be stated as an (epoch-based) Bellman equation:
Within-epoch LP (Objective)

max
s,d,k,p,b

T∑
t=1

(r̄tsnt − c̄tdnt)∆ + γ Π̄n(bnT )

Subject to the following constraints:
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Optimal plan & shadow price
Linear program ⇒ optimal plan is an extreme-point of the action set.
Let θnt be the multiplier on power balance:

θ∗
nt = (µ∗

nt − ν∗
n ) = γ(πb

n )∗ +
T∑

τ=t
(ιL∗

nτ − ιU∗
nτ ).

Interpretation: internal marginal value of energy = marginal utility of consumption = discounted
continuation value + intra-epoch storage shadow value.
Trading rule (price-taking):

x∗
nt =



Xn, θ∗
nt < r̄t

∈ (0,Xn), θ∗
nt = r̄t

0, r̄t < θ∗
nt < c̄t

∈ (−Xn, 0), θ∗
nt = c̄t

− Xn, θ∗
nt > c̄t

(xnt = snt − dnt)

Transmission-constrained at bounds; internally constrained on equalities.
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Rolling-horizon MPC

To approximate the solution to the dynamic programming problem, proceed as follows:
Loop each epoch e:

1. Fix bn0(e) and forecast (r̄, c̄) over L epochs.

2. Solve L-epoch LP ⇒ plan z∗(L); increase L until terminal b stabilizes.

3. Implement only epoch-e actions (s∗, d∗, k∗, p∗); set bn0(e+1) = bnT (e).

Note: small L is myopic; larger L captures storage option value. Converges quickly in practice.

Rolling-horizon MPC converges to the DP solution for sufficiently large L (Prat 2024)
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Equilibrium Problem (price-mediated coordination game)

How shall a community of prosumers interact with the AMM?
Players & Information

Prosumers n = 1, . . . ,N (N large).

Public state ze (weather, forecasts) ⇒ correlated types.

Private state: (θn, bn0(e)); price-taking.

Timeline per epoch e

1. Observe ze ; form beliefs F (θ | ze).

2. Choose mixed strategy over LP extreme points.

3. AMM sets session prices (r̄ , c̄) via aggregate net order flow.
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Actions and Strategies

Action Set (An): The set of all feasible epoch-plans an for prosumer n. This is a convex set defined
by the LP constraints.

Because the prosumer’s best-response problem is an LP, any optimal pure strategy a∗
n will be an

extreme point, a∗
n ∈ ext(An).

Mixed Strategy (σn): A probability distribution over this support. Formally, it’s a map from the
prosumer’s type θn to a distribution over their actions:

σn : Θn → ∆(ext(An))
where ∆(·) denotes the simplex formed over over the set ext(An).

Mixed Strategy Profile: σ ∈
N
×

n=1
∆(ext(An))

Game Form
Stage game (epoch) ⇒ BNE mixing over extreme points.

Dynamic game ⇒ MPE across epochs.
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Stage-game BNE (compact definition)

Given ze , a pair (σ∗, p̄∗) with p̄∗ = (r̄∗, c̄∗) is a Bayes-Nash Equilibrium (BNE) if:

Individual Optimality: For each n, σ∗
n(· | θn) must place all probability on the best-performing

actions:
σ∗

n(· | θn) ∈ arg max
σn

∑
an

σn(an)πn(an; p̄∗)

where an ranges over the extreme points of the feasible set An.

Rational Expectations: The prices p̄∗ must be the ones induced (in expectation over F (θ | ze)) by
the aggregate behavior under σ∗.

A mixed strategy is an equilibrium only if if the agent is indifferent between all pure strategies in its
support.
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Equilibrium characterization

Proposition (ex-ante welfare equivalence)
Under Budget-Balance, Individual Rationality, and Responsiveness, a stage-game BNE maximizes
the expected value of grid-trade profits:

max
σ

E
[ T∑

t=1

(
λt sAt − λt dAt

)]

That is, the equilibrium minimizes a (possibly weighted) L1 norm of net trades with the grid.

Intuition

The AMM first matches peers inside the spread.

Only residual net trades clear against the grid at (λt , λt).

The equilibrium problem is therefore: "make the residuals as small and as valuable as possible."
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Equilibrium characterization

Proposition (ex-ante welfare equivalence)
Under Budget-Balance, Individual Rationality, and Responsiveness, a stage-game BNE maximizes
the expected value of grid-trade profits:

max
σ

E
[ T∑

t=1

(
λt sAt − λt dAt

)]

That is, the equilibrium minimizes a (possibly weighted) L1 norm of net trades with the grid.

Implication

The game can be solved as a Planner Problem (PP) and then decentralized over feasible allocations .
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Equilibrium characterization

Proposition (ex-ante welfare equivalence)
Under Budget-Balance, Individual Rationality, and Responsiveness, a stage-game BNE maximizes
the expected value of grid-trade profits:

max
σ

E
[ T∑

t=1

(
λt sAt − λt dAt

)]

That is, the equilibrium minimizes a (possibly weighted) L1 norm of net trades with the grid.

Mean-Field View

With many price-taking prosumers and public ze , actions are conditionally i.i.d.

The welfare of the realized average net flow converges to welfare at the average community net-flow.

The BNE is characterized by the mean-field fixed point.
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Mechanism comparison: AMM vs VCG
The ex-post optimal welfare (Planner) is an upper bound on the ex-ante welfare (AMM):

Eθ

[
max

σ
W (σ, θ)

]
︸ ︷︷ ︸

WPlanner (VCG)

≥ max
σ

Eθ[W (σ, θ)]︸ ︷︷ ︸
WAMM (ex-ante)

VCG (first-best, ex-post)
Strategy-proof; uses full types.

Achieves WPlanner.

Not budget-balanced in general (requires subsidies).

Centralized, requires full data revelation before
trading.

AMM (this paper, ex-ante)
Budget-balanced; types obfuscated.

Implements BNE that maximizes expected welfare
under our axioms.

Not strategy-proof (Bayesian Incentive Compatible).

Decentralized, payments determined after trading.

Trade-off:
AMM sacrifices ex-post efficiency for implementability (budget balance, lower communication
complexity), yet attains the best ex-ante welfare possible within our market axioms.
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Equilibrium computation
Goal: Approximate BNE/MPE under price-taking and mean-field aggregation.
Computation Pipeline

1. State-dependent bins: Create J representative types (θj , bj(e)) by clustering agents (by hardware
+ current SoC).

2. Strategy banks BL
j (e): For each type j , solve L-epoch best-response LPs on synthetic prices;

store the resulting extreme point plans.

3. Planner QP (mean-field): Find the mixed strategies {σj} over the banks that maximize ex-ante
welfare (with small Tikhonov regularization).

4. Decentralize & project: Agents sample plans from their bank BL
j (e) using σj , project to their

exact individual constraints, and implement the first step.

Rolling Horizon
The terminal battery state bnT (e) is carried over to the next epoch e + 1.

The bins and banks are recomputed for the new state distribution.

This process approximates an MPE as a sequence of state-dependent BNEs.

39 / 60



Planner Problem

Let ȳ(l)(σ) be the expected net trades for horizon step l .

This is a linear aggregation of the mixed strategies σj for all J types, weighted by their population
mass wj :

ȳ(l)(σ) =
J∑

j=1
wj

(
S(l)

j σj − D(l)
j σj

)
We define exports y+ ≥ 0 and imports y− ≥ 0 such that ȳ = y−− y+.

Objective Function and Constraints (Regularized Welfare):

max
σ,y+,y−

L∑
l=1

γh−1(
λ(l)⊤y+(l) − λ

(l)⊤y−(l)) − λ∥∆y(σ)∥2
2

Net trade balance: ȳ(σ) − y+ + y− = 0, Non-negativity: y+, y− ≥ 0

Probability simplex: 1⊤σj = 1, σj ≥ 0, ∀j
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Decentralization & feasibility projection
Implementation Steps

1. Agent n finds its representative bin j .

2. It draws one L-epoch plan ank from the bank BL
j (e) according to the optimal strategy σ⋆

j (e).

3. Projection: The agent projects the first-epoch plan a(1)
nk onto their true individual constraints:

ã(1)
n = Prj

(
a(1)

nk ; θn, bn0(e)
)
.

4. Implement ã(1)
n and update the battery state bn0(e+1) = bnT (e).

Remarks

Projection guarantees feasibility for every agent.

Incentive compatibility is approximate (due to binning error).

L=1 gives a myopic stage-game; L>1 captures the option value of storage across epochs.
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Weather data: France

(a) (b)

Figure: Weather characteristics in metropolitan France. a. Solar irradiation. b. Wind speed at an
altitude of 100 meters.
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Prosumer Data: Paris and Nice

Figure: Community household energy profiles for demand and solar supply for prosumers in Paris and
Nice during a summer week (07/10/2023 to 07/16/2023) on the left side, and a winter week
(01/06/2023 to 01/12/2023) on the right side. Red lines indicate community demand, while blue and
black lines represent solar and Eolic energy supply respectively.
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Prosumer Data: Paris and Nice

Figure: Yearly supply over demand for Paris and Nice, respectively left and right graphs. Each line
represents the average over two weeks and their colors indicate the season. A dashed line represents the
equality between supply and demand.
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Prosumer Data: Paris and Nice

Figure: Consumption profile. On the left side, daily base load profile distribution in Nice, line in red
with blue quantiles, and in Paris, line in black with orange quantiles. On the right side, yearly flexible
load for Nice in red and Paris in black.
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Optimized Prosumer Behavior: Paris and Nice

Figure: Optimized consumption for Paris, on the right side, and Nice, on the left side.
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Optimized Prosumer Behavior: Paris and Nice

Figure: Two weeks mean battery profiles for Paris (left) and Nice (right). Colors represent annual
seasons.
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Gains from AMM use: Paris and Nice

Figure: Cumulative gain using linear pricing function for Paris on the left side and Nice on the right side.
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Equilibrium Computation & Synthetic Profiles

Objective: Model grid-level gains from
decentralization within a community
facilitated by an Automated Market Maker
(AMM).

Agent Composition (1,000 Total):
30% Solar Prosumers.
30% Wind Prosumers.
40% Pure Consumers.

Setup: Agents possess batteries, base load,
and flexible load.

Figure: Synthetic daily curves (Summer) based on
Paris data. Colors represent depth (centrality).
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Profile Distributions
Representative Profiles:
The center of each bin is chosen as the profile with depth closest to the center depth.

Figure: Profile distribution for base supply and demand.
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Mixed Strategy

Figure: Net trading profiles: Consumers (left), Solar (middle), Wind (right).
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Gains from Trade
Comparison: Green bars: Profits with AMM. Red bars: Benchmark profits (fixed prices).

The dynamic equilibrium approach yields a 42% total gain for the community compared to
the benchmark.

Figure: Distribution of individual agent profits (left) and total gains (right). 53 / 60



AMM Price Dynamics

Dynamic Pricing:
Selling Prices (Green): Generally follow the benchmark trend but fluctuate based on
agent effort to match supply/demand.
Buying Prices (Red): Adjusted dynamically via the AMM mechanism.
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Power Allocation

Flexible Consumption
Dynamic allocation shifts consumption to
low-price regions.

Mostly determined by grid prices impacting
community buy/sell rates.

Grid Interaction
Net interaction (blue line) shows the
community buying from the grid to match
deficits.

Agents prioritize buying from the grid when
it is cheaper.
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Battery Dynamics
Dispatch Logic:

Battery behavior is highly sensitive to internal community supply and grid prices.
Charging (Blue): Occurs mainly during solar hours or low grid prices.
Discharging (Peach): Occurs when production is low.

Figure: Aggregate battery dispatch profile.
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Conclusion & Future Directions

Summary of Contributions
1. Axiomatic theory for P2P energy market.

2. AMM construction (batching & concentrated liquidity, standard DeFi properties).

3. Model community as a Mean-Field Game

Empirical Validation
Numerical experiments using real prosumer data from the Paris (IDF) and Nice.

Future Directions
Forecast market

Interconnected microgrids

continuous-time version of the energy AMM.
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Thanks!
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