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Introduction and Motivation



The big picture: Spatial economics

e Economic activity is not uniformly distributed. Why do cities,
industrial clusters, and economic disparities emerge?

e Seminal work by [Krugman, 1991] (core-periphery model): trade-off
between economies of scale (agglomeration) and competition
(dispersion).

e In these models, migration decisions are key. Workers move to
locations offering higher utility (real wages).
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e Seminal work by [Krugman, 1991] (core-periphery model): trade-off
between economies of scale (agglomeration) and competition
(dispersion).

e In these models, migration decisions are key. Workers move to
locations offering higher utility (real wages).

A crucial assumption: Myopic vs. Forward-looking agents

e Myopic models: Agents only react to current wages. Simple, but
unrealistic for long-term decisions like migration.

e Forward-looking models: Agents anticipate future changes in
wages, prices, and population distribution. This is more realistic but
mathematically much harder.



The structure of modern spatial models

Recent forward-looking spatial models share a two-layer structure:

1. Static Equilibrium 2. Dynamic Migration
(at each time t) (over time)

Given the current distribution of Forward-looking agents make
labor p(t), a static trade model migration decisions based on the
(e.g., Krugman, Eaton-Kortum) future path of utilities
determines:
e This is an optimal control
e Local wages w(t, x) problem for each agent.
e Local price indices P(t, x) e The evolution of the labor

distribution p(t) results from
these individual decisions.

e Instantaneous utility (real
wage)

V(t,x) = w(t,x)/P(t,x).



Bilal and Rossi-Hansberg (2023)
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The research gap: A lack of theoretical foundations

Many recent quantitative papers build complex forward-looking models
([Caliendo et al., 2019], [Kleinman et al., 2023],
[Bilal & Rossi-Hansberg, 2023]).

They often rely on numerical solutions or linearization around a steady

state.
But fundamental theoretical questions remain open:
e Does a dynamic equilibrium even exist? If it exists, is it unique?

These questions have not yet been solved, either in discrete or in
continuous settings.
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Many recent quantitative papers build complex forward-looking models
([Caliendo et al., 2019], [Kleinman et al., 2023],
[Bilal & Rossi-Hansberg, 2023]).

They often rely on numerical solutions or linearization around a steady
state.

But fundamental theoretical questions remain open:
e Does a dynamic equilibrium even exist? If it exists, is it unique?

These questions have not yet been solved, either in discrete or in
continuous settings.

Why is it not simple?

The problem involves a complex coupling between:

e A backward Bellman equation (individual optimization).
e A forward law of motion for the population (aggregation).

e A non-linear integral equation for wages at each point in time.



Our contributions

We provide the theoretical foundations for this class of models using
Mean-Field Game (MFG) theory [Lasry & Lions, 2007].

1. Static Equilibrium: We prove the existence and uniqueness of the
static trade equilibrium in continuous space for a broad class of
models (Krugman, Armington, etc.).
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Our contributions

We provide the theoretical foundations for this class of models using
Mean-Field Game (MFG) theory [Lasry & Lions, 2007].

1. Static Equilibrium: We prove the existence and uniqueness of the
static trade equilibrium in continuous space for a broad class of
models (Krugman, Armington, etc.).

2. Dynamic Equilibrium: We use mean-field game tools to prove the
existence of a dynamic equilibrium, formally establishing that these
forward-looking spatial models are well-posed.

3. Analytical Insights: In a simplified circular economy, we obtain
closed-form solutions and use the MFG structure of the model to
decompose the dynamics of agglomeration into four distinct forces:

e |diosyncratic shocks

Myopic adjustment

Uncertainty management

Forward-looking expectations



The Static Layer: Trade
Equilibrium




The Krugman model in continuous space

To fix ideas, we use the [Krugman, 1996] model on a torus T2.

e A continuum of locations x € T?.

e A distribution of workers (population) .

e Dixit-Stiglitz preferences, monopolistic competition.

e Trade between locations x and y is subject to iceberg costs

T(x,y) > 1.



The Krugman model in continuous space

To fix ideas, we use the [Krugman, 1996] model on a torus T2.

e A continuum of locations x € T2,

A distribution of workers (population) .

Dixit-Stiglitz preferences, monopolistic competition.

Trade between locations x and y is subject to iceberg costs
7(x,y) > 1.
Static Equilibrium Wage

Given a population distribution y, a wage profile w : T2 — R, is a
static equilibrium if it solves a non-linear integral equation and a
normalization condition.
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Deriving the Static Wage (1/3): The Consumer’s Problem

Let's focus on a single worker at a location x. This worker earns a wage
w(x) and consumes a continuum of differentiated goods.

Maximisation problem: Love of Variety (Dixit-Stiglitz)

Let o be greater than 1.

The worker's utility is derived from consuming quantities g(y, x, i) of
each variety i/ produced at every location y:

) = max (/ / q(y,x,i) d/dy)
T2

under the budget constaint

n(y)
/T / p(y, x,1) q(y,x, i) didy = w(x)
2 Jo

where p(y, x, i) is the price at x of variety / produced at y.



Deriving the Static Wage (2/3): The Price Index

At the optimum we get:

1. The Demand Function: The demand for each variety is isoelastic:

7,)()/’ S w(x).

q(}/7X7 i) = P(X)lff"
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Deriving the Static Wage (2/3): The Price Index

At the optimum we get:

1. The Demand Function: The demand for each variety is isoelastic:
ply,x,i)~°
PO+ w(x).
2. The Indirect Utility (Real Wage): The maximum utility the
worker can achieve is

q(y,x,i) =

The Price Index P(x)

The term P(x) emerges naturally from the optimization as the cost of
living at location x. It is defined as

n(y) =
P(x) = // ply,x, )} 7 didy | .
T2 JO



Deriving the Static Wage (3/3): Market Clearing

The final steps involve the producer side and market clearing:

Producer Behavior

Firms set prices as a markup over marginal costs:

p(y,x, i) o< w(y) (y,x).
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Deriving the Static Wage (3/3): Market Clearing

The final steps involve the producer side and market clearing:

Producer Behavior

Firms set prices as a markup over marginal costs:

p(y,x, i) o< w(y) (y,x).

By substituting these producer-side results into the price index P(x) and
then imposing the market clearing condition

(Total Supply = Total Demand for each variety), we arrive at the final
wage equation:

- (y, x) 1 7w(y)
= e Talely, W@ 7 da(e) )

This is a fixed-point equation where the wage at each location x
depends on the wages and population distribution everywhere else.
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Main Result 1: Static Equilibrium

While existence/uniqueness is known for discrete regions, the continuous
case was an open problem.

Theorem 1 (Existence, Uniqueness, and Regularity)

For any population distribution y with full support on T? and regular
trade costs 7:

1. There exists a unique static equilibrium wage profile w.

2. The wage profile w is Lipschitz continuous and bounded away from
0 and oc.

3. (Stability) The map W : P»(T?) — (C°(T?), ||||) that from a
distribution p associates a profile wages W (u) is Lipschitz.

11



Main Result 1: Static Equilibrium

While existence/uniqueness is known for discrete regions, the continuous
case was an open problem.

Theorem 1 (Existence, Uniqueness, and Regularity)

For any population distribution y with full support on T? and regular
trade costs 7:

1. There exists a unique static equilibrium wage profile w.

2. The wage profile w is Lipschitz continuous and bounded away from
0 and oc.

3. (Stability) The map W : P»(T?) — (C°(T?), ||||) that from a
distribution p associates a profile wages W (u) is Lipschitz.

This result is the bedrock for the dynamic analysis. It ensures that the
"static layer” of the model is well-behaved, which is essential for
proving the existence of a dynamic equilibrium.

11



Sketch of proof: Exitence of an equilibrium

Let us define / and A as follows:

= ([ T(y, ) Tw(y) e
wl() ( sz(T(y,z)w(z))lvdu(z)d“(”) !

)170

and

1wl
M) = TR0 du)

From the definition of A (and with some computations), one can
establish that A[w]

1. is uniformly bounded away from 0 and +o0.

2. admits a Lispchitz constant that only depends on the regularity of 7.

Using a fixed-point strategy, one can prove the existence of a solution.

12



Sketch of proof: Uniqueness of equilibria (1/3)

Let us define for any w € CO(T2, R, )

Glw] = w — Alw] recalling  Alw] =

The map G : (C%(T?,Ry), [l[lo) = (COT?,Ry), [lll.) is C*.

Moreover if wy is a static equilibrium and [ hd; = 0, then
DG[wo](h) = h — DI[wo](h).

Showing that DG[wy] is invertible will lead us to local uniqueness.

e Since / is 1-homotopic, then 1 is an egeinvalue of DI[wp] and
e DI[wy] is linear, compact and strongly positive.

Krein-Rutman theorem

We use a strong version of the Krein-Rutman theorem to conclude that:

If h € CO satisfies h — DI[wp](h) = 0, then h = twg for some t.
13



Sketch of proof: Uniqueness of equilibria (2/3)

Let us now work on a linear subspace of (C°(T?), |||..):

e = {he co(T?) - /hduzo}.

We can verify that

° D/[W0]|eo ;00 5 00
e |d —DI[wp]jeo is a Fredholm operator on ©°.

e From the previous slide: Kerld —D/[wo]jg0 = {0}.

The Fredholm alternative ensures |d —D/[wo]|go is an isomorphism of ©°.

The Local Inversion Theorem gives the local uniqueness of static
equilibria.

14



Sketch of proof: Uniqueness of equilibria (3/3)

Global Uniqueness

1. Start with a simple case: If there are no trade costs (7 = 1), it is
easy to show that the unique equilibrium is a constant wage profile,
w = 1.
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w = 1.

2. Create a continuous path: We introduce a parameter s € [0, 1]
and define a path of trade costs that continuously deforms the "no
cost” case into our general case:
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Sketch of proof: Uniqueness of equilibria (3/3)

Global Uniqueness

1. Start with a simple case: If there are no trade costs (7 = 1), it is
easy to show that the unique equilibrium is a constant wage profile,
w = 1.

2. Create a continuous path: We introduce a parameter s € [0, 1]
and define a path of trade costs that continuously deforms the "no
cost” case into our general case:

Ts(xy) =1 =9)-1+s-7(x,y).

3. Track the number of solutions: Using the Leray-Schauder
degree theory and the results on DG, we show that the number of
solutions remains constant along the path from s =0 to s = 1.
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Sketch of proof: Stability

Let W : Po(T?) — (C°(T?), ||||) be the map that from a distribution
associates the static wage equilibirum W(pu).

e The uniqueness result combine with a compactness argument lead to
the continuity of U.

Using the previous notations with G = G[u, w], the definition of U leads
to
G(p, W(p)) =0,
where we already established that D,, G (i, W(u)) is invertible.
Lifting P2(T?) into L, we can use the Implicit Function Theorem.

Coming back to P»(T?), we deduce that U is C! in the intrinsic sense
and satisfies

D, W () = =Dy G (1, W(p)) eloD/!G(/“ W(p)).

By working a little bit more from this formula it is possible to bound the

norm of D, W(u) and deduce that W is Lipschitz.
16



The Dynamic Layer: A
Mean-Field Game




The agent’s problem and the MFG interaction

Agents are forward-looking and choose their migration path to maximize
lifetime utility.
e An agent's location X; evolves according to a controlled stochastic
process:
dXt = Oétdt + Vv 2l/dBt
where « is the chosen velocity (control) and B; is an idiosyncratic
shock.

e The agent maximizes expected discounted utility:

Co

maxE [ / "o (VO W), 1(1) = Flael?) dr}

where V is the real wage (instantaneous utility) and $|o.|? is a

migration cost.
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The agent’s problem and the MFG interaction

Agents are forward-looking and choose their migration path to maximize
lifetime utility.

e An agent's location X; evolves according to a controlled stochastic
process:
dXt = O[tdt + Vv 21/dBt
where « is the chosen velocity (control) and B; is an idiosyncratic

shock.
e The agent maximizes expected discounted utility:

Co

maxE [ / "o (VO W), 1(1) = Flael?) dt}

where V is the real wage (instantaneous utility) and $|o.|? is a

migration cost.

The Mean-Field Game Interaction

e Each agent is negligible, but their collective actions determine the
population distribution p(t).



The Mean-Field Game System

The equilibrium is characterized by a system of coupled partial differential
equations (PDEs):

—Ou—vAu— L 4 oy = V(x, w(t), i(t)) (HIB)

2¢cp

Orit — VAL + Cio div(yVu) =0 (Fokker-Planck)

T(y,x) 7w o .
Jre sz(T(}(,{z’)zv(z))lg)d”(z) du(y) = w(t,x) (Static Wage Eq.)

e The Hamilton-Jacobi-Bellman (HJB) equation describes the value
function u for an individual agent. It is solved backward in time.

e The Fokker-Planck (FP) equation describes the evolution of the
population distribution /.. It is solved forward in time.

e The Static Wage Equation links the wage profile w to the
distribution ;1 at each instant.

18



Main Result 2: Dynamic Equilibrium

Theorem 2 (Existence of Dynamic Equilibrium)

Under standard regularity assumptions on the model primitives (trade
costs, migration costs, etc.), there exists at least one mean-field game
equilibrium (u, p, w) solving the coupled PDE system.

19



Main Result 2: Dynamic Equilibrium

Theorem 2 (Existence of Dynamic Equilibrium)

Under standard regularity assumptions on the model primitives (trade
costs, migration costs, etc.), there exists at least one mean-field game
equilibrium (u, p, w) solving the coupled PDE system.

Proof ldea: Schauder’s Fixed-Point Theorem

We construct a map W that takes a path of population distributions to
another:

Thm 1 HJB FP. .
vV: p —— w — u — [

A fixed point p = [i is a dynamic equilibrium.
e We show this map W is continuous and maps a compact, convex set

into itself.

e The regularity results from our static analysis (Theorem 1) are
crucial to ensure the map is well-behaved and that we can apply the
fixed-point theorem.
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A word on uniqueness

Uniqueness of dynamic equilibria is a major challenge in economic
geography and MFG theory.

e Agglomeration forces can lead to multiplicity. If the model
favors concentration (like our pure Krugman model), there can be
multiple steady states (e.g., the economy can agglomerate in any
location xp). The path can depend on self-fulfilling prophecies.
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A word on uniqueness

Uniqueness of dynamic equilibria is a major challenge in economic
geography and MFG theory.

e Agglomeration forces can lead to multiplicity. If the model
favors concentration (like our pure Krugman model), there can be
multiple steady states (e.g., the economy can agglomerate in any
location xp). The path can depend on self-fulfilling prophecies.

e Dispersion forces can lead to uniqueness. If the model is
dominated by dispersion forces (e.g., strong congestion effects), the
equilibrium is often unique.

e This is related to the Lasry-Lions monotonicity condition in MFG
theory. The condition roughly states that utility should decrease as
local density increases.

/T (Ve p) = Vi(x,112) i — p2)(3) < 0

This is typically true for models with strong congestion but not for
pure agglomeration models.



Extensions Studied

Our theoretical results are robust and extend beyond the specific
Krugman model to a broad class of trade models.

e Other monopolistic competition models (e.g., with local amenities
or productivity spillovers).

e Perfect competition models (e.g., Armington, Eaton-Kortum).
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Extensions Studied

Our theoretical results are robust and extend beyond the specific
Krugman model to a broad class of trade models.

e Other monopolistic competition models (e.g., with local amenities
or productivity spillovers).

e Perfect competition models (e.g., Armington, Eaton-Kortum).
The dynamic analysis is also extended to different time frameworks.

e The stationary case, to characterize long-run steady-state
equilibria.

e The infinite time horizon problem, which is a standard setting in
macro-dynamic models.

These extensions demonstrate the robustness and generality of the
MFG framework for analyzing spatial economic dynamics.
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The Racetrack Economy:
Analytical Insights




The Racetrack Economy

To gain analytical insights, we study the model on a circle of radius R
T?,
e This setting has a simple, spatially uniform steady state:
n=1w=1.
e We study the stability of this equilibrium by introducing a small
sinusoidal perturbation to the initial population:

po(x) = 14 9, cos(kx)

e We then linearize the MFG system around the steady state to study
the evolution of this perturbation.

22



The linearized MFG system

The linearized MFG system is:
—0:i1 — vAL 4 pii = V(ji) (HJB)
Ot — VAL + %OAE/ =10 (Fokker-Planck)
V(i) = g—:ﬂ, (Static Wage Eq.)

completed with i(0, x) = §,, cos(kx) and i( T.x) = 0 for all x € Tk

23



Quantifying agglomeration: The HHI

We use the Herfindahl-Hirschman Index (HHI) to measure spatial
concentration:

HIp(t) = / e, x)Px

R

e H[u] is minimized for a uniform distribution.

e H[u] — oo as the distribution concentrates into a Dirac mass.
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Quantifying agglomeration: The HHI

We use the Herfindahl-Hirschman Index (HHI) to measure spatial
concentration:

HU(E) = | texPae

R

e H[u] is minimized for a uniform distribution.

e H[u] — oo as the distribution concentrates into a Dirac mass.
The evolution of agglomeration is given by the time derivative H'[](t).

e H'[u](t) >0 = Increasing concentration (agglomeration).

e H'[u](t) <0 = Decreasing concentration (dispersion).
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Decomposition of agglomeration forces

The core insight comes from decomposing H'[1](t) using the linearized
MFG equations.

Proposition (Decomposition of HHI evolution)

The change in spatial concentration can be decomposed into four
forces:

%H[M]’(t):u/A/j-/jdx —%/V[ﬁ]-Aﬂdx

Idiosyncratic shocks Myopic adjustment
v - . 1 . .
—— | AU-Afidx —— [ 0:0-Ajidx .
pCo pCo
Uncertainty Forward-looking expectations

This allows us to analyze the sign and magnitude of each component'’s
contribution.

25



The Four Forces of Spatial Dynamics

For Krugman trade model:

Dispersion Forces (-) Agglomeration Forces (+)

e ldiosyncratic Shocks: e Myopic Adjustment: In the
Random shocks (v > 0) always Krugman model, utility is
smooth out the distribution, higher in denser areas. Agents
acting as a powerful dispersion move towards these areas,
force. (Entropic effect) reinforcing concentration.

e Uncertainty Management: e Forward-looking
Agents anticipate that noise Expectations: Agents expect
will make less crowded areas others to be drawn to dense
more attractive in the future. areas, raising future utility
They move there preemptively, there. This creates a
reinforcing dispersion. self-fulfilling prophecy,

reinforcing agglomeration.



What would happen with dispersive trade models?

For Armington trade model:

Dispersion Forces (-) Agglomeration Forces (+)

e ldiosyncratic Shocks e Uncertainty Management

e Myopic Adjustment e Forward-looking expectations
Whatever the static trade model, forward-looking always act as an
agglomeration force.

However, it cannot reverse the dominant pattern that would arise under
myopic behavior.
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Conclusion

e We provided the first rigorous theoretical foundations for a broad
class of dynamic, forward-looking spatial equilibrium models in
continuous space.
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Conclusion

e We provided the first rigorous theoretical foundations for a broad
class of dynamic, forward-looking spatial equilibrium models in
continuous space.

e Methodology: Mean-Field Game theory is the natural framework to
handle the interaction between individual optimization and
aggregate dynamics.

o Key Results:

1. Proved existence and uniqueness of the static trade equilibrium in
continuous space using a novel homotopy argument.

2. Proved the existence of a dynamic MFG equilibrium, ensuring these
models are well-posed.

3. Decomposed the dynamics of agglomeration, explicitly quantifying
the roles of uncertainty and expectations.
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Future Research

The MFG framework opens up many avenues for future work:

e Policy analysis: Introduce a major player (e.g., a government

setting taxes or subsidies) in a Mean-Field Game with a major player.

e Richer dynamics: Incorporate common noise (e.g., aggregate
productivity shocks, climate shocks) or non-local migration (jumps).

e Quantitative applications: Apply numerical methods for solving
MFG systems to solve realistic versions of these models.

29



Thank you! Questions?

29
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