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Introduction and Motivation



The big picture: Spatial economics

• Economic activity is not uniformly distributed. Why do cities,

industrial clusters, and economic disparities emerge?

• Seminal work by [Krugman, 1991] (core-periphery model): trade-off

between economies of scale (agglomeration) and competition

(dispersion).

• In these models, migration decisions are key. Workers move to

locations offering higher utility (real wages).

A crucial assumption: Myopic vs. Forward-looking agents

• Myopic models: Agents only react to current wages. Simple, but

unrealistic for long-term decisions like migration.

• Forward-looking models: Agents anticipate future changes in

wages, prices, and population distribution. This is more realistic but

mathematically much harder.
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The structure of modern spatial models

Recent forward-looking spatial models share a two-layer structure:

1. Static Equilibrium

(at each time t)

Given the current distribution of

labor µ(t), a static trade model

(e.g., Krugman, Eaton-Kortum)

determines:

• Local wages w(t, x)

• Local price indices P(t, x)

• Instantaneous utility (real

wage)

V (t, x) = w(t, x)/P(t, x).

2. Dynamic Migration

(over time)

Forward-looking agents make

migration decisions based on the

future path of utilities

• This is an optimal control

problem for each agent.

• The evolution of the labor

distribution µ(t) results from

these individual decisions.
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Bilal and Rossi-Hansberg (2023)

Impact of 3°C additional warming by 2100 in US population

distribution
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The research gap: A lack of theoretical foundations

Many recent quantitative papers build complex forward-looking models

([Caliendo et al., 2019], [Kleinman et al., 2023],

[Bilal & Rossi-Hansberg, 2023]).

They often rely on numerical solutions or linearization around a steady

state.

But fundamental theoretical questions remain open:

• Does a dynamic equilibrium even exist? If it exists, is it unique?

These questions have not yet been solved, either in discrete or in

continuous settings.

Why is it not simple?

The problem involves a complex coupling between:

• A backward Bellman equation (individual optimization).

• A forward law of motion for the population (aggregation).

• A non-linear integral equation for wages at each point in time.
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Our contributions

We provide the theoretical foundations for this class of models using

Mean-Field Game (MFG) theory [Lasry & Lions, 2007].

1. Static Equilibrium: We prove the existence and uniqueness of the

static trade equilibrium in continuous space for a broad class of

models (Krugman, Armington, etc.).

2. Dynamic Equilibrium: We use mean-field game tools to prove the

existence of a dynamic equilibrium, formally establishing that these

forward-looking spatial models are well-posed.

3. Analytical Insights: In a simplified circular economy, we obtain

closed-form solutions and use the MFG structure of the model to

decompose the dynamics of agglomeration into four distinct forces:

• Idiosyncratic shocks

• Myopic adjustment

• Uncertainty management

• Forward-looking expectations
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The Static Layer: Trade

Equilibrium



The Krugman model in continuous space

To fix ideas, we use the [Krugman, 1996] model on a torus T2.

• A continuum of locations x ∈ T2.

• A distribution of workers (population) µ.

• Dixit-Stiglitz preferences, monopolistic competition.

• Trade between locations x and y is subject to iceberg costs

τ(x , y) ≥ 1.

Static Equilibrium Wage

Given a population distribution µ, a wage profile w : T2 → R+ is a

static equilibrium if it solves a non-linear integral equation and a

normalization condition.

w(x)σ =

∫
T2

τ(y , x)1−σw(y)∫
T2(τ(y , z)w(z))1−σdµ(z)

dµ(y) (1)∫
T2

w(x)dµ(x) = 1 (2)

Intuition for (1): The wage at x is high if it can sell to locations y with high

purchasing power (numerator) and low competition (denominator).
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Deriving the Static Wage (1/3): The Consumer’s Problem

Let’s focus on a single worker at a location x . This worker earns a wage

w(x) and consumes a continuum of differentiated goods.

Maximisation problem: Love of Variety (Dixit-Stiglitz)

Let σ be greater than 1.

The worker’s utility is derived from consuming quantities q(y , x , i) of

each variety i produced at every location y :

V (x) = max

(∫
T2

∫ n(y)

0

q(y , x , i)
σ−1
σ di dy

) σ
σ−1

under the budget constaint∫
T2

∫ n(y)

0

p(y , x , i) q(y , x , i) di dy = w(x)

where p(y , x , i) is the price at x of variety i produced at y .
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Deriving the Static Wage (2/3): The Price Index

At the optimum we get:

1. The Demand Function: The demand for each variety is isoelastic:

q(y , x , i) =
p(y , x , i)−σ

P(x)1−σ
w(x).

2. The Indirect Utility (Real Wage): The maximum utility the

worker can achieve is

V (x) =
w(x)

P(x)
.

The Price Index P(x)

The term P(x) emerges naturally from the optimization as the cost of

living at location x . It is defined as

P(x) =

(∫
T2

∫ n(y)

0

p(y , x , i)1−σ di dy

) 1
1−σ

.
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Deriving the Static Wage (3/3): Market Clearing

The final steps involve the producer side and market clearing:

Producer Behavior

Firms set prices as a markup over marginal costs:

p(y , x , i) ∝ w(y) τ(y , x).

By substituting these producer-side results into the price index P(x) and

then imposing the market clearing condition

(Total Supply = Total Demand for each variety), we arrive at the final

wage equation:

The Equilibrium Wage Equation

w(x)σ =

∫
T2

τ(y , x)1−σw(y)∫
T2(τ(y , z)w(z))1−σdµ(z)

dµ(y)

This is a fixed-point equation where the wage at each location x

depends on the wages and population distribution everywhere else.
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Main Result 1: Static Equilibrium

While existence/uniqueness is known for discrete regions, the continuous

case was an open problem.

Theorem 1 (Existence, Uniqueness, and Regularity)

For any population distribution µ with full support on T2 and regular

trade costs τ :

1. There exists a unique static equilibrium wage profile w .

2. The wage profile w is Lipschitz continuous and bounded away from

0 and ∞.

3. (Stability) The map W : P2(T2) → (C 0(T2), ∥∥∞) that from a

distribution µ associates a profile wages W (µ) is Lipschitz.

Why is this important?

This result is the bedrock for the dynamic analysis. It ensures that the

”static layer” of the model is well-behaved, which is essential for

proving the existence of a dynamic equilibrium.
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Sketch of proof: Exitence of an equilibrium

Let us define I and Λ as follows:

I [w ](x) =

(∫
T2

τ(y , x)1−σw(y)∫
T2(τ(y , z)w(z))1−σdµ(z)

dµ(y)

) 1
σ

,

and

Λ[w ](x) =
I [w ](x)∫

I [w ](y)dµ(y)
.

From the definition of Λ (and with some computations), one can

establish that Λ[w ]

1. is uniformly bounded away from 0 and +∞.

2. admits a Lispchitz constant that only depends on the regularity of τ .

Using a fixed-point strategy, one can prove the existence of a solution.
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Sketch of proof: Uniqueness of equilibria (1/3)

Let us define for any w ∈ C 0(T2,R+)

G [w ] = w − Λ[w ] recalling Λ[w ] =
I [w ]∫
I [w ]dµ

.

The map G : (C 0(T2,R+), ∥∥∞) → (C 0(T2,R+), ∥∥∞) is C 1.

Moreover if w0 is a static equilibrium and
∫
hdµ = 0, then

DG [w0](h) = h − DI [w0](h).

Showing that DG [w0] is invertible will lead us to local uniqueness.

• Since I is 1-homotopic, then 1 is an egeinvalue of DI [w0] and

DI [w0](w0) = 0.

• DI [w0] is linear, compact and strongly positive.

Krein-Rutman theorem

We use a strong version of the Krein-Rutman theorem to conclude that:

If h ∈ C 0 satisfies h − DI [w0](h) = 0, then h = tw0 for some t.
13



Sketch of proof: Uniqueness of equilibria (2/3)

Let us now work on a linear subspace of (C 0(T2), ∥∥∞):

Θ0 =

{
h ∈ C 0(T2) :

∫
hdµ = 0

}
.

We can verify that

• DI [w0]|Θ0 : Θ0 → Θ0

• Id−DI [w0]|Θ0 is a Fredholm operator on Θ0.

• From the previous slide: Ker Id−DI [w0]|Θ0 = {0}.

The Fredholm alternative ensures Id−DI [w0]|Θ0 is an isomorphism of Θ0.

The Local Inversion Theorem gives the local uniqueness of static

equilibria.
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Sketch of proof: Uniqueness of equilibria (3/3)

Global Uniqueness

1. Start with a simple case: If there are no trade costs (τ ≡ 1), it is

easy to show that the unique equilibrium is a constant wage profile,

w ≡ 1.

2. Create a continuous path: We introduce a parameter s ∈ [0, 1]

and define a path of trade costs that continuously deforms the ”no

cost” case into our general case:

τs(x , y) = (1− s) · 1 + s · τ(x , y).

3. Track the number of solutions: Using the Leray-Schauder

degree theory and the results on DG , we show that the number of

solutions remains constant along the path from s = 0 to s = 1.
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Sketch of proof: Stability

Let W : P2(T2) → (C 0(T2), ∥∥∞) be the map that from a distribution µ

associates the static wage equilibirum W (µ).

• The uniqueness result combine with a compactness argument lead to

the continuity of U.

Using the previous notations with G = G [µ,w ], the definition of U leads

to

G (µ,W (µ)) = 0,

where we already established that DwG (µ,W (µ)) is invertible.

Lifting P2(T2) into L2, we can use the Implicit Function Theorem.

Coming back to P2(T2), we deduce that U is C 1 in the intrinsic sense

and satisfies

DµW (µ) = −DwG (µ,W (µ))−1
|Θ0DµG (µ,W (µ)).

By working a little bit more from this formula it is possible to bound the

norm of DµW (µ) and deduce that W is Lipschitz.
16



The Dynamic Layer: A

Mean-Field Game



The agent’s problem and the MFG interaction

Agents are forward-looking and choose their migration path to maximize

lifetime utility.

• An agent’s location Xt evolves according to a controlled stochastic

process:

dXt = αtdt +
√
2νdBt

where αt is the chosen velocity (control) and Bt is an idiosyncratic

shock.

• The agent maximizes expected discounted utility:

max
(αt)

E

[∫ T

0

e−ρt
(
V (Xt ,W (µ(t)), µ(t))− c0

2
|αt |2

)
dt

]
where V is the real wage (instantaneous utility) and c0

2 |αt |2 is a

migration cost.

The Mean-Field Game Interaction

• Each agent is negligible, but their collective actions determine the

population distribution µ(t).

• The utility V at location x depends on the wages w(t), which in

turn depend on the entire distribution µ(t).

• Equilibrium: A situation where the optimal migration strategy of

each agent, given their expectations about (µ(t),w(t)), generates

exactly that same evolution of (µ(t),w(t)).
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The Mean-Field Game System

The equilibrium is characterized by a system of coupled partial differential

equations (PDEs):
−∂tu − ν∆u − |∇u|2

2c0
+ ρu = V (x ,w(t), µ(t)) (HJB)

∂tµ− ν∆µ+ 1
c0
div(µ∇u) = 0 (Fokker-Planck)∫

T2

τ(y ,x)1−σw(y)∫
T2 (τ(y ,z)w(z))1−σdµ(z)

dµ(y) = w(t, x)σ (Static Wage Eq.)

• The Hamilton-Jacobi-Bellman (HJB) equation describes the value

function u for an individual agent. It is solved backward in time.

• The Fokker-Planck (FP) equation describes the evolution of the

population distribution µ. It is solved forward in time.

• The Static Wage Equation links the wage profile w to the

distribution µ at each instant.
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Main Result 2: Dynamic Equilibrium

Theorem 2 (Existence of Dynamic Equilibrium)

Under standard regularity assumptions on the model primitives (trade

costs, migration costs, etc.), there exists at least one mean-field game

equilibrium (u, µ,w) solving the coupled PDE system.

Proof Idea: Schauder’s Fixed-Point Theorem

We construct a map Ψ that takes a path of population distributions to

another:

Ψ : µ
Thm 1−−−−→ w

HJB−−→ u
FP−→ µ̂

A fixed point µ = µ̂ is a dynamic equilibrium.

• We show this map Ψ is continuous and maps a compact, convex set

into itself.

• The regularity results from our static analysis (Theorem 1) are

crucial to ensure the map is well-behaved and that we can apply the

fixed-point theorem.
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A word on uniqueness

Uniqueness of dynamic equilibria is a major challenge in economic

geography and MFG theory.

• Agglomeration forces can lead to multiplicity. If the model

favors concentration (like our pure Krugman model), there can be

multiple steady states (e.g., the economy can agglomerate in any

location x0). The path can depend on self-fulfilling prophecies.

• Dispersion forces can lead to uniqueness. If the model is

dominated by dispersion forces (e.g., strong congestion effects), the

equilibrium is often unique.

• This is related to the Lasry-Lions monotonicity condition in MFG

theory. The condition roughly states that utility should decrease as

local density increases.∫
T2

(V (x , µ1)− V (x , µ2)) d(µ1 − µ2)(x) ≤ 0

This is typically true for models with strong congestion but not for

pure agglomeration models.
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Extensions Studied

Our theoretical results are robust and extend beyond the specific

Krugman model to a broad class of trade models.

• Other monopolistic competition models (e.g., with local amenities

or productivity spillovers).

• Perfect competition models (e.g., Armington, Eaton-Kortum).

The dynamic analysis is also extended to different time frameworks.

• The stationary case, to characterize long-run steady-state

equilibria.

• The infinite time horizon problem, which is a standard setting in

macro-dynamic models.

These extensions demonstrate the robustness and generality of the

MFG framework for analyzing spatial economic dynamics.
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• Other monopolistic competition models (e.g., with local amenities

or productivity spillovers).

• Perfect competition models (e.g., Armington, Eaton-Kortum).

The dynamic analysis is also extended to different time frameworks.

• The stationary case, to characterize long-run steady-state
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• The infinite time horizon problem, which is a standard setting in

macro-dynamic models.

These extensions demonstrate the robustness and generality of the

MFG framework for analyzing spatial economic dynamics.
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The Racetrack Economy:

Analytical Insights



The Racetrack Economy

To gain analytical insights, we study the model on a circle of radius R

T1
R .

• This setting has a simple, spatially uniform steady state:

µ̄ = 1, w̄ = 1.

• We study the stability of this equilibrium by introducing a small

sinusoidal perturbation to the initial population:

µ0(x) = 1 + δµ cos(kx)

• We then linearize the MFG system around the steady state to study

the evolution of this perturbation.
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The linearized MFG system

The linearized MFG system is:
−∂t ũ − ν∆ũ + ρũ = Ṽ (µ̃) (HJB)

∂t µ̃− ν∆µ̃+ 1
c0
∆ũ = 0 (Fokker-Planck)

Ṽ (µ̃) = δV
δµ
µ̃ (Static Wage Eq.)

completed with µ̃(0, x) = δµ cos(kx) and ũ(T , x) = 0 for all x ∈ T1
R
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Quantifying agglomeration: The HHI

We use the Herfindahl–Hirschman Index (HHI) to measure spatial

concentration:

H[µ](t) =

∫
T1
R

µ(t, x)2dx

• H[µ] is minimized for a uniform distribution.

• H[µ] → ∞ as the distribution concentrates into a Dirac mass.

The evolution of agglomeration is given by the time derivative H ′[µ](t).

• H ′[µ](t) > 0 =⇒ Increasing concentration (agglomeration).

• H ′[µ](t) < 0 =⇒ Decreasing concentration (dispersion).
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Decomposition of agglomeration forces

The core insight comes from decomposing H ′[µ](t) using the linearized

MFG equations.

Proposition (Decomposition of HHI evolution)

The change in spatial concentration can be decomposed into four

forces:

1

2
H[µ]′(t) = ν

∫
∆µ̃ · µ̃ dx︸ ︷︷ ︸

Idiosyncratic shocks

− 1

ρc0

∫
Ṽ [µ̃] ·∆µ̃ dx︸ ︷︷ ︸

Myopic adjustment

− ν

ρc0

∫
∆ũ ·∆µ̃ dx︸ ︷︷ ︸

Uncertainty

− 1

ρc0

∫
∂t ũ ·∆µ̃ dx︸ ︷︷ ︸

Forward-looking expectations

.

This allows us to analyze the sign and magnitude of each component’s

contribution.

25



The Four Forces of Spatial Dynamics

For Krugman trade model:

Dispersion Forces (-)

• Idiosyncratic Shocks:

Random shocks (ν > 0) always

smooth out the distribution,

acting as a powerful dispersion

force. (Entropic effect)

• Uncertainty Management:

Agents anticipate that noise

will make less crowded areas

more attractive in the future.

They move there preemptively,

reinforcing dispersion.

Agglomeration Forces (+)

• Myopic Adjustment: In the

Krugman model, utility is

higher in denser areas. Agents

move towards these areas,

reinforcing concentration.

• Forward-looking

Expectations: Agents expect

others to be drawn to dense

areas, raising future utility

there. This creates a

self-fulfilling prophecy,

reinforcing agglomeration.
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What would happen with dispersive trade models?

For Armington trade model:

Dispersion Forces (-)

• Idiosyncratic Shocks

• Myopic Adjustment

Agglomeration Forces (+)

• Uncertainty Management

• Forward-looking expectations

Whatever the static trade model, forward-looking always act as an

agglomeration force.

However, it cannot reverse the dominant pattern that would arise under

myopic behavior.
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Conclusion



Conclusion

• We provided the first rigorous theoretical foundations for a broad

class of dynamic, forward-looking spatial equilibrium models in

continuous space.

• Methodology: Mean-Field Game theory is the natural framework to

handle the interaction between individual optimization and

aggregate dynamics.

• Key Results:

1. Proved existence and uniqueness of the static trade equilibrium in

continuous space using a novel homotopy argument.

2. Proved the existence of a dynamic MFG equilibrium, ensuring these

models are well-posed.

3. Decomposed the dynamics of agglomeration, explicitly quantifying

the roles of uncertainty and expectations.
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Future Research

The MFG framework opens up many avenues for future work:

• Policy analysis: Introduce a major player (e.g., a government

setting taxes or subsidies) in a Mean-Field Game with a major player.

• Richer dynamics: Incorporate common noise (e.g., aggregate

productivity shocks, climate shocks) or non-local migration (jumps).

• Quantitative applications: Apply numerical methods for solving

MFG systems to solve realistic versions of these models.
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Thank you! Questions?
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